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Preface

The book is about the mathematics of linear systems, particularly continuous time
autonomous linear systems with finite-dimensional state space. These cover an
interesting range of applications in science and engineering and are basic to the
study of more complex systems. The material is at a level suitable for a third or
fourth year undergraduate student in a UK university. We assume that the reader is
familiar with calculus, linear algebra and basic complex analysis and develop these
ideas further within the particular context of linear systems.

Chapter 1 is about how to describe linear systems by differential equation,
block diagrams and linear algebra. One of the attractions of linear systems is that
they can be discussed in several different ways. Chapter 2 begins the systematic
development of the theory, where methods of linear algebra are used to describe
linear systems and compute transfer functions. The purpose of transfer functions
is deferred until Chap. 4, where they are introduced in parallel via the Laplace
transform. In Chap. 2, we use only basic linear algebra, while in chapter three more
advanced techniques are introduced. In most cases, the results are proved in detail,
and there are indications about how the mathematical questions can be posed in a
form suitable for calculation via MATLAB. A crucial aspect of linear systems theory
is its adaptability to treat systems of very high dimension, for which computers are
essential. Some readers may wish to defer the final few sections of Chap. 3 until
later. More generally, some sections of the book are more challenging than others,
and readers can pass over some results if they find them difficult.

In Chap. 4, we give a conventional discussion of the Laplace transform for
functions on (0,∞) with basic applications to differential equations. Inversion of
Laplace transforms is a complicated topic, and in this book we give some special
cases such as Heaviside’s expansion theorem before addressing the general case in
Chap. 6; this is consistent with the historical development of the subject. Methods of
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complex analysis are mainly deferred until Chap. 5. We also cover the Fourier cosine
transform and obtain an inversion formula for the L1 cosine transform. The Fourier
transform is essential for applications to signal processing, which are pursued in
Chap. 10.

In Chaps. 5, 6, and 7, we consider three approaches to the stability problem.
Chapter 5 uses methods of complex analysis and geometric function theory to help
us visualize the transfer function in terms of its Nyquist contour. In Chap. 6, we
present algebraic approaches which are algorithmic and can be carried out in exact
arithmetic without approximation. Then in Chap. 7 we use linear algebra in a manner
that is especially suited to large matrices. All of these approaches are most effective
when they are implemented with the aid of computers, and for large systems,
computers are essential. Although these approaches are separated into distinct
chapters, the difference between them should not be overstated. They are different
routes towards the same goal and the same problem can be expressed in different
but equivalent ways in terms of Laplace transforms, polynomials or matrices. Also,
some families of transcendental functions such as the Bessel functions can be
conveniently described in terms of algebraic differential rings.

In Chap. 8, we consider orthogonal polynomials. This topic is often taught
alongside numerical analysis, as examples in the theory of differential equations or
as an application of Hilbert space theory. In this book, we emphasize that sequences
of orthogonal polynomials can be generated efficiently using discrete time linear
systems, which make use of the three term recurrence relation. In applications to
signal processing, it is common to use examples such as the Chebyshev polynomials
to create filters, and these are particularly well suited to our approach. The chapter
covers some of the other classical orthogonal polynomials, such as the Laguerre
system, which we later use to prove fundamental results about Fourier integrals.

Chapter 9 is concerned with Green’s functions, in the sense of Cauchy transforms
of an integrable weight on a bounded real interval. This has obvious applications to
orthogonal polynomials and moments, and some less obvious application to random
linear processes. Some of these results describe fundamental examples in random
matrix theory such as the semicircle law. There are diverse applications, such as the
famous May-Wigner law in mathematical biology, which demonstrate how useful
linear systems are in treating complex problems in many branches of science.

The results of the first nine chapters mainly apply to linear systems with finite
dimensional state spaces and the finite matrices that operate on them. In Chap. 10,
we introduce Hilbert space with a view to describing some infinite-dimensional
linear systems. As soon as one attained the generality of Hilbert space, one
realizes the need to have suitably adapted tools with which to carry out explicit
computations. For this reason, we introduce Hardy space on the right half-plane
with its orthonormal basis derived from the Laguerre functions. The intended
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application of these is to signal processing, and in Chap. 11 we include famous
results such as Shannon’s sampling theorem for band limited functions. Although
the historical development had an interlude of several decades, it is now natural
to follow this directly with the Shannon wavelet basis for L2. The book concludes
with a discussion of Telatar’s model of wireless transmission, which is often called
‘single user MIMO’. This is an important instance where random matrix theory
enters into linear systems and suggests areas for further study.

Chapters 1 and 2 are essential for understanding the rest of the book. Then
readers who are mainly interesting in linear algebra can progress to Chaps. 3 and 7.
Chapters 4 and 5 feature Laplace transforms and do not depend on the more
advanced tools from linear algebra. Chapters 8 and 9 are best read together, and
these feed naturally into Chap. 10. The final Chap. 11 requires Chaps. 9 and 10. The
following diagram indicates this logical dependence.

There are many aspects of control theory that we do not discuss in this
book. Reliability, cost of manufacture, usability and tuning of components are all
important topics that we leave to books that emphasize engineering.

This book is based on lectures for a third-year module at Lancaster University
for mathematics students and several projects for students in mathematics, physics
and environmental science. I am grateful to these students for helpful comments on
the course materials which progressively improved the module. The module also
benefited from a helpful review by my colleagues Nadia Mazza and David Towers,
who persuaded me to incorporate projects into the module assessment and enabled
students to work on more extended exercises. Lucinda Hadley’s PhD thesis on
wireless communication suggested some of the contemporary topics. I am grateful
to Remi Lodh of Springer who helped guide the project. A former student Yufei Li
proofread the manuscript and eradicated several errors.
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Linear algebra Transforms

1 Linear systems description2 Solving by matrices 4 Laplace transforms

6 Algebraic stability3 Eigenvalues, block matrices 5 Frequency response, stability

7 Stability via linear algebra 8 Discrete-time

9 Green’s functions 10 Hilbert spaces

11 Wireless and wavelets

After studying this book, we hope that the reader is confidently prepared to
pursue the topic via IEEE journals or applications to engineering problems.

Lancaster, UK Gordon Blower
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Chapter 1
Linear Systems and Their Description

In linear systems, we consider a machine made up of several components, which are
connected together. We take t > 0 to be continuous time and consider the evolution
of the system through time. The machine has an input u = u(t), and output y = y(t)
and the internal state of the machine is described by a state x = x(t), and we take
u, x, y to be vector-valued functions of t . The state of a system is a set of variables
whose values, together with the input and the equations describing the dynamics,
will describe the future state and output of the system. Generally, we want to know
how y(t) depends upon u(t). The component parts of the machine are represented
by various linear operators, which leads to the terminology ‘linear system’. In this
book, we consider a special class of linear systems that we can analyze by means of
linear algebra. When studying a linear system, it is important to have:

• general results which enable us to classify and describe a significant class of
linear systems;

• specific methods for solving these linear systems;
• results that are in a form that allows effective and explicit computation of

solutions, usually using computers.

In this book, we achieve these criteria for (A,B,C,D) systems.

1.1 Linear Systems and Their Description

Let C be the field of complex numbers, let V and W be vector spaces over C, so
λf + μg ∈ V for all f, g ∈ V and λ,μ ∈ C. (We use C since the results of basic
linear algebra about square matrices work best for C, and we also use some results
from complex analysis.) Time is t > 0. A map L : V → W is called linear if

L(λf + μg) = λLf + μLg. (1.1)
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2 1 Linear Systems and Their Description

Example 1.1 The following give the basic examples of linear maps and their
diagrammatic representation:

V = W = {continuously differentiable functions f : [0,∞)→ C}.

Notation (Operations)
1. [(i)] Differentiator Lf = df

dt
; symbolized by [d/dt];

2. [(ii)] Integrator Lf (x) = ∫ x
0 f (t) dt, symbolized as [∫ ];

3. [(iii)] an amplifier acts by multiplication by a ∈ C, symbolized as [a];
4. [(iv)] a matrix multiplier acts by multiplication on the left by a matrix A on a

column vector v as in v �→ Av, symbolized by [A];
5. [(v)] Multiplication by h ∈ V , Lf (t) = h(t)f (t) symbolized as [h];
6. [(vi)] Evaluation at t0, f �→ f (t0) symbolized as [δt0].

Definition 1.2 (Diagrams) Let V be the space of infinitely differentiable functions
f : (0,∞)→ C. Let u ∈ V be the input, y ∈ V be the output. A diagram is a graph
built up from vertices u, y and others chosen from

{
u, y, [δ0],⊕, ·, [d/dt], [

∫
], [a], [h]

}

which are connected by directed edges, drawn as arrows. The following apply.

(1) u is the input and y is the output. The vertices u and y have degree one; whereas
all other vertices have degree two or three with one or two arrows pointing into
the vertex, and one or two pointing out.

(2) The graph is simple, so there are no multiple edges, and no vertex is directly
connected to itself by some edge. All the vertices lie on some directed path
consisting of consecutive arrows from u to y.

(3) If the diagram contains a circuit, then we say that there is feedback.
(4) If the diagram does not contain a circuit, then the system is ‘open’ or ‘straight

through’.

Block Diagrams
1. [(i)] Summing junction⊕ has y = u1 + u2.

+
u1

u2

u1 + u2
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2. [(ii)] Tap • splits an input u into two copies of u (the effect of a tap is like
voltage at an electrical junction, not like water flow in a plumbing).

.u

u

u

Example 1.3 We can build up more complicated systems as in

y = 3
∫
u+ 2

du

dt
+ 6u. (1.2)

.

.

6 +

2 d/dt +

3

u u 6u

u

u 2u 2du/dt

u

u 3u 3 u

y

1.2 Feedback

Linear systems have two basic types, namely open or closed loop.

Open Loop Here the input u is subject to linear operations and produces an output
y. For example

y(t) = atu(t)+ d
2u

dt2
(t). (1.3)

Some machines are open loop, for instance rockets, or primitive turbines.

Closed Loop or Feedback Systems Here we take the input, subject it to linear
operations, and also take the output, feed it back into the system, apply linear
operations to the output and then add the modified input and the modified output.
Most modern alliances involve some feedback or control systems. For instance, car
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engines, wind turbines involve feedback systems to ensure that their rate of rotation
is under control. For example

d2y

dt2
+ cy = u− b u

dt
(1.4)

can be written as

y = −c
∫ ∫

y − b
∫
u+

∫ ∫
u. (1.5)

Here we take the output y, integrate y twice, and add to the twice integrated input∫ ∫
u and the once integrated input multiplied by −b. Later, we’ll use feedback to

stabilize linear systems.

. + .
u

u

Example 1.4 (Negative Feedback) Feedback can occur by force of nature. A cyclist
pedals harder, hence goes faster, but the faster the cyclist goes, the greater the
air resistance. Let m be the mass of the cyclist, v the velocity, k a constant of
proportionality, and u the force imparted on the pedals. Then by Newton’s second
law of motion,

m
dv

dt
= −kv + u (1.6)

which we can express as a feedback system

v = −k
m

∫
v + 1

m

∫
u, (1.7)
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and the sign of −k/m indicates negative feedback.

1/m + .

− k/m

u

v

v

Positive feedback occurs in the following examples, naturally or by design.

Example 1.5 (Bird Populations) Let x be the number of birds on an isolated island,
say puffins on Ailsa Craig. The birth rate of birds is proportional to the number of
birds, and birds can come and go by flying to other nesting sites at rate u, so, for
some k > 0,

dx

dt
= kx + u. (1.8)

Example 1.6 (Turbocharger) A car engine has a turbocharger. This consists of a
simple gas turbine driven by the exhaust outlet, connected by a shaft to a turbine
which forces air into the inlet manifold. The faster the engine revolves, the more
exhaust it produces, so the turbine forces more air into the engine, so the engine
goes faster and so on.

Most practical devices of this kind also incorporate some negative feedback so
that they do not damage themselves or their users.

Example 1.7 (Black’s Amplifier) Let 0 < θ < 1. The output y is fed back into
the input u, after multiplication by θ , so y = θy + u, hence y = u/(1 − θ) is an
amplified version of the input. This will also amplify any noise, so is not practical
by itself as an amplifier.

Note that the summing junction lies to the left of the tap in this diagram. The
loop is characteristic of block diagrams of feedback systems.

+ 1 .

θ

u

y

θy

y
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1.3 Linear Differential Equations

Let t be the independent variable. By combining amplifiers, summing junctions and
differentiators, we can construct linear differential operators

Lf (t) = an(t)d
nf

dtn
+ an−1(t)

dn−1f

dtn−1 + · · · + a0(t)f (t); (1.9)

the number of derivatives n is the order ofL; the aj (t) are the coefficient (functions).
When the aj are constants, we talk about a linear differential operator with constant
coefficients. A linear equation of order n is

an(t)
dnf

dtn
+ an−1(t)

dn−1f

dtn−1 + · · · + a0(t)f (t) = u(t), (1.10)

where an(t), . . . , a0(t), u(t) are given and f (t) is to be found.

Proposition 1.8 The differential equation

an
dny

dtn
+ · · · + a0y = bm d

mu

dtm
+ bm−1

dm−1u

dtm−1 + · · · + b0u(t) (1.11)

with constant coefficients can be realized as a feedback system with input u and out-
put y involving taps, amplifiers, summing junctions, integrators and differentiators.

Proof When an �= 0, we integrate n times and divide by an to get

y = −an−1

an

∫
y− · · ·− a0

an

∫ (n)

y+ bm
an

∫ (n) dmu

dtm
+ · · ·+ b0

an

∫ (n)

u. (1.12)

Then it is straightforward to realize the system.
The left half of the diagram is an open loop system

x = bm
an

dmu

dtm
+ bm−1

an

dm−1y

dtm−1 + · · · +
b0

an
u;

whereas the right-half is a feedback system

dny

dtn
+ an−1

an

dn−1y

dtn−1 + · · · +
a0

an
y = x,

or

y =
∫ ∫

. . .

∫ (
− an−1

an

dn−1y

dtn−1 − · · · −
a0

an
y + x

)
,

with n integrations. 	
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Differential Equations as Feedback Systems
The ellipses (dots) in the diagram indicate omitted terms.

. b0

an
+

. b1
an

d
dt +

.

.

.

.b2
an

d
dt

d
dt +

bm
an

d
dt

d
dt

d
dt

d
dt

+

+
−a0

an

+
−a1
an

−an−1

an
d
dt

u y

...

. . .

...

x

...
...

. . .

. . .

1.4 Damped Harmonic Oscillator

Damped harmonic oscillators are important, because they (i) arise in various
physical systems such as a mass on a spring or electrical systems such as inductor
and capacitor circuits; and (ii) they exhibit the effects that describe more general
linear systems.

. +

−γ

. +

−β

u y

u

Let t be time and y displacement from rest of a mass on a spring. The velocity
is dy/dt and acceleration d2y/dt2, the mass is driven by an external driving force
u(t). The equation is

d2y

dt2
+ β dy

dt
+ γy = u (1.13)

where β and γ are constants; usually γ > 0 and β ≥ 0. This models the suspension
of a car moving along a road. Here u(t) represents the force imparted on the car by
the road; the suspension involves a spring which gives a restoring force−γy, while
the shock absorbers give a damping force−βdy/dt . We can write this as a feedback
system, using the formula



8 1 Linear Systems and Their Description

y = −β
∫
y − γ

∫ ∫
y +

∫ ∫
u. (1.14)

Example 1.9 (Matrix Form of the Damped Harmonic Oscillator) We introduce a
new state variable v, the velocity, so dy/dt = v. Then we have a pair of equations
dy/dt = v and dv/dt = −βv− γy+u. We put these together in a matrix equation

X =
[
y

v

]

, (1.15)

A =
[

0 1
−γ −β

]

B =
[

0
1

]

, C = [
1 0

]
, D = 0 (1.16)

so the matrix form of the differential equation is

dX

dt
= AX + Bu (1.17)

y = CX +Du (1.18)

We often choose input u(t) = eiωt = cos(ωt) + i sin(ωt), with angular frequency
ω to model a periodic input force.

1.5 Reduction of Order of Linear ODE

Lemma 1.10 The linear ordinary differential equation

dny

dtn
+ an−1(t)

dn−1y

dtn−1 + · · · + a0(t)y(t) = u(t), (1.19)

may be expressed as the matrix system

dX

dt
= AX + Bu (1.20)

where X is (n× 1), A is (n× n) and B is (n× 1).

Thus we replace a nth order differential equation with one independent variable
with a first order differential equation with a (n× 1) vector independent variable.
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Proof We express the differential equation in terms of matrices. Let

X =

⎡

⎢
⎢
⎢
⎣

y

dy/dt
...

dn−1y/dtn−1

⎤

⎥
⎥
⎥
⎦
, B =

⎡

⎢
⎢
⎢
⎣

0
0
...

1

⎤

⎥
⎥
⎥
⎦

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 . . .

0 0 1
. . .

...
. . .

. . .
. . .

−a0 −a1 . . . −an−1

⎤

⎥
⎥
⎥
⎥
⎦

(1.21)

so the differential equation is

dX

dt
= AX + Bu. (1.22)

	

Example 1.11 (Constant Coefficient Case) The advantages of Lemma 1.10 are
that first order differential equations are apparently easier to solve than nth order
equation, and we can use linear algebra on the matrix A; see the discussion below.
Suppose that the aj are constant, or equivalently A is constant; then the system is
said to have constant coefficients, and the differential equation can be expressed as
the feedback system

X = A
∫
X + B

∫
U. (1.23)

Definition 1.12 (Companion Matrix) Let an−1, an−2, . . . , a0 ∈ C. Then the (n×
n) matrix

Ac =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 . . .

0 0 1
. . .

...
...
. . .

. . .

−a0 −a1 . . . −an−1

⎤

⎥
⎥
⎥
⎥
⎦

(1.24)

is called a companion matrix for an−1, . . . , a0 (note the signs of the aj ).
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1.6 Exercises

Exercise 1.1 Express the following differential and integral equations as block
diagrams

(i) y = 4
d2u

dt2
+ 3

∫
u+ 6u;

(ii) y + 4
d2y

dt2
= 2

du

dt
+ 7

∫
u.

Exercise 1.2

(i) Express the following coupled differential equations as a block diagram, where
u is the input, y is the output, x is a state variable, and a, b, c and d are
constants:

dx

dt
= ax + bu,

dy

dt
= cx + du.

(ii) Express the following coupled differential and integral equations as a block
diagram, where u1 and u2 are the inputs, y is the output, x is a state variable,
and a, c, b1, b2, d1 and d2 are constants:

dx

dt
= ax + b1u1 + b2u2,

dy

dt
= cx + d1u1 + d2u2.

Exercise 1.3 A simple harmonic oscillator satisfies

m
d2x

dt2
+ kx = u,

where t is time, and k and m are positive constants. By introducing an extra state
variable v = dx/dt , write this as a first order system of differential equations.



Chapter 2
Solving Linear Systems by Matrix
Theory

2.1 Matrix Terminology

Let V and W be finite-dimensional complex vector spaces, and suppose that V has
basis {ej : j = 1, . . . , n} andW has basis {fj : j = 1, . . . ,m}. We generally write
vectors as columns, so

v =
n∑

j=1

vj ej ↔

⎡

⎢
⎢
⎢
⎣

v1

v2
...

vn

⎤

⎥
⎥
⎥
⎦
= [v1; v2; . . . ; vn] ∈ C

n×1.

A map T : V → W is defined to be a linear transformation if T (λv + μw) =
λT v + μTw for all v,w ∈ V and λ,μ ∈ C. We write T (ek) = ∑m

j=1 Tjkfj
for k = 1, . . . n where the coefficients Tjk ∈ C are uniquely determined, and thus
we associate T with the m × n complex matrix [Tjk]j=1,...,m;k=1,...n. Conversely,
any such m × n complex matrix determines a unique linear transformation T with
respect to the specified bases via this formula, and T v = ∑m

j=1
∑n
k=1 Tjkvkfj in

the preceding notation.

Definition 2.1

(i) The range of T is {w ∈ W : w = T v, v ∈ V } which is otherwise known as the
image of T . This is a vector space with dimension called the rank of T , denoted
by rank(T );

(ii) The null space of T is null(T ) = {v ∈ V : T v = 0}, which is a vector space of
dimension called the nullity of T , denoted by nullity(T ).
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12 2 Solving Linear Systems by Matrix Theory

Theorem 2.2 The rank and nullity of a linear transformation T : V → W between
finite-dimensional vector spaces satisfy

rank(T )+ nullity(T ) = dimension(V ). (2.1)

Proof See [6] page 213. 	

Definition 2.3

(1) The elementary row operations on a complex matrix are:

(i) interchanging two rows;
(ii) multiplying one row by a nonzero scalar in C;

(iii) adding a complex multiple of one row to another row.

(2) Matrices S and T are row equivalent when S can be transformed to T by some
finite sequence of elementary row operations.

(3) A matrix is in echelon form when

⎡

⎣
0 a1 ∗ ∗ ∗ ∗
0 0 0 a2 ∗ ∗
0 0 0 0 0 0

⎤

⎦ (2.2)

has row leaders a1 and a2 that are non-zero, all the entries directly below a row
leader are all zero, row leaders appear to the right of the row leaders of rows
above them, and zero rows are at the bottom of the matrix. A matrix in echelon
form is moreover in reduced echelon form when the row leaders are all 1, and
the entries directly above row leaders are all zero, as in

⎡

⎣
0 1 ∗ 0 ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 0

⎤

⎦ . (2.3)

Lemma 2.4 (Rank of a Matrix) ForX1, . . . , Xn ∈ Cm×1, the following quantities
are equal:

(i) the dimension of the vector space U spanned by X1, . . . , Xn;
(ii) the number of linearly independent columns in the m × n matrix T =

[X1 . . . Xn];
(iii) the number of linearly independent rows in T ;
(iv) the number of nonzero rows in any row-equivalent echelon form of T .

Proof See [6]. 	

The rank can be computed in MATLAB and Scilab using rank(T ). Alternatively,

by row-reducing the matrix [Tjk] to echelon form by elementary row operations, one
can find a basis for the range of T , and thus compute rank(T ) via Lemma 2.4 (iv).
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Definition 2.5 (Transpose) Let T ∈ Mn×m(C) be a matrix with n rows, m
columns and entry tj,k is row j and column k. Then the transpose of T is T � ∈
Mm×n(C) is the matrix with m rows, n columns and entry tk,j in row j and
column k.

We suppose in particular that m = n, and we choose the same basis {ej : j =
1, . . . , n} for V and W , and naturally write V = W . Then we prefer the notation
A : V → V for the linear transformation of V , and the n × n complex matrix
that represents this linear transformation with respect to {ej : j = 1, . . . , n}.
Observe that by Theorem 2.2, null(A) = {0} if and only if rank(A) = n.
Under these equivalent conditions, A has an inverse transformation A−1 such that
AA−1 = A−1A = I . This inverse matrix may be expressed in terms of determinants
via Proposition 2.7.

Determinants In this book, we give only a brief sketch of the theory, mainly to
establish notation, and refer the reader to [60] or [8] for a fuller account in the same
spirit. We begin with the 2× 2 case

det

[
a b

c d

]

=
∣
∣
∣
∣
a b

c d

∣
∣
∣
∣ = ad − bc (a, b, c, d ∈ C). (2.4)

Then we obtain large determinants by expanding in terms of smaller ones. To obtain
the determinant of

A =
⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ (2.5)

observe the chess-board of signs

⎡

⎣
+ − +
− + −
+ − +

⎤

⎦ , (2.6)

pick one column, say the second, then multiply out with signs from the chess-board

detA = −a12

∣
∣
∣
∣
a21 a23

a31 a33

∣
∣
∣
∣+ a22

∣
∣
∣
∣
a11 a13

a31 a33

∣
∣
∣
∣− a32

∣
∣
∣
∣
a11 a13

a21 a23

∣
∣
∣
∣ (2.7)

where the 2 × 2 determinants exclude the row and column of their coefficient, and
can be computed by the formula (2.4).

Definition 2.6 (Adjugate)

(i) The n× n sign chessboard is the matrix that has (j, k) entry given by (−1)j+k
for j, k = 1, . . . , n.
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(ii) The determinant of the submatrix of A that excludes row j and column k,
multiplied by (−1)j+k, is called the cofactor Ajk of ajk , so

detA =
n∑

j=1

ajkAjk (2.8)

is the expansion by column k for all k = 1, . . . , n.
(iii) The adjugate matrix adj(A) is the transpose of the matrix [Ajk] of cofactors.

(In some books, our adjugate is called the adjoint, but we use this terms for
something else in Definition 2.15.)

(iv) A square matrix [aj,k]nj,k=1 is said to be lower triangular if all the entries above
the leading diagonal are zero, , so aj,k = 0 for all 1 ≤ j < k ≤ n.

Proposition 2.7

(i) For all square matrices A adj(A) = (detA)I .
(ii) The determinant of a lower triangular matrix equals the product of the entries

on the leading diagonal, so det[aj,k] = a1,1a2,2 . . . an,n.

Proof

(i) A square matrix with a repeated row has zero determinant, so
∑n
j=1 ajkAjm =

0 for k �= m, which gives the off-diagonal entries of A adj(A) to be zero. For
the diagonal entries, we use the definition of the cofactor.

(ii) One can check this by repeatedly expanding by the first row of the determinant.
	


Definition 2.8 A square matrix A is unimodular if detA = 1. (We use a more
restrictive definition than some authors who permit±1.)

2.2 Characteristic Polynomial

Definition 2.9 A complex polynomial p(s) is monic and of degree n if it has the
form p(s) = sn + an−1s

n−1 + · · · + a0 for coefficients aj ∈ C.

Definition 2.10 (Characteristic Polynomial) The characteristic polynomial of a
(n× n) complex matrix A is χA(λ) = det(λI − A), where I is the (n× n) identity
matrix.

Some books on linear algebra cA(λ) = det(A−λI). The definition used in this book
is standard in control theory. Also

χA(λ) = det(λI − A) = λn − λn−1trace(A)+ · · · + (−1)n detA, (2.9)

so χA(λ) is a monic polynomial of degree n.
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Lemma 2.11 If det(sI − A) �= 0, then sI − A is invertible and

(sI − A)−1 = (det(sI − A))−1adj(sI − A). (2.10)

Proof This follows directly from Proposition 2.7 applied to sI − A. 	

This (2.10) may or may not be an appropriate formula for computing the inverse,

depending on n. It does tell us that sI − A is invertible, except at finitely many
values of s. Often (sI − A)−1 is called the resolvent of A.

Proposition 2.12 (Characteristic Polynomials of Companion Matrix) The char-
acteristic polynomial of the companion matrix Ac is

det(λI − Ac) = λn + an−1λ
n−1 + · · · + a1λ+ a0. (2.11)

Thus any monic complex polynomial arises as the characteristic polynomial of some
complex matrix.

Proof We prove this by induction on n. Let Pn be the statement that the above
identity holds for some positive integer n. Then P1 is trivially true. Assume that the
identity holds for 1, . . . , n − 1 and consider Pn. We expand the determinant by the
first column, and obtain

det(λI − Ac) = det

⎡

⎢
⎢
⎢
⎢
⎣

λ −1 0 . . .

0 λ −1
. . .

...
...
. . .

. . .

a0 a1 . . . λ+ an−1

⎤

⎥
⎥
⎥
⎥
⎦

= λ det

⎡

⎢
⎢
⎢
⎢
⎣

λ −1 0 . . .

0 λ −1
. . .

...
...
. . .

. . .

a1 a2 . . . λ+ an−1

⎤

⎥
⎥
⎥
⎥
⎦
+ (−1)n−1a0 det

⎡

⎢
⎢
⎢
⎢
⎣

−1 0 0 . . .

λ −1 0
. . .

0
. . .
. . .
. . .

0 . . . λ −1

⎤

⎥
⎥
⎥
⎥
⎦

(2.12)

so we use the induction hypothesis to deal with the first determinant, and observe
that the second is lower triangular, so by Proposition 2.7 (ii)

det(λI − A) = λ(λn−1 + an−1λ
n−2 + · · · + a2λ+ a1)+ a0

= λn + an−1λ
n−1 + · · · + a1λ+ a0. (2.13)

Given any monic complex polynomial p(λ) of degree n, we choose the n × n
companion matrix with entries from the coefficients of p(λ)which has characteristic
polynomial p(λ). 	
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Example 2.13 Proposition 2.12 is an existence result, not a uniqueness theorem.
The matrices

[
0 1
0 0

] [
0 0
0 0

]

both have characteristic polynomial s2, although they are not similar.

Example 2.14 The polynomial f (s) = s4 + s3 + 20s2 + 400s + 200 is the
characteristic polynomial of

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−200 −400 −20 −1

⎤

⎥
⎥
⎦ . (2.14)

Numerical results show that f (s) = 0 has two roots −6.5527 and −0.5130 in
(−∞, 0) and a pair complex conjugate roots 3.0329 ∓ i7.0922 in the right half-
plane {s ∈ C : �s > 0}. In Sect. 2.8 onwards, we describe polynomials with all
their roots in the open left half-plane as stable. Therefore, f (s) is unstable, although
all its coefficients are positive.

2.3 Norm of a Vector

In this section we use complex conjugates, so z = x + iy ∈ C has z̄ = x − iy for
x, y ∈ R, so |z|2 = zz̄ = x2 + y2. We write �z = x and �z = y.

Definition 2.15 (Adjoint)

(i) For a column z = col[zj ]nj=1 ∈ Cn×1, we take z′ = row[z̄j ]nj=1 ∈ C1×n.
(ii) We define the adjoint of a n × m complex matrix T = [tjk] to be the n × m

matrix T ′ = [t̄kj ], found by interchanging the rows and columns and taking the
complex conjugate of each entry.

Remark 2.16

(i) Here we employ the MATLAB notation T ′ for adjoint. For real matrices T the
adjoint coincides with the transpose T �, so T ′ = T �. In this case, our notation
is consistent with [8]. For derivatives in the sense of calculus, we use df/dt .

(ii) In some books, the adjoint is called the Hermitian conjugate or conjugate
transpose and the notation used is A∗. Note that in MATLAB A ∗B is the usual
product of the matricesA and B, with no transposition or conjugation involved.
In physics, a common notation is A†, although often a different definition is
used for the inner product.
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Let V = C
n×1, the complex vector space of column vectors. The standard inner

product on V is defined for

z =
⎡

⎢
⎣

z1
...

zn

⎤

⎥
⎦ , w =

⎡

⎢
⎣

w1
...

wn

⎤

⎥
⎦

by

〈z,w〉 = w′z = [
w̄1 . . . w̄n

]

⎡

⎢
⎣

z1
...

zn

⎤

⎥
⎦ =

n∑

j=1

w̄j zj (2.15)

equivalently written z = column(zj )nj=1 w = column(wj )nj=1 by

〈z,w〉 = w̄�z =
n∑

j=1

zj w̄j . (2.16)

Then 〈z, z〉 =∑n
j=1 |zj |2, so 〈z, z〉 ≥ 0, with 〈z, z〉 = 0⇒ z = 0;

〈z + u,w〉 = 〈z,w〉 + 〈u,w〉 (2.17)

〈λz,w〉 = λ〈z,w〉, 〈z,w〉 = 〈w, z〉. (2.18)

2.4 Cauchy–Schwarz Inequality

On V the standard norm is the Euclidean norm for z = column(zj )nj=1

‖(zj )nj=1‖ =
( n∑

j=1

|zj |2
)1/2 = (z̄�z)1/2 = 〈z, z〉1/2. (2.19)

Proposition 2.17 (Cauchy–Schwarz Inequality)

(i) All z,w ∈ V satisfy

|〈z,w〉| ≤ ‖z‖‖w‖, (2.20)

(ii) and the triangle inequality

‖z+w‖ ≤ ‖z‖ + ‖w‖. (2.21)
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Proof

(i) Recall that a nonzero complex number ζ has a polar decomposition ζ = seiθ ,
where θ ∈ (−π, π] and s = |ζ | > 0; so e−iθ ζ = s > 0. If 〈z,w〉 = 0,
then (i) is clearly true. Otherwise, there exists u ∈ C such that uū = 1 and
u〈z,w〉 = |〈z,w〉|. Now we have a real quadratic in the real variable t which is
non negative

0 ≤ ‖tw + uz‖2 = 〈tw + uz, tw + uz〉
= t2〈w,w〉 + t〈w,uz〉 + 〈uz, tw〉 + 〈uz, uz〉
= t2‖w‖2 + 2t|〈z,w〉| + ‖z‖2. (2.22)

We cannot have a pair of distinct real roots, since y = t2‖w‖2 + 2t|〈z,w〉| +
‖z‖2 is a parabola that does not cross the t-axis. Hence this quadratic has
discriminant b2 − 4ac ≤ 0, so

4|〈z,w〉|2 ≤ 4‖z‖2‖w‖2. (2.23)

(ii) By (i) we have

‖z+w‖2 = 〈z+ w, z +w〉
= 〈z, z〉 + 〈z,w〉 + 〈w, z〉 + 〈w,w〉
= ‖z‖2 + 2�〈z,w〉 + ‖w‖2

≤ ‖z‖2 + 2‖z‖‖w‖ + ‖w‖2

= (‖z‖ + ‖w‖)2
. (2.24)

	

Definition 2.18 (Matrix Norm) Suppose that A ∈ Mn×n(C). Then A operates on
the space V = C(n×1) of column vectors soA : V → V : v �→ Av by multiplication
on the left. Then the matrix norm of A is

‖A‖ = sup{‖Av‖ : v ∈ V ; ‖v‖ ≤ 1}. (2.25)

The supremum in this definition can be calculated in various ways, depending upon
the specific form of A, as in Proposition 2.19 and Lemma 2.21.

Proposition 2.19

(i) For a square diagonal matrix D with diagonal entries λ1, . . . , λn, the norm is

‖D‖ = max{|λj | : j = 1, . . . , n}. (2.26)
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(ii) Let A have columns A = [A1, A2, . . . , An], and let column Aj ∈ C
n×1 have

norm ‖Aj‖. Then ‖A‖ ≤ (∑n
j=1 ‖Aj‖2)1/2.

Proof

(i) Let (ej )nj=1 be the usual orthonormal basis of Cn×1 and v = ∑n
j=1 vj ej , so

‖v‖ = (∑n
j=1 |vj |2)1/2. ThenDv =∑n

j=1 vjDej =
∑n
j=1 vjλj ej , so

‖Dv‖2 =
n∑

j=1

|λjvj |2 ≤ max
k
|λk|2

n∑

j=1

|vj |2 = max
k
|λk|2‖v‖2. (2.27)

We can achieve equality in this inequality by considering the largest |λk|, and
selecting v = ek .

(ii) Here we have Av =∑n
j=1 vjAej =

∑n
j=1 vjAj , so by the triangle inequality,

‖Av‖ ≤
n∑

j=1

|vj |‖Aj‖ ≤
( n∑

j=1

|vj |2
)1/2

( n∑

j=1

‖Aj‖2
)1/2

, (2.28)

where the last step follows by Cauchy-Schwarz, so

‖Av‖ ≤
( n∑

j=1

‖Aj‖2
)1/2‖v‖. (2.29)

	

Remark 2.20 This inequality (ii) of Proposition 2.19 show that the norm of any
finite matrix is finite. With j th column Aj = [akj ]nk=1 we can consider A =
[A1 . . . An] with

‖A‖HS =
( n∑

j,k=1

|akj |2
)1/2 =

( n∑

j=1

‖Aj‖2
)1/2

(2.30)

which defines the Hilbert-Schmidt norm ‖A‖HS of A. This is straightforward to
calculate, but generally gives an overestimate on ‖A‖.
Lemma 2.21 (Properties of the Norm of a Matrix) The matrix norm satisfies, for
A,B ∈ Mn×n(C),

(i) ‖A+ B‖ ≤ ‖A‖ + ‖B‖; (ii) ‖λA‖ = |λ|‖A‖ (λ ∈ C); (2.31)

(iii) ‖AB‖ ≤ ‖A‖‖B‖, (iv) ‖A′‖ = ‖A‖, (v) ‖A‖2 = ‖A′A‖.
(2.32)
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Proof

(i) Let v ∈ V have ‖v‖ ≤ 1. We have

‖(A+ B)v‖ = ‖Av + Bv‖ ≤ ‖Av‖ + ‖Bv‖ ≤ ‖A‖ + ‖B‖ (2.33)

so ‖A+ B‖ ≤ ‖A‖ + ‖B‖.
(ii) We have ‖(λA)v‖ = |λ|‖Av‖, so ‖λA‖ = |λ|‖A‖.

(iii) We observe that ‖A‖ = inf{t : ‖Aw‖ ≤ t‖w‖ : ∀w ∈ V }. Then with w = Bv,
we have

‖(AB)v‖ ≤ ‖A‖‖Bv‖ ≤ ‖A‖‖B‖‖v‖, (2.34)

so ‖AB‖ ≤ ‖A‖‖B‖.
(iv) First observe that

‖A‖ = sup{�〈Ax, y〉 : ‖x‖ = ‖y‖ = 1}
= sup{�〈x,A′y〉 : ‖x‖ = ‖y‖ = 1} = ‖A′‖. (2.35)

(v) We choose x �= 0 so that ‖Ax‖ = ‖A‖‖x‖, then

‖A‖2‖x‖2 = 〈Ax,Ax〉 = 〈A′Ax, x〉 ≤ ‖A′A‖‖x‖2 ≤ ‖A‖2‖x‖2, (2.36)

so we have equality throughout.
	


Definition 2.22 (Polynomial Functions of a Matrix) Let A be a n × n complex
matrix. As in basic linear algebra we form polynomials in A. Let I be the n × n
identity matrix. We can form A,A2, A3, . . . by matrix multiplication, and hence
given g(z) = amzm + · · · + a0 we build polynomials

g(A) = amAm + am−1A
m−1 + · · · + a0I (2.37)

for complex coefficients aj . We regard A0 = I , the identity matrix.

Definition 2.23 (Eigenvalue Equation) An eigenvector is a non zero solution v of

Av = λv (2.38)

where λ ∈ C is the corresponding eigenvalue. This (2.38) is called the eigenvalue
equation.

Lemma 2.24 The eigenvalues of n × n complex matrix A are the roots of the
characteristic equation

χA(λ) = 0. (2.39)
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Proof Recall that det(sI − A) = χA(s). By the Fundamental Theorem of Algebra
[6], there are n complex roots, counted according to algebraic multiplicity. When
χA(λ) = 0, the matrix λI − A is not invertible, so by the rank-nullity theorem 2.2
there exists v ∈ V , with v �= 0 and Av = λv and λ is an eigenvalue. Conversely, if
there exists v �= 0 and λ ∈ C such that Av = λv, then λI − A is not invertible, so
χA(λ) = 0. 	

Definition 2.25 (Spectrum) The spectrum spec(A) of an n× n complex matrix A
is the set of λ ∈ C such that λI − A does not have an inverse.

Remark 2.26

(i) The square matrix λI − A is invertible if and only if the nullspace of λI − A
equals {0}, by the rank-nullity theorem 2.2. Hence the spectrum is the set of all
the eigenvalues of A.

(ii) By the Lemma 2.24, the spectrum of A has at least one element and at most
n elements. Often one lists roots of polynomial equations according to their
algebraic multiplicity, so that the roots of (s − λ)2 are listed as λ, λ. In
this sense, there are n eigenvalues, listed according to algebraic multiplicity.
However, with eigenvalues, we also need to consider the eigenvalue equation
(2.38) as well as the characteristic equation (2.39).

(iii) The geometric multiplicity of λ is the number of linearly independent solutions
of Av = λv. Now by a slight extension of this Lemma 2.24 , one can show that

1 ≤ (geometric multiplicity) ≤ (algebraic multiplicity).

Lemma 2.27 (Similarity to a Diagonal Matrix) For a complex n × n matrix A,
the following are equivalent:

(i) There exists an invertible matrix S such that S−1AS is a diagonal matrix;
(ii) there exist n linearly independent eigenvectors of A;

(iii) there exists a basis of Cn that consists of eigenvectors of A.

Proof (iii)⇒ (i) Let Xj �= 0 be a n× 1 columns forming a basis of Cn such that
AXj = λjXj , and let S = [X1X2 . . . Xn]; then the Xj are linearly independent by
assumption and hence S has column rank n. Hence S is invertible. Now let

D =

⎡

⎢
⎢
⎢
⎢
⎣

λ1 0 0 . . .

0 λ2 0
. . .

...
...
. . .

0 . . . 0 λn

⎤

⎥
⎥
⎥
⎥
⎦

(2.40)

and note the chain of identities

AS = A [
X1 . . . Xn

] = [
AX1 . . . AXn

]

= [
λ1X1 . . . λnXn

] = [
X1 . . . Xn

]
D = SD (2.41)
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where S is invertible, so A = SDS−1. 	

Proposition 2.28 (Functions of a Matrix) Suppose that A has n distinct eigenval-
ues λ1, . . . , λn. Then there exists an invertible n× n matrix S such that

g(A) = S

⎡

⎢
⎢
⎢
⎢
⎣

g(λ1) 0 0 . . .

0 g(λ2) 0
. . .

...
. . .

. . .
. . .

0 . . . 0 g(λn)

⎤

⎥
⎥
⎥
⎥
⎦
S−1 (2.42)

for all complex polynomials g(λ).

Soon we’ll extend this to the functions g(x) = exp(tx) and g(x) = 1/(s − x).
Proof The eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent, hence form a basis of Cn, so we can introduce S as in the Lemma 2.27. Then

A2 = SDS−1SDS−1 = SD2S−1 (2.43)

and so on so,

g(A) = amAm + am−1A
m−1 + · · · + a0I

= S(amDm + am−1D
m−1 + · · · + a0I)S

−1 = Sg(D)S−1, (2.44)

and we can easily check that g(D) is as above. 	

Theorem 2.29 (Cayley–Hamilton) Let A be a n× n complex matrix with charac-
teristic polynomial χA(s). Then

χA(A) = 0. (2.45)

Proof See [6]. 	

Complex Exponential
For z ∈ C write z = �z + i�z where �z is the real part and �z is the imaginary
part. We define

exp(z) = ez = 1+ z + z
2

2! +
z3

3! + . . . , (2.46)

which converges for all z ∈ C. We have exp(z + w) = exp(z) exp(w) and
(d/dz) exp(z) = exp(z). Also, eiθ = cos θ + i sin θ has |eiθ | = 1. Hence ez has
modulus |ez| = e�z and argument arg ez = �z. In contemporary English, argument
is often used to mean a dispute; it also means legal case; in mathematics, the term
applies to the angle in the polar decomposition of a complex number. The latter is
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denoted arg, or Arg, especially when the values is taken in (−π, π]. MATLAB uses
angle for argument, while engineers often use phase.

In some applications, we also need

cosh(x + iy) = cosh x cos y + i sinh x sin y. (2.47)

2.5 Matrix Exponential exp(A) or expm (A)

Definition 2.30 For any n× n complex matrix A, we define the matrix exponential
by

exp(A) = I + A+ A
2

2! + · · · +
Am

m! + . . . .

The MATLAB command expm(A) gives this series for a square complex matrix
A; whereas the command exp(A) gives the matrix arising from the exponential
function applied to the entries of A individually, which is a quite different function.

Proposition 2.31 (Wedderburn)

(i) For any A ∈ Mn×n(C), the exponential series converges, and ‖ exp(A)‖ ≤
e‖A‖.

(ii) exp(zA) exp(wA) = exp((z+w)A) for all z,w ∈ C;
(iii) exp(zA) has inverse exp(−zA) for all z ∈ C;
(iv) Let λ be an eigenvalue of A. Then ezλ is an eigenvalue of exp(zA).
(v)

d

dz
exp(zA) = A exp(zA). (2.48)

Proof

(i) Note that for a matrix X the entries Xjk satisfy Xjk = 〈Xek, ej 〉 so |Xjk| ≤
‖X‖. Also, by Lemma 2.21

‖A2‖ ≤ ‖A‖2, . . . , ‖Am‖ ≤ ‖A‖m, (2.49)

so

pm(A) = I + A+ A
2

2! + · · · +
Am

m! (2.50)

satisfy
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‖pm(A)− pk(A)‖ ≤
∥
∥
∥
Ak+1

(k + 1)! + · · · +
Am

m!
∥
∥
∥ ≤

m∑

j=k+1

‖A‖j
j ! (2.51)

where e‖A‖ = ∑∞
j=0 ‖A‖j /j ! converges. Hence each entry of pm(A) con-

verges as m→∞, giving exp(A) as the limit.
(ii) We write

pm(zA)pm(wA) =
m∑

j=0

zjAj

j !
m∑

k=0

wkAk

k! (2.52)

and compare with

p2m((z +w)A) =
2m∑

r=0

(z+w)rAr
r! =

2m∑

r=0

r∑

s=0

zswr−sAr

s!(r − s)! (2.53)

where pm(zA) → exp(zA), pm(wA) → exp(wA), and p2m((z + w)A) →
exp((z+w)A), so exp((z+w)A) = exp(zA) exp(wA).

(iii) Observe that, by (ii)

exp(zA) exp(−zA) = I = exp(−zA) exp(zA) (2.54)

(iv) Let v ∈ V satisfy v �= 0 and Av = λv. Then

exp(zA)v =
∞∑

j=0

zjAjv

j ! =
∞∑

j=0

zjλj v

j ! = ezλv. (2.55)

(v) We consider (ii), and obtain as h→ 0

exp((z + h)A)− exp(zA)

h
= exp(zA)

(exp(hA)− I
h

)

= exp(zA)
(
A+ hA

2

2! +
h2A3

3! + . . .
)

→ exp(zA)A.

	


2.6 Exponential of a Diagonable Matrix
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Lemma 2.32 Suppose that A has n distinct eigenvalues λ1, . . . , λn. Then there
exists an invertible n× n matrix S such that

exp(tA) = S

⎡

⎢
⎢
⎢
⎢
⎣

etλ1 0 0 . . .

0 etλ2 0
. . .

...
. . .

. . .
. . .

0 . . . 0 etλn

⎤

⎥
⎥
⎥
⎥
⎦
S−1. (2.56)

Proof Introduce the matrix S = [X1X2 . . . Xn] with columns given by the
eigenvectors of A, hence the Xj are linearly independent and S has rank n. Hence S
is an invertible n×nmatrix such thatA = SDS−1 whereD is diagonal with entries
λ1, . . . , λn. Hence exp(tA) = S exp(tD)S−1. 	

Exponentials of Diagonable Matrices
[ Proposition 2.33] Suppose that A has distinct eigenvalues λj such that �λj ≤ κ
for all j = 1, . . . , n, all the eigenvalues lie in the closed left half-plane {λ : �λ ≤ κ}
which consists of the points in the complex plane that lie on or to the left of the
vertical line {λ : �λ = κ}.

1. [(i)] Then the general solution of dX
dt
= AX is X = ∑n

j=1 aj e
λj tXj , where

Xj is an eigenvector corresponding to λj and aj ∈ C are arbitrary.
2. [(ii)] There exists M such that ‖ exp(tA)‖ ≤ Meκt (t ≥ 0).
3. [(iii)] In particular, suppose that �λj ≤ 0 for all j = 1, . . . , n. Then there

exists M such that ‖ exp(tA)‖ ≤ M (t ≥ 0).

Proof

(i) Checking the solution: For arbitrary X0 ∈ C
n, we observe that X(t) =

exp(tA)X0 satisfies dX(t)/dt = AX(t) and X(0) = X0. We can write
X0 = a1X1 + · · · + anXn for some aj ∈ C since {X1,X2, . . . , Xn} is a basis
for Cn. Also, exp(tA)Xj = eλj tXj , so X(t) = ∑n

j=1 aje
λj tXj is the general

solution.
(ii) Checking the bounds: Consider

⎡

⎢
⎢
⎢
⎣

etλ1 0 . . . . . .

0 etλ2 0 . . .

0
. . . . . . 0

0 . . . . . . etλn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

z1

z2
...

zn

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

etλ1z1

etλ2z2
...

etλnzn

⎤

⎥
⎥
⎥
⎦

(2.57)
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where |etλj | = et�λj ≤ etκ for all t ≥ 0, hence

n∑

j=1

|etλj zj |2 ≤ e2tκ
n∑

j=1

|zj |2 (2.58)

so ‖ exp(tD)z‖ ≤ etκ‖z‖; hence

‖ exp(tA)‖ ≤ ‖S‖
∥
∥
∥

⎡

⎢
⎣

etλ1 0 . . .

0
. . . 0

0 . . . etλn

⎤

⎥
⎦
∥
∥
∥‖S−1‖

≤ ‖S‖‖S−1‖ max
j=1,...,n

|etλj | ≤ ‖S‖‖S−1‖etκ . (2.59)

	


2.7 Solving MIMO (A,B,C,D)

Definition 2.34 (SISO) LetA,B,C,D be constant complex matrices with shapes:

A (n× n); B (n× 1); C (1× n); D (1× 1). (2.60)

Then the continuous time linear system with one input, n states and one output is

dX

dt
= AX + Bu

y = CX +Du (2.61)

Here t is time, u is the input, X is the state, and y is the output. We call the system
single-input single-output or SISO.

Example 2.35

(i) An electrical fan is a SISO system. The input is electricity, and the output is
moving air. The states can involve the speed of rotation, voltage, current and so
on.

(ii) A wind turbine has input moving air and output electricity.

Given B ∈ Cn×1 and C ∈ C1×n, we can build various linear operations.

(i) CB is simply a complex number;
(ii) b �→ Bb gives a linear map C→ Cn×1;

(iii) Y �→ CY gives a linear map Cn×1 → C;
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(iv) Y �→ BCY gives a linear map C
n×1 → C

n×1, determined by the matrix
BC ∈ Mn×n(C) which has rank one if B,C �= 0.

Definition 2.36 (MIMO (A,B,C,D)) LetA,B,C,D be constant complex matrices
with shapes:A (n×n); B (n×k); C (m×n);D (m×k). Then the continuous-time
linear system with k inputs, n states and m outputs is

dX

dt
= AX + BU,

Y = CX +DU. (2.62)

Here U ∈ C
k×1 is the input, X ∈ Cn×1 is the state, and Y ∈ Cm×1 is the output,

which all depend upon t . The matrices are:

• A=state matrix (main transformation);
• B= input matrix (input transformation);
• C= output matrix;
• D=straight through matrix (external transformation).

This data gives the multiple-input multiple-output system (A,B,C,D), called
MIMO.

The following diagram gives the standard form of MIMO, which is the main
object of study in this book.

A

D
DU

X Y

X

B
U

U

AX

C ++ ..

Describing MIMO (A,B,C,D)
The system (A,B,C,D) is a state model and the variables are in the time domain,
in the sense that they are functions of t .

1. [(i)] If k = 1, then we say the system is single input; ifm = 1, then the system
is single output. If k = m = 1, then the system is SISO.

2. [(ii)] If k > 1, then we say the system is multi input; if m > 1 then the system
is multi output.
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3. [(iii)] If k ≥ 1 and m ≥ 1, then we call the system MIMO. (SISO is a special
case of MIMO)

We write MIMO as a rectangular (n+ k)× (n+m) block array with sizes

[
A B

C D

] [
n× n n× k
m× n m× k

]

. (2.63)

Example 2.37 (Domestic MIMO)

(i) A washing machine is a MIMO system. The inputs are cold water, soap
powder, and electricity; whereas the outputs are hot soapy water, cold rinsing
water and hot air. The state of the washing machine can be complicated, and
relate to the rotation of the drum, temperature of various components, washing
cycles and so on.

(ii) A domestic central heating system is a MIMO system with inputs gas, cold air,
electricity and cold water; whereas the outputs are hot air and hot water.

(iii) Mobile telephone networks are MIMO systems. There are multiple trans-
mitting antennas, and multiple receiving antennas, as we discuss in Proposi-
tion 11.14 about single user MIMO. Massive MIMO is a further example to
model 5G wireless transmission. In a given district, there may be 64 receivers,
and 64 transmitters; so we need a matrix A of size 64×64, and signals may be
split up into many component parts. This explains the terminology ‘massive’.

Example 2.38 (MIMO Transposed) Let A,B,C,D be complex matrices with
shapes A (n× n); B (n× k); C (m× n); D (m× k) Recall

(m× n)× (n× n)× (n× k) = (m× k) (2.64)

Then (A�, C�, B�,D�) also gives a linear system

[
A� C�
B� D�

] [
n× n n×m
k × n k ×m

]

where det(sI−A�) = det(sI−A). The properties of the system and its transpose are
thus closely related, and sometimes one can easily obtain properties of one from the
other. We will exploit this idea in our discussion of controllability and observability
in section 3.12.

Example 2.39 The following system has two inputs, one state variable and one
output

dx

dt
= ax + b1u1 + b2u2

y = cx + d1u1 + d2u2
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and can be represented the diagram below.

. [b1, b2] + +

a

. c

[d1, d2]

U = [ u1; u2]

b1u1 + b2u2 x cx

y

U

d1u1 + d2u2

xax

There are three issues involved in solving any differential equation:

• existence, that is, showing there is some solution;
• uniqueness, that is, showing that there is at most one solution;
• finding a useful expression for the solution.

The following theorem achieves all of these and is the fundamental result for solving
(A,B,C,D) systems throughout this book.

Theorem 2.40 (Solution of Basic ODE) Suppose that A is a constant (n × n)
matrix and that BU(t) is a (n × k) matrix with continuous functions [0,∞) → C

as entries. Then for any constant (n × k) complex matrix X0, the (n × k) matrix
function

X(t) = exp(tA)X0 +
∫ t

0
exp((t − s)A)BU(s) ds (2.65)

satisfies the matrix differential equation

dX

dt
= AX + BU (2.66)

with initial value

X(0) = X0.

Proof Uniqueness: We suppose that a solution exists, and find a formula for the
solution. Write the ODE in the standard form of a first order linear ODE

dX

dt
− AX = BU (2.67)
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so the integrating factor is exp(−tA), and

exp(−tA)dX
dt
− exp(−tA)AX = exp(−tA)BU

d

dt

(
exp(−tA)X) = exp(−tA)BU,

so we integrate to get the unique solution of this differential equation

[
exp(−wA)X]t0 =

∫ t

0
exp(−wA)BU(w)dw

exp(−tA)X(t)− exp(0)X(0) =
∫ t

0
exp(−wA)BU(w)dw

so we can solve for X and obtain

X(t)− exp(tA)X0 =
∫ t

0
exp((t −w)A)BU(w)dw

= exp(tA)
∫ t

0
exp(−wA)BU(w)dw.

Existence: To check the proposed solution works, let t = 0 to get X(0) = X0.
Then we apply standard results of calculus, and work on one entry of the matrix at
a time. So by the fundamental theorem of calculus,

X(t) = exp(tA)X0 + exp(tA)
∫ t

0
exp(−wA)BU(w)dw (2.68)

is a differentiable function of t , with derivative

d

dt
X = A exp(tA)X0 + exp(0)BU(t)+ A exp(tA)

∫ t

0
exp(−wA)BU(w) dw

= AX + BU.

	

Corollary 2.41 (Solution of MIMO) For any initial conditionX0 and any contin-
uous input U , the solution of (A,B,C,D) is

Y (t) = C exp(tA)X0 +
∫ t

0
C exp((t − v)A)BU(v) dv +DU(t). (2.69)



2.7 Solving MIMO (A,B,C,D) 31

Proof From Theorem 2.40, we take

X(t) = exp(tA)X0 +
∫ t

0
exp((t − v)A)BU(v) dv (2.70)

and then

Y (t) = CX(t)+DU(t). (2.71)

	

Terminology Concerning Solutions
The terminology of Differential Equations reappears in linear systems. Consider the
inhomogeneous differential equation

dX

dt
= AX + BU(t). (2.72)

1. [(i)] Let Tt = exp(tA), which satisfies Tt (λX0+μY0) = λTtX0+μTtY0, also
Tt+v = TtTv and

Tt − I
t

→ A (t → 0+). (2.73)

2. [(ii)] The expression X(t) = TtX0 with X0 arbitrary is known as the comple-
mentary function, since it satisfies the homogeneous differential equation

dX

dt
= AX

X(0) = X0.

3. [(iii)] The term Xt =
∫ t

0 exp((t − v)A)BU(v) dv is a particular integral of the
inhomogeneous differential equation

dX

dt
= AX + BU

X(0) = 0.

4. [(iv)] The general solution of the inhomogeneous equation is the complemen-
tary function plus a particular integral, so

Xt = TtX0 +
∫ t

0
exp((t − v)A)BU(v) dv (2.74)

satisfies
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dX

dt
= AX + BU

X(0) = X0.

5. [(v)] We consider the unit impulse U(v) = δ0(v0) in (iii), and observe that

Xt = 0 (t < v0)

= Tt−v0B (t > v0)

gives a solution of

dX

dt
= AX + BU (t > 0)

X(0) = 0.

This initial value problem must be interpreted with great care, since the
differential equation now involves a measure.

Example 2.42 (Damped Harmonic Oscillator) Suppose that β, γ > 0. Then the
damped harmonic oscillator is

d2x

dt2
+ β dx

dt
+ γ x = u

x(0) = x0,
dx

dt
(0) = v0. (2.75)

Here we regard the variable x as the output, and we aim to find x for a given input
u. We can regard this as the linear system specified by

A =
[

0 1
−γ −β

]

, B =
[

0
1

]

, C = [
1 0

]
,D = 0. (2.76)

Then

(sI − A)−1 =
[
s −1
γ s + β

]−1

= 1

s2 + βs + γ
[
s + β 1
−γ s

]

. (2.77)

In later discussion, we use the transfer matrix (2.93), which is defined by

T (s) = D + C(sI − A)−1B = 1

s2 + βs + γ . (2.78)

First suppose that β2 − 4γ �= 0. Then we have eigenvalues for A at the roots of
s2 + βs + γ = 0, namely
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λ± = −β ±
√
β2 − 4γ

2
, (2.79)

which are distinct since β2 − 4γ �= 0. The corresponding eigenvalues are

λ+ :
[

1
λ+

]

, λ− :
[

1
λ−

]

, (2.80)

so we introduce the invertible matrix

S =
[

1 1
λ+ λ−

]

, (2.81)

so that

A = S
[
λ+ 0
0 λ−

]

S−1. (2.82)

Hence we have

exp(tA) = S
[
eλ+t 0

0 eλ−t

]

S−1

=
[

1 1
λ+ λ−

] [
eλ+t 0

0 eλ−t

]

(λ− − λ+)−1
[
λ− −1
−λ+ 1

]

= (λ− − λ+)−1
[
λ−eλ+t − λ+eλ−t eλ−t − eλ+t
λ−λ+(eλ+t − eλ−t ) λ−eλ−t − λ+eλ+t

]

so

x(t) = C exp(tA)

[
x0

v0

]

+
∫ t

0
C exp

(
(t − τ )A)Bu(τ)dτ

= λ−e
λ+t − λ+eλ−t
λ− − λ+ x0 + e

λ−t − eλ+t
λ− − λ+ v0 +

∫ t

0

eλ−(t−τ ) − eλ+(t−τ )
λ− − λ+ u(τ)dτ.

Now suppose that β2 = 4γ . Then we have an eigenvalue λ = −β/2 with
algebraic multiplicity two, so we introduce an eigenvector V such that AV = λV
andW such that AW − λW = V ; then with S = [V,W ], we have

A =
[

0 1
−λ2 2λ

]

, S =
[

1 −1/λ
λ 0

]

, S−1 =
[

0 1/λ
−λ 1

]

, (2.83)

so that
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S−1AS =
[
λ 1
0 λ

]

(2.84)

has the form of a Jordan block. From the exponential series, we have

exp
(
t

[
λ 1
0 λ

] )
= eλt exp

( [
0 t
0 0

] )
= eλt

[
1 t
0 1

]

(2.85)

which gives

exp(tA) = S
[
eλt teλt

0 eλt

]

S−1 =
[
(1− λt)eλt teλt

−λ2teλt (λt + 1)eλt

]

. (2.86)

Hence we obtain

x(t) = C exp(tA)

[
x0

v0

]

+
∫ t

0
C exp

(
(t − τ )A)Bu(τ)dτ

= (1− λt)eλtx0 + teλtv0 +
∫ t

0
(t − τ )eλ(t−τ )u(τ ) dτ.

2.8 Rational Functions

In this section we summarize some terminology about complex rational functions
that we use repeatedly later on; see [6] page 55. Let s be an algebraic indeterminate
(variable), let C[s] the space of complex polynomials in s. Let g(s) and h(s) be
complex polynomials, with h(s) not the zero polynomial. Then

f (s) = g(s)
h(s)

is said to be a rational function. The set of all complex rational functions in s is
denoted C(s), with the usual operations of multiplication, addition, division and
differentiation.

Definition 2.43

(i) If the degree of g(s) is less than or equal to the degree of h(s), then f (s) is
said to be proper rational. If the degree of g(s) is strictly less than the degree
of h(s), then f (s) is said to be strictly proper. We write C(s)p for the proper
rational functions and C(s)0 for the strictly proper rational functions.

(ii) For a nonzero rational function f = g/h, one can define
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degf = degg − degh. (2.87)

Then f is proper if and only if deg f ≤ 0. A rational function is strictly
proper if and only if deg f < 0.

(iii) A zero of g is s0 ∈ C such that g(s0) = 0; this is otherwise called a root of
g(s) = 0.

Suppose that g(s) and h(s) have no common factors other than constants. Then
zeros of g(s) give zeros of f (s); while zeros of h(s) give poles of f (s). One can
feed a rational function into MATLAB by way of the coefficients. For example

f (s) = g(s)
h(s)

= 2s3 − is2 + 6s + 5

3s4 + 7s2 − 4s + 3
(2.88)

is a strictly proper rational function, which can be entered into MATLAB code as

>> f = tf ([2 −i 6 5
]
,
[
3 0 7 −4 3

]
)

with numerator before denominator and starting with the leading coefficients; there
is no need for commas. The abbreviation tf is for transfer function, specifically a
continuous-time transfer function of the type we consider in the first seven chapters.
One can then find numerical values for the zeros and poles via

>> zero(f )

>> pole(f )

MATLAB diagrams indicate poles with crosses × and zeros with small circles ◦.
MATLAB operations sometimes do not work properly when there are complex

coefficients.
To give zeros and poles equivalent status, it is convenient to work with the

Riemann sphere C ∪ {∞}. Then one can regard g(s) as having zeros at z1, . . . , zn
and a pole of order n at ∞. This allows us to keep track of zeros and poles when
we make invertible rational changes of variable such as s = (z− 1)/(z+ 1), which
takes∞ �→ 1.

Definition 2.44

(i) A rational function is stable if it is proper and all the poles are in LHP = {s :
�s < 0}. We write RHP = {s ∈ C : �s > 0} for the right half plane.

(ii) The notation F(s) = O(1/sk) as s →∞ means that there exist r,M > 0 such
that |F(s)| ≤ M|s|k for all s ∈ C such that |s| ≥ r.
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Example 2.45

(i) The rational function 1/(1 + s) is stable. The importance of such functions in
linear systems will be considered in Chaps. 5 and 6.

(ii) We have (s + 1)/(s − 2)3 = O(1/s2) as s →∞. One can show that a rational
function is proper if F(s) = O(1) as s → ∞, and strictly proper if F(s) =
O(1/s) as s →∞.

2.9 Block Matrices

Let S,U, V andW be complex vector spaces. Then we can form the direct sum

S ⊕ V = S
V
=

{ [
u

v

]

: u ∈ S, v ∈ V
}

(2.89)

with the operations

λ

[
u

v

]

=
[
λu

λv

]

,

[
u1

v1

]

+
[
u2

v2

]

=
[
u1 + u2

v1 + v2

]

, (2.90)

and inner product

〈 [
u1

v1

]

,

[
u2

v2

] 〉
= 〈u1, u2〉 + 〈v1, v2〉 (u1, u2 ∈ S; v1, v2 ∈ V, λ ∈ C).

(2.91)

We write L(U, S) for the space of linear transformations B : U → S. Then for
A ∈ L(S, S), B ∈ L(U, S), C ∈ L(S,W) and D ∈ L(U,W) we form the linear
transformation

[
A B

C D

]

: S
U
→ S

W
:

[
A B

C D

] [
u

v

]

=
[
Au+ Bv
Cu+Dv

]

(2.92)

known as a block matrix or block transformation. Block matrices of appropriate
sizes matrices can be added and multiplied. The MATLAB command for the matrix
in (2.92) is [A,B;C,D].

In the context of linear systems, U is called the input space, S is the state space
andW the output space.
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2.10 The Transfer Function of (A,B,C,D)

Definition 2.46 (Transfer Function) The transfer matrix function of MIMO sys-
tem (A,B,C,D) is

T (s) = D + C(sI − A)−1B. (2.93)

Lemma 2.47 The transfer function may be found by exact arithmetic over C(s) by
elementary row operation.

Proof We show that if sI − A is invertible, then the following block matrices are
row equivalent over C(s):

[
A− sI B
C D

]
∼=

[
I (A− sI)−1B

0 T (s)

]

. (2.94)

(i) Suppose that sI − A is invertible. Use multiplication on the left to show that the
matrices

[
A− sI B
C D

]

and

[
I (A− sI)−1B

0 D + C(sI − A)−1B

]

(2.95)

are row equivalent. We multiply on the left by

[
(A− sI)−1 0

0 I

]

, obtaining

[
A− sI B
C D

]
∼=

[
I (A− sI)−1B

C D

]

; (2.96)

now we multiply on the left by

[
I 0
−C I

]

, obtaining

[
A− sI B
C D

]
∼=

[
I (A− sI)−1B

0 D − C(A− sI)−1B

]

; (2.97)

hence the result. We observe that T (s) can thus be computed exactly by matrix
multiplication and elementary row operations, which involve rational arithmetic.

	

We follow this with some determinant calculations. Note that

det

[
I 0
−C I

]

= 1 (2.98)
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by Proposition 2.7 since the matrix is triangular with ones on the diagonal. Also, by
the row reductions in the proof of the Lemma 2.47, we have

det

[
(A− sI)−1 0

0 I

]

det

[
A− sI B
C D

]

= det

[
I (A− sI)−1B

0 D − C(A− sI)−1B

]

, (2.99)

so

det(A− sI)−1 det

[
A− sI B
C D

]

= det(D + C(sI − A)−1B). (2.100)

When D is a 1 × 1 matrix, as in a SISO, we can reduce this formula to a
determinant formula for the transfer function

det(A− sI)−1 det

[
A− sI B
C D

]

= D + C(sI − A)−1B. (2.101)

Proposition 2.48 (Transfer Function) The transfer function T (s) = D +C(sI −
A)−1B of a SISO system is a proper rational function, and all the poles are
eigenvalues of A.

Proof The characteristic polynomial det(sI−A) has degree n, and leading term sn.
A cofactor of sI −A is the determinant of a (n− 1)× (n− 1) submatrix of sI −A
and hence is a polynomial of degree less than or equal to n− 1. Now

(sI − A)−1 = det(sI − A)−1adj(sI − A) (2.102)

where adj(sI − A) is the transpose of the matrix of cofactors. Hence the entries of
(sI −A)−1 are strictly proper rational functions. The eigenvalues of A are precisely
the zeros of det(sI − A), hence are the only possible poles of entries of (sI −
A)−1. Since C,B and D are constant matrices, they do not introduce any more
factors involving s, so T (s) is a proper rational function. It is not asserted that all
eigenvalues of A lead to poles of T (s), since there may be cancellation. 	

Corollary 2.49 (The Transfer Function of MIMO (A,B,C,D)) The transfer
function of a MIMO is a (m × k) matrix of proper rational functions, and all the
poles are eigenvalues of A.

Proof This follows from the proof of Proposition 2.48. 	

In Sect. 6.12 we use invariant factors to refine this result, and give a condition under
which we can cancel out some of the poles, and reduce the denominator in the
transfer function.

Remark 2.50 Let V1 and V2 be complex vector spaces. A map L : V1 → V2 is said
to be affine if

L(λX + (1− λY )) = λL(x)+ (1− λ)L(Y ) (X, Y ∈ V1)
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and λ ∈ C. Let (A,B,C,D) be a linear system with transfer function T (s) =
D + C(sI − A)−1B. Then the following are affine maps

(i) Mm×k(C)→ Mm×k(C(s)) : D �→ T (s);
(ii) Mn×k(C)→ Mm×k(C(s)) : B �→ T (s);

(iii) Mm×n(C)→ Mm×k(C(s)) : C �→ T (s).

We cannot make any such simple statement about A �→ T (s), since (sI − A)−1 =
adj(sI − A)/ det(sI − A) depends upon the entries of A in a complicated manner.

2.11 Realization with a SISO

Next we consider the converse of the Proposition 2.48. Realization means devising
a linear system with a given transfer function; we think of this as building a gadget
with desired effect. The arrows in the diagram point from data in the source box to
data in the destination box, indicating that such a choice is possible.

zeros T (s) = D + p(s)/q(s) (C, D) (A, B, C, D)

poles q(s) = det(sI − A) A

Proposition 2.51 The general strictly proper rational function

T (s) =
∑n−1
j=0 γj s

j

sn +∑n−1
j=0 αj s

j
(2.103)

is the transfer function of the SISO (A,B,C,D), where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0

0 0 1
. . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .
. . . 1

−α0 −α1 . . . . . . −αn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (2.104)

C = [
γ0 γ1 . . . γn−1

]
, D = 0. (2.105)
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Proof We require to prove T (s) = C(sI − A)−1B. Recall that

(sI − A)−1 = det(sI − A)−1adj(sI − A) (2.106)

where the adjugate is the transpose of the matrix of cofactors. The coefficients αj
appear in the denominator, but not in the numerator. Also adj(sI − A)B equals the
last column of adj(sI − A), so by transposition, adj(sI − A)B equals the final row
of the matrix of cofactors of sI − A, where

sI − A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s −1 0 . . . 0

0 s −1
. . . 0

...
. . .
. . .

. . .
...

...
. . .
. . . s −1

α0 α1 . . . αn−2 s + αn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.107)

We compute these one after another, and find that the αj do not appear in these
cofactors.

Cofactors: Recall that the determinant of an upper or lower triangular matrix
equals the product of the diagonal entries. The cofactor of the entry α0 in place
(n, 1) is

(−1)n−1 det

⎡

⎢
⎢
⎢
⎢
⎣

−1 0 . . . 0

s −1
. . . 0

...
. . .
. . .

...

0 . . . s −1

⎤

⎥
⎥
⎥
⎥
⎦
= 1

The cofactor of the entry α1 in place (n, 2) is

(−1)n−2 det

⎡

⎢
⎢
⎢
⎢
⎣

s 0 . . . 0

0 −1
. . . 0

...
. . .
. . .

...

0 . . . 0 −1

⎤

⎥
⎥
⎥
⎥
⎦
= s (2.108)

and so until the cofactor of the entry s + αn−1 in place (n, n) is

det

⎡

⎢
⎢
⎢
⎢
⎣

s −1 . . . 0

0 s −1
. . .

...
. . .
. . .
. . .

0 . . . 0 s

⎤

⎥
⎥
⎥
⎥
⎦
= sn−1 (2.109)
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so

Cadj(sI − A)B = [
γ0 γ1 . . . γn−1

]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
s
...

sn−2

sn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= γ0 + γ1s + · · · + γn−1s
n−1. (2.110)

Note that A is a companion matrix, so by Proposition 2.12,

det(sI − A) = sn + αn−1s
n−1 + · · · + α1s + α0. (2.111)

Hence

T (s) = Cadj(sI − A)B
det(sI − A)

= γ0 + γ1s + · · · + γn−1s
n−1

sn + αn−1sn−1 + · · · + α0
. (2.112)

	

Proposition 2.51 is an existence theorem, not a uniqueness theorem about the

choice of (A,B,C, 0). In the next chapter we give a slight extension of this
result, Proposition 3.15, which applies to stable rational functions and includes a
determinant formula for T (s).

Example 2.52 To realize

T (s) = 2s2 + 3s + 1

s3 + 6s2 + 8s − 2
(2.113)

as the transfer function of a SISO.
MATLAB calls this a continuous-time transfer function, and one can introduce

this example as

>> T = tf ([2 3 1
]
,
[
1 6 8 −2

]
)

As in Proposition 2.51, we introduce

A =
⎡

⎣
0 1 0
0 0 1
2 −8 −6

⎤

⎦ , B =
⎡

⎣
0
0
1

⎤

⎦ , C = [
1 3 2

]
,D = 0. (2.114)
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which can be realized as a feedback linear system without differentiators. In
MATLAB, or similar, one can check that T (s) = C(sI − A)−1B.
Checking the solution: Here

sI − A =
⎡

⎣
s −1 0
0 s −1
−2 8 s + 6

⎤

⎦ ; (2.115)

computing only the relevant entries, we have

adj(sI − A)� =
⎡

⎣
∗ ∗ ∗
∗ ∗ ∗
1 s s2

⎤

⎦ (2.116)

Cadj(sI − A)B = [
1 3 2

]
⎡

⎣
∗ ∗ 1
∗ ∗ s
∗ ∗ s2

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦

= 1+ 3s + 2s2. (2.117)

Since A is a companion matrix, we have

det(sI − A) = s3 + 6s2 + 8s − 2 (2.118)

so

T (s) = Cadj(sI − A)B
det(sI − A) = 1+ 3s + 2s2

s3 + 6s2 + 8s − 2
, (2.119)

as required.

MIMO as a Feedback System, Without Differentiators
Differentiators are sometimes regarded as bad components to have in a linear system
since they can introduce noise. Integrators are preferable, since they depend upon
the long term history of system. So it is advantageous to produce linear systems
without differentiators.

Proposition 2.53 The MIMO system (A,B,C,D) can be realized as a feedback
system involving taps, matrix amplifiers, summing junctions and integrators, but no
differentiators.

Proof We write

d

dt
X = AX + BU
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in the form

X = A
∫
X + B

∫
U

and realize this as a feedback with
∫

and the matrix amplifiers A and B.
Then we take U and X as inputs into the system

Y = CX +DU. (2.120)

	

Remark 2.54 If in MIMO we replace the integrator

∫
by multiplication by 1/s we

obtain

X̂ = (1/s)AX̂ + (1/s)BÛ
Ŷ = CX̂ +DÛ (2.121)

with solution

Ŷ = (D + C(sI − A)−1B)Û . (2.122)

The theoretical justification of this is the Laplace transform, as in the proof of
Theorem 4.21.

Example 2.55 Consider the second-order differential equation

d2X

dt2
= AX + U (2.123)

where X,U ∈ Cn×1 and A ∈ Mn×n(C). This is equivalent to the first order
differential equation

d

dt

[
X

V

]

=
[

0 I
A 0

] [
X

V

]

+
[

0
U

]

, (2.124)

so we consider the MIMO linear system

( [
0 I
A 0

]

,

[
0
I

]

,
[
I 0

]
, 0

)
, (2.125)

where

[
sI −I
−A sI

]−1

=
[
s(s2I − A)−1 (s2I − A)−1

A(s2I − A)−1 s(s2I − A)−1

]

,
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so the transfer function is

T (s) = (s2I − A)−1. (2.126)

2.12 Exercises

Exercise 2.1 Let

A =
⎡

⎣
1 4 5
6 2 1
1 7 8

⎤

⎦ , I =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , (2.127)

B =
⎡

⎣
1 2
7 4
5 2

⎤

⎦ , C =
[

0 2 7
1 4 3

]

, D =
[

3 5
6 7

]

. (2.128)

Compute the matrix transfer function

T (s) = C(sI − A)−1B +D (2.129)

either by hand or using suitable computer software. Here s is an algebraic variable
(indeterminate).

Exercise 2.2 Show from the definition 2.30 that

exp
(
t

[
0 −1
1 0

] )
=

[
cos t − sin t
sin t cos t

]

(t ∈ R). (2.130)

This example show that the exponential of a real matrix can have negative entries.
The conditions on A that ensure exp(tA) has nonnegative entries are discussed in
section 9.9 and [48].

Exercise 2.3 Let A be a n× n complex matrix and let Tt = exp(tA) for t ∈ R.

(i) Show that Tt = T ′t for all t ∈ R, if and only if A = A′.
(ii) Show that Tt is unitary, so T ′t = T −1

t if and only if A′ = −A, so A is skew.



2.12 Exercises 45

Exercise 2.4 Let A be a complex (n × n) matrix with distinct eigenvalues
λ1, . . . , λn. Show that there exists an invertible matrix S such that

(sI − A)−1 = S

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
s−λ1

0 . . . 0

0 1
s−λ2

. . .
...

...
. . .

. . . 0
0 . . . 0 1

s−λn

⎤

⎥
⎥
⎥
⎥
⎥
⎦
S−1 (2.131)

for all s �= λ1, . . . , λn.

Exercise 2.5

(i) Find a SISO system that has transfer function

T (s) = 2s2 − 3s + 4

s3 + 5s2 + 6s + 7
. (2.132)

(ii) Find approximate numerical values for the eigenvalues of A.

Exercise 2.6 Let A be the matrix

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
a b 0 0
c d 0 0

⎤

⎥
⎥
⎦ . (2.133)

(i) Find detA.
(ii) Use reduction of determinants to find det(sI − A).
Exercise 2.7 Find a SISO system (A,B,C,D) that has transfer function

T (s) = 2s3 + s2 − 5s + 1

s4 − 6s3 + 5s2 + 4s + 2
. (2.134)

Exercise 2.8 Let (A,B,C,D) be a SISO with transfer function T . Show that
(A�, C�, B�,D) is also a SISO with transfer function T , where here A� denotes
the transpose of A.
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Exercise 2.9 Let a, b, d ∈ R and consider

A =
[
a b

b d

]

.

(i) Show that 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ R2, if and only if a, d, ad − b2 ≥ 0.
(ii) Show that if the conditions of (i) hold, then

(detA)1/2 ≤ 2−1trace(A) ≤ ‖A‖ ≤ trace(A).

Exercise 2.10 Find a SISO system (A,B,C,D) that has transfer function

T (s) = 5s4 + 7s3 − 6s2 + s + 2

s4 − 3s3 + 4s2 + 7s + 6
, (2.135)

and find numerical values for the eigenvalues of A. Start by dividing numerator by
denominator.

Exercise 2.11 Let A be a real (3× 3) matrix.

(i) Show that det(sI − A) has either (a) three real zeros, or (b) one real root and a
pair of complex conjugate zeros.

(ii) Show that, in both cases (a) and (b), A has a real eigenvector.

Exercise 2.12 Let

A =
⎡

⎣
1 4 10
0 2 0
0 0 3

⎤

⎦ . (2.136)

Find (sI − A)−1, where s is an algebraic variable.

Exercise 2.13 Let

A =
[

1 −1
3 5

]

; (2.137)

find an invertible matrix S and a diagonal matrix D such that

A = SDS−1. (2.138)

Hence or otherwise find exp(tA), where t is a real variable.

Exercise 2.14 Find a matrix A such that s4+2s3+ s2+4s+2 is the characteristic
polynomial of A. Then find the eigenvalues of A numerically.
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Exercise 2.15

(i) Let A be the 3× 3 complex matrix

A =
⎡

⎣
0 a b
0 0 c
0 0 0

⎤

⎦ . (2.139)

Find A2 and A3, and deduce that the matrix exp(tA) has entries which are
quadratic in t .

(ii) Let B be a strictly upper triangular 3× 3 complex matrix

B =

⎡

⎢
⎢
⎢
⎣

0 b1,2 . . . b1,n

0 0 b2,3 . . .
...
...
. . .

...

0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

(2.140)

Show that Bn = 0, and deduce that exp(tB) has entries which are polynomials
in t of degree≤ n− 1.

Exercise 2.16 (i) Find the eigenvalues and eigenvectors V of

A =
⎡

⎣
2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎦ . (2.141)

(ii) By considering expressions of the form Z(t) = etzV , find the general solution
to

dZ

dt
= AZ. (2.142)

(iii) By considering expressions of the form Y (t) = etwV, find the general solution
to

d2Y

dt2
= AY. (2.143)

This is a model for three identical particles on a common circular track,
connected by elastic springs.

(iv) State how many independent constants your solutions to (ii) and (iii) involve,
and explain why this is the correct number in each case.

Exercise 2.17 (Cross Product) Some books on mechanics use the cross product
X × U if X,U ∈ R3, as in vector calculus. This exercises expresses the cross



48 2 Solving Linear Systems by Matrix Theory

product in matrix terms. Let

A =
⎡

⎣
a

b

c

⎤

⎦ , U =
⎡

⎣
u

v

w

⎤

⎦ , X =
⎡

⎣
x

y

z

⎤

⎦ ∈ R
3

so that

A×X =
⎡

⎣
bz− cy
cx − az
ay − bx

⎤

⎦ .

We write

LA =
⎡

⎣
0 −c b
c 0 −a
−b a 0

⎤

⎦ (2.144)

and similarly for the other vectors.

(i) Show that LAX = A×X and LALU − LULA = LA×U .
(ii) Show that LA has eigenvalues 0,±iω where ω2 = a2 + b2 + c2.

(iii) Show that exp(LA) = p(LA) for some quadratic polynomial p.
(iv) By considering the eigenvalues, deduce that for A �= 0,

exp(LA) = I3 + sinω

ω
LA + 1− cosω

ω2 L2
A. (2.145)

Exercise 2.18 Let A be a n × n complex matrix with some of the following
properties: (i) upper triangular; (ii) diagonal; (iii) real entries; (iv) nonnegative
entries; (v) positive entries. In each case, (i)–(v), show that exp(A) also has this
property.

Exercise 2.19 Let B ∈ Cn×1 and C ∈ C1×n, so that BC ∈ Mn×n(C) has rank one.
Find det(In + αBC), and find the inverse of In + αBC when it exists for α ∈ C.

Exercise 2.20 Let A1, A2 ∈ Mn×n(C). Show that

(sIn − A2)
−1 = (sIn − A1)

−1 + (sIn − A1)
−1(A2 − A1)(sIn − A2)

−1

for typical s ∈ C and deduce that

rank
(
(sIn − A2)

−1 − (sIn − A1)
−1) = rank(A2 − A1).
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Exercise 2.21 (Spectral Factorization) Let P(s) and Q(s) be polynomials with
real coefficients which are even so that P(s) = P(−s) and Q(s) = Q(−s) and
suppose that P and Q have no zeros on iR and that the degree of P(s) is less than
or equal to the degree ofQ(s).

(i) Show that F(s) = P(s)/Q(s) is even, so F(s) = F(−s), F(iω) is real for
all ω ∈ R and that F(s) is proper. Let a1, . . . , an be the zeros of P that in the left
half-plane, and b1, . . . , bm be the zeros ofQ that are in the left half-plane; then let

G(s) =
∏n
j=1(s + aj )∏m
j=1(s + bj )

.

Show thatG(s) is stable and free from zeros in RHP, and

F(s) = CG(s)G(−s)

for some constant C.



Chapter 3
Eigenvalues and Block Decompositions of
Matrices

In Chap. 2, we introduced the fundamental MIMO system (A,B,C,D) and solved
it by the matrix exponential functions. For matrices A that are similar to diagonal
matrices, we computed exp(tA). However, this does not address the typical case,
and in this chapter we introduce Jordan decompositions to deal with multiple
eigenvalues by splitting matrices into smaller blocks. The norm of exp(tA) is related
to the position of the eigenvalues of A even when A is not similar to a diagonal
matrix, as the results of this chapter show. We also consider positive definite
matrices, which will turn out to be important in later chapters as an alternative
method for controlling the size of matrix exponentials. We also look at ways of
decomposing the state space. Chapters 4 and 5 can be read independently of Chap. 3,
so readers mainly interested in differential equations can proceed to there.

3.1 The Transfer Function of Similar SISOs (A,B,C,D)

Lemma 3.1 Let�1 = (A,B,C,D) be a linear system with transfer function T (s),
where A is a n×n complex matrix. Then for any invertible n×n complex matrix S,
the linear system �2 = (S−1AS, S−1B,CS,D) also has transfer function T (s).

Proof We simply compute the new transfer function

D + CS(sI − S−1AS)−1S−1B = D + C(sI − A)−1B = T (s). (3.1)

	

This result suggests that one can simplify the original linear system by reducing

the main transformation A to S−1AS with a specific form. The similarity S is
otherwise described by choosing a basis for Cn×1 other than the standard basis
{e1, . . . , en}, so that the new basis is adapted to the matrix A. In particular, in the
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next section we consider Jordan decomposition of A, then in Sect. 3.3 we consider
the implications for the resolvent (sI − A)−1.

3.2 Jordan Blocks

A k × k Jordan block with eigenvalue λ ∈ C is the matrix

Jk(λ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0 . . . 0
0 λ 1 0 . . .
... 0

. . .
. . . 0

...
. . . 0

. . . 1
0 0 . . . 0 λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.2)

J1(λ) = [λ], J2(λ) =
[
λ 1
0 λ

]

, (3.3)

J3(λ) =
⎡

⎣
λ 1 0
0 λ 1
0 0 λ

⎤

⎦ (3.4)

Jordan canonical form (Jordan normal form)

(i) Let λ be an entry on the leading diagonal of a square matrix A such that all the
other entries in the same column as λ are 0. Observe if λ is in row j , then the
column vector with 1 in row j and 0 elsewhere is an eigenvector corresponding
to eigenvalue λ. Hence λ is an eigenvalue of A.

(ii) In a Jordan block, all the entries down the leading diagonal are equal to some
λ, all the entries in the diagonal above the leading diagonal are 1, and all other
entries are zero. By (i), λ is an eigenvalue of the Jordan block.

(iii) We put Jordan blocks of various sizes into a block matrix, so that the blocks
on the block diagonal are Jordan blocks. Then all the entries below the leading
diagonal are zero; all the entries in the diagonal directly above the leading
diagonal are 0 or 1, and all the entries above this diagonal are all zero.

Definition 3.2 (Eigenvalue Terminology)

(i) Each eigenvalue λj has algebraic multiplicity nj , where nj is the largest power
of (z− λj ) that divides the characteristic polynomial of A.

(ii) For each eigenvalue λj , there is an eigenvector vj . Let E(λj ) = {v : Av =
λj v} be the eigenspace. The geometric multiplicity of λj is the dimension of
E(λj ).
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(iii) For each λj , the geometric multiplicity is the number of Jordan blocks that
involve λj , so the geometric multiplicity is less than or equal to the algebraic
multiplicity.

(iv) When a Jordan block has shape k × k, where k > 1, it has both eigenvectors
and generalized eigenvectors. A generalized eigenvector is v �= 0 such that
(λj I − A)mv = 0 for some m = 2, . . . , k.

Example 3.3 Consider the matrix A that is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2∗ 1 . . . . . . 0

0 2 . . .
...

. . . 2∗ 1 0 . . .
...

... 0 2 1 . . .

. . . 0 0 2 . . .
... 2∗

2∗
... 3∗
0 . . . 3∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.5)

in which zeros outside the Jordan blocks on the diagonal are mostly omitted. Here
the eigenvalues are marked 2∗ and 3∗; these are the only entries in their own column;
the eigenspaces are E(2) of dimension 4 since there are four blocks involving
eigenvalue 2, and E(3) of dimension 2 since there are two blocks involving
eigenvalue 3. The eigenvalues are 2, 2, 2, 2, 3, 3 and the corresponding eigenvectors
are e1, e3, e6, e7, e8, e9.The matrix A has Jordan blocks

J2(2)⊕ J3(2)⊕ J1(2)⊕ J1(2)⊕ J1(3)⊕ J1(3) (3.6)

andA has shape 9×9 since 2+3+1+1+1+1= 9; the characteristic polynomial
is

χA(s) = (s − 2)7(s − 3)2 (3.7)

which is given by the product of the diagonal terms of sI − A and has roots
2, 2, 2, 2, 2, 2, 2, 3, 3; the minimal polynomial is

m(s) = (s − 2)3(s − 3) (3.8)

since the largest block involving eigenvalue 2 is J3(2) and the largest with
eigenvalue 3 is J1(3).
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Remark 3.4 Computing eigenvalues

(i) One way to compute eigenvalues is to solve the characteristic equation (2.39),
either algebraically or numerically. Computers can employ some special
algorithms to find approximate values for eigenvalues.

(ii) For complex matrices up to and including size 4× 4, it is possible to compute
the Jordan canonical form by using algebraic results as in Sect. 6.3 on stable
cubics. However, computing JCF by hand is a bore.

(iii) In any method, multiple eigenvalues are a technical challenge. MATLAB has
a command jordan for finding the JCF.

(iv) However, computers find it easy to check whether matrices are positive definite
as in Theorem 3.23, so researchers have found clever ways to use linear matrix
inequalities instead of computing eigenvalues.

(v) Given n× n complex matrices A1 and A2, we can compute a Jordan canonical
form for A1 and a Jordan canonical form for A2. However, the bases and
similarity matrices that we choose for A1 and A2 might not be related to one
another in any simple way. The topic of simultaneous reduction of matrices
is complicated, and various results discussed in [28]. In some applications to
linear systems, it is possible to avoid this problem by using results such as
Proposition 7.10.

Theorem 3.5 (Jordan Canonical Form) Let A be an (n × n) complex matrix.
Then there exist S an invertible n × n complex matrix, a partition of n into n =
k1 + k2 + · · · + kr and kj × kj Jordan blocks Jkj (λj ) where λj is some eigenvalue
of A, such that A is similar to the sum of Jordan blocks

A = S

⎡

⎢
⎢
⎢
⎣

Jk1(λ1) 0 . . . 0
0 Jk2(λ2) 0 . . .
... 0

. . . 0
0 . . . 0 Jkr (λr )

⎤

⎥
⎥
⎥
⎦
S−1. (3.9)

Proof See [20] page 183. 	


3.3 Exponentials and Eigenvalues of Complex Matrices

Lemma 3.6 Let A be a (n × n) complex matrix with eigenvalues λj , where
maxj �λj < β for some real β.

(i) Then the entries of exp(tA) are complex linear combinations of tketλj for
integers k = 0, 1, . . . , n− 1.

(ii) There exists M such that

‖ exp(tA)‖ ≤ Meβt (t > 0). (3.10)
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The condition �λj < β means that the point λj lies strictly to the left of the
vertical line in the complex plane through β on the real axis.

Proof Reducing to Jordan blocks: From the Jordan canonical form 3.5, we have

exp(tA) = S

⎡

⎢
⎢
⎢
⎣

exp(tJk1(λ1)) 0 . . . 0
0 exp(tJk2(λ2)) 0 . . .
... 0

. . . 0
0 . . . 0 exp(tJkr (λr ))

⎤

⎥
⎥
⎥
⎦
S−1, (3.11)

so we consider a typical block Jk(λ). Now

Jk(λ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 0 . . . . . . 0
0 λ 0 . . .
... 0

. . .
. . .

...
. . .
. . . 0

0 . . . 0 λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0
0 0 1 0 . . .
... 0
. . .
. . . 0

...
. . .
. . . 1

0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.12)

which we write as

Jk(λ) = λIk +Nk (3.13)

where Nk is strictly upper triangular, and Ik andNk commute, so the exponential of
a Jordan block is

exp(tJk(λ)) = exp(tλIk) exp(tNk). (3.14)

Now Nkk = 0, so we have a polynomial of degree k − 1 < n

exp(tNk) = I + tNk + · · · + tk−1Nk−1
k /(k − 1)! (3.15)

and | exp(tλ)| = et�λ, hence we obtain the bound

‖ exp(tJk(λ))‖ ≤ et�λ
(

1+ t‖Nk‖ + · · · + t
k−1‖Nk‖k−1

(k − 1)!
)
. (3.16)

Hence

‖ exp(tA)‖ ≤ ‖S‖‖S−1‖
r∑

j=1

‖ exp(tJkj (λj ))‖

≤ ‖S‖‖S−1‖
r∑

j=1

et�λj
kj−1∑

�=0

t�‖N�kj ‖
�! .
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Now choose ε > 0 such that �λj + ε < β.
For all t ≥ 0, we have

eεt = 1+ εt + ε
2t2

2! + · · · +
ε�t�

�! + · · · ≥
ε�t�

�! ,

so t� ≤ �!eεt/ε�. Observe that t�e−εt is bounded for all t > 0, also et�λj ≤ eβte−εt ,
so

M = sup
t>0

(
e−εt‖S‖‖S−1‖

r∑

j=1

kj−1∑

�=0

t�‖N�kj ‖
�!

)
(3.17)

is finite. Hence

‖ exp(tA)‖ ≤Meβt (t > 0). (3.18)

	

The following result gives conditions under which solutions grow.

Proposition 3.7 (Growth of Solutions) Let A be a n × n complex matrix and
consider

dX

dt
= AX; X(0) = X0 (3.19)

where the initial value X0 ∈ Cn×1 is to be chosen.

(i) Suppose that A has an eigenvalue λ such that �λ > 0. Then there exists a
solution that grows at exponential rate �λ, so ‖X(t)‖ ≤ Met�λ for all t > 0
for someM > 0.

(ii) Suppose that A has an eigenvalue λ of geometric multiplicity k > 1 such that
�λ = 0. Then there exists a solution that grows at polynomial rate k − 1, so
‖X(t)‖ ≤ M(1+ tk−1) for all t > 0 for someM > 0.

Proof

(i) Let V be an eigenvector corresponding to eigenvalue λ, and with X0 = V

introduce the solution X(t) = exp(tA)V . Then X(t) = eλtV satisfies ‖X‖ =
et�λ‖V ‖, hence grows exponentially at rate �λ > 0.

(ii) HereA is similar to a Jordan block matrix that contains a Jordan block Jk(λ) =
λIk +Nk , where

Nk−1
k =

⎡

⎢
⎣

0 . . . 1
...
. . .
...

0 . . . 0

⎤

⎥
⎦ (3.20)
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and Nkk = 0. Then

exp(tJk(λ)) = exp(tλIk) exp(tNk) = etλ
(
Ik + tNk + · · · + t

k−1Nk−1
k

k!
)
,

(3.21)

so the exists an invertible matrix S such that

‖S‖‖S−1‖‖ exp(tA)‖ ≥ ‖S−1 exp(tA)S‖ ≥ ‖ exp(tJk(λ))‖ ≥ t
k−1

k! .
(3.22)

Hence we can choose X0 to produce a growing solution.

This result does not assert that every solution grows, only that some initial
conditions produce growing solutions. the result does not apply to the situation
in which A has eigenvalues of geometric multiplicity one on the imaginary axis
�λ = 0. To address this subtle case, we introduce the notion of resonance in
Chap. 5. 	


3.4 Exponentials and the Resolvent

Definition 3.8 (Resolvent) Let A be n× n complex matrix with set of eigenvalues
σ = {λj ; j = 1, . . . , n}. Here σ is called the spectrum, C \ σ is the resolvent set,
and the matrix function R(s) = (sI − A)−1 on C \ σ is called the resolvent.

Proposition 3.9

(i) (Resolvent identity) The resolvent R(s) = (sI − A)−1 satisfies

R(s)− R(λ) = (λ− s)R(s)R(λ). (3.23)

(ii) Also R(s) is a differentiable function such that

d

ds
R(s) = −R(s)2

when s is not an eigenvalue of A.

Proof

(i) We have

λI − A = (sI − A)+ (λ− s)I
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which we multiply on the left by R(λ) = (λI −A)−1 and multiply on the right
by R(s) = (sI − A)−1 to give

R(s) = R(λ) + (λ− s)R(λ)R(s).

(ii) When s is not an eigenvalue, R(λ) is a continuous function of λ on an open
neighbourhood of s. We deduce from (i) that

R(s)− R(λ)
s − λ = −R(s)R(λ)

→−R(s)2 (λ→ s),

so R(s) is complex differentiable.
	


There are various formulas for the resolvent, including the following one which
links the exponential to the resolvent.

Proposition 3.10 (Resolvent Formula) Let A be an (n × n) complex matrix such
that ‖ exp(tA)‖ ≤ Meβt for all t > 0 Then for �s > β, the matrix sI − A is
invertible with inverse

(sI − A)−1 =
∫ ∞

0
e−st exp(tA) dt. (3.24)

Proof We have

(sI − A) exp(t (A− sI)) = − d
dt

exp(t (A− sI)) (3.25)

so

∫ R

0
(sI − A) exp(t (A− sI)) dt =

∫ R

0
− d
dt

exp(t (A− sI)) dt (3.26)

so by Fundamental Theorem of Calculus

(sI − A)
∫ R

0
exp(t (A− sI)) dt = [− exp(t (A− sI))]R0 = I − expR(A− sI);

(3.27)

where

‖ expR(A− sI)‖ = ‖ expRA‖|e−sR| ≤ MeβR−R�s (3.28)
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where β − �s < 0, so by the assumption on s, we can take the limit as R →∞ to
obtain

(sI − A)
∫ ∞

0
exp(t (A− sI)) dt = I. (3.29)

Hence sI − A is invertible. 	

The following diagram gives the basic MATLAB commands for computing

these.

tA exp(tA)

(sI − A) − 1

expm

inv
lap

Proposition 3.11 (Spectral Radius Formula) Let ρ = lim supn→∞ ‖An‖1/n.

(i) Suppose that s ∈ C has |s| > ρ. Then

R(s) =
∞∑

n=0

An

|s|n+1
(3.30)

converges and satisfies R(s)(sI − A) = (sI − A)R(s) = I .
(ii) The spectrum of A is contained in the closed disc {λ ∈ C : |λ| ≤ ρ}.
Proof

(i) The nth term in the series has norm ‖An‖/|s|n+1 where

lim sup
n→∞

‖An‖1/n

|s|(n+1)/n
= ρ

|s| < 1 (3.31)

hence the series converges by the nth root test. Let

Rn(s) = 1

s
I + 1

s2A+
1

s3A
2 + 1

s4A
3 + · · · + 1

sn
An−1, (3.32)

so

sRn(s)− ARn(s) = I − 1

sn
An, (3.33)
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so Rn(s)→ R(s) as n→ ∞, where (sI − A)R(s) = I . Likewise R(s)(sI −
A) = I .

(ii) The series forR(s) converges whenever |s| > ρ, and gives an inverse for sI−A.
Hence det(sI − A) �= 0, and s cannot be an eigenvalue of A. Conversely if v
is an eigenvector corresponding to eigenvalue λ, then ‖Anv‖ = |λ|n‖v‖, so
lim supn→∞ ‖An‖1/n ≥ |λ|, so ρ ≥ |λ|.

	


3.5 Schur Complements

Definition 3.12 (Schur Complements) Given an invertible n × n matrix A, the
Schur complement of A in the block matrix

[
A B

C D

]

(3.34)

is D − CA−1B. For D square and invertible, the Schur complement of D is A −
BD−1C.

Example 3.13 The Schur complement of A− sI in

[
A− sI B
C D

]

(3.35)

is the transfer function

T (s) = D − C(A− sI)−1B = D + C(sI − A)−1B. (3.36)

For the next two results, we specialize to the shape

U =
[
A B

C D

] [
n× n n× k
k × n k × k

]

. (3.37)

Lemma 3.14 Suppose that A is invertible. Then

det

[
A B

C D

]

= det(A) det(D − CA−1B). (3.38)

Proof One can show that

[
A B

C D

]

=
[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B

0 I

]

, (3.39)
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and one deduces the required result form taking the determinant of these matrix
products. The final matrix is upper triangular with 1 on the leading diagonal, hence
has determinant 1; the first matrix on right-hand side is lower triangular with 1 on
leading diagonal, hence has determinant 1. 	

Proposition 3.15 (A Determinant Formula for Realization by SISO) Let
T (s) = D + p(s)/q(s) be a proper rational function, where q(s) is a monic
polynomial and p(s) is a complex polynomial of degree less than q(s). Then
T (s) can be realized as the transfer function of a SISO (A,B,C,D), so
T (s) = D + C(sI − A)−1B, where

• A is a companion matrix with final row given by the coefficients of q(s) after the
leading coefficient, reversed in order and with minus signs;

• B is the column [0; . . . ; 0; 1];
• C is a row vector given by the coefficients of p(s), reversed in order;
• D is given by T (s)→ D as s →∞.

In particular, with A,B,C as above andD ∈ C,

T (s) =
det

[
A− sI B
C D

]

det[A− sI ] .

Proof This follows by combining the Example 3.13 and the Lemma 3.14. For a
SISO, the entry D is a scalar. 	

Proposition 3.16 Suppose that A and D − CA−1B are invertible. Then U is
invertible with inverse

[
A B

C D

]−1

=
[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

.

(3.40)

Proof To motivate this formula, we carry out elementary row operations on

V =
[
A B | I 0
C D | 0 I

]

, (3.41)

and thus find the inverse of U . An elementary row operation on V amounts to
multiplying V on the left by an invertible matrix E to form EV .
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Since A is invertible, we have row equivalences

[
A B | I 0
C D | 0 I

]

∼
[
I A−1B | A−1 0
C D | 0 I

]

∼
[
I A−1B | A−1 0
0 D − CA−1B | −CA−1 I

]

(3.42)

It is now clear that the 2× 2 block matrix is invertible if and only ifD −CA−1B is
invertible, in which case we have

V ∼
[
I A−1B | A−1 0
0 I | −(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

∼
[
I 0 | A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

0 I | −(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

,

(3.43)

so the inverse is the right block, namely

[
A B

C D

]−1

=
[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

.

(3.44)
	


3.6 Self-adjoint Matrices

We write z = (zj )nj=1 and w = (wj )nj=1, and introduce the inner product 〈z,w〉 =
∑n
j=1 zj w̄j . With linear operators T : Cm → Cn the adjoint has T ′ : Cn → Cm

and is characterized by the identity

〈T v,w〉 = 〈v, T ′w〉 (v ∈ C
m,w ∈ C

n) (3.45)

for the standard inner product. For many purposes, (3.45) is the most helpful way to
think about the adjoint, instead of the matricial definition 2.15. In particular, one sees
that for n × n matrices A and B, the adjoint reverses the order in matrix products,
so (AB)′ = B ′A′.
Lemma 3.17 Let A ∈ Mn×n(C).
(i) If 〈AX,X〉 = 0 for all X ∈ Cn, then A = 0.

(ii) A = A′ if and only if 〈AX,X〉 is real for all X ∈ Cn.
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Proof

(i) We need to consider complex vectors X, as evidenced by the example in
M2×2(R) given by

〈 [0 −1
1 0

] [
x

y

]

,

[
x

y

] 〉
= 0 (x, y ∈ R). (3.46)

We take X,Y ∈ Cn and s ∈ C, and write

0 = 〈A(X + sY ),X + sY 〉
= 〈AX,X〉 + s〈AY,X〉 + s̄〈AX,Y 〉 + |s|2〈AY, Y 〉
= s〈AY,X〉 + s̄〈AX,Y 〉, (3.47)

so by considering s = t and s = it for t ∈ R, we deduce that 〈AX,Y 〉 = 0, so
A = 0.

(ii) We have

〈AX,X〉 ∈ R⇔ 〈AX,X〉 = 〈AX,X〉 ⇔ 〈AX,X〉
= 〈X,A′X〉 ⇔ 〈AX,X〉 = 〈A′X,X〉

and by (i), this is equivalent to A = A′.
	


Definition 3.18 (Self-adjoint)

(i) We say that A ∈ Mn×n(C) is self-adjoint if A = A′.
(ii) We say that S ∈ Mn×n(C) is skew self-adjoint if S′ = −S. Often one says that

S is skew. Equivalently S = iA where A is self-adjoint.

Example 3.19 For any A ∈ Mn×n(C), the operators A + A′, AA′ and A′A are
self-adjoint, whereas A− A′ is skew self-adjoint.

Theorem 3.20 (Spectral Theorem for Self-adjoint Matrices) Suppose that A ∈
Mn×n(C) is self-adjoint, so A = A′.

(i) Then the eigenvalues of A are all real,
(ii) eigenvectors corresponding to distinct eigenvalues are orthogonal, and

(iii) there exists a unitary matrix U such that UU ′ = U ′U = I and A = UDU ′
where D is a real diagonal matrix.

Proof

(i) For an eigenvalue λ with corresponding eigenvectorX, we have λX = AX, so

λ〈X,X〉 = 〈AX,X〉 = 〈X,A′X〉 = 〈X,AX〉 = λ̄〈X,X〉, (3.48)

and 〈X,X〉 = ‖X‖2 > 0 since X �= 0, so λ = λ̄.
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(ii) For an eigenvalue λ with corresponding eigenvector X, and an eigenvalue μ
with μ �= λ with corresponding eigenvector Y , we have

λ〈X,Y 〉 = 〈AX,Y 〉 = 〈X,A′Y 〉 = 〈X,AY 〉 = μ〈X,Y 〉, (3.49)

so 〈X,Y 〉 = 0.
(iii) We find the largest eigenvalue λ1. The set K1 = {X ∈ Cn : 〈X,X〉 = 1} is

closed and bounded, so the functionK1 → R : X �→ 〈AX,X〉 is bounded and
attains its supremum. We write λ1 for this supremum, and choose X1 ∈ K1
such that 〈AX1,X1〉 = λ1〈X1,X1〉. Then for any fixed Y ∈ Cn, the real
function

f (t) = 〈A(X1+ tY ),X1+ tY 〉−λ1〈X1+ tY,X1+ tY 〉 (t ∈ R) (3.50)

has f (t) ≤ 0 for all t and f (0) = 0, so by calculus

0 = df
dt
(0) = 〈AX1, Y 〉 + 〈AY,X1〉 − λ1〈X1, Y 〉 − λ1〈Y,X1〉 (3.51)

so

〈AX1 − λ1X1, Y 〉 + 〈Y,AX1 − λ1X〉 = 0; (3.52)

but Y was arbitrary, so we can choose Y = AX1 − λ1X1 to deduce that

〈AX1 − λ1X1, AX1 − λ1X1〉 = 0;

hence AX1 − λ1X1 = 0 and we have an eigenvector X1 with corresponding
eigenvalue λ1.

Observe that

〈X,X1〉 = 0⇒ 〈X,λ1X1〉 = 0⇒ 〈X,AX1〉 = 0 ⇒ 〈AX,X1〉 = 0. (3.53)

Hence we can repeat the argument with K2 = {X ∈ Cn : 〈X,X〉 = 1, 〈X,X1〉 = 0}
in place ofK1 to find another eigenvalue λ2. Thus by an induction argument we can
find eigenvectorsX1, . . . , Xn and corresponding eigenvalues λ1, . . . , λn. By (ii), the
eigenvectorsXj of A are orthogonal, so we can choose them so that 〈Xj ,Xk〉 = 0
for j �= k and 〈Xj ,Xj 〉 = 1. Then U = [X1 . . . Xn] satisfies U ′U = I . Also U ′AU
is the diagonal matrixD = diag[λ1, . . . , λn]. 	

Exercise

(i) Suppose that A = A′. Show that the eigenvalues {λ1, . . . , λn} of A determine
the norm of A via ‖A‖ = max{|λj | : j = 1, . . . , n}.

(ii) Let B be am× n matrix. Show that B ′B and BB ′ are square matrices and their
largest eigenvalues are equal.
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Exercise Suppose that K = K ′ has all its eigenvalues positive. Using the spectral
theorem, show that

(i) K is invertible, and the inverseK−1 also has all its eigenvalues positive;
(ii) there exists aL such thatL′ = L, all eigenvalues of L are positive and L2 = K .

This L is unique, and is known as the positive square root of K .

The following result is a variant of the rank-nullity theorem 2.2.

Proposition 3.21 Let A ∈ Mn×n(C) and let V = {x ∈ Cn : A′x = 0} be the
nullspace of A′.

(i) Then V is a linear subspace of Cn, and its orthogonal complement V ⊥ = {y ∈
Cn : 〈y, v〉 = 0,∀v ∈ V } is equal to the range {Ay : y ∈ Cn} of A.

(ii) Also A′ maps V into V , and A maps V ⊥ into V ⊥.
(iii) rank(A) = dim(V⊥) = r and nullity(A) = dimV = k, where n = k + r .
(iv) There exist a unitary U ∈ Mn×n(C), A1,1 ∈ Mr×r (C) and A1,2 ∈ Mr×k(C)

such that

U ′AU =
[
A1,1 A1,2

0 0

]

, U ′A′U =
[
A′1,1 0
A′1,2 0

]

.

Proof

(i) For x, z ∈ V and λ,μ ∈ C, we have A′(λx + μz) = λA′x + μA′z = 0, so
λx + μz ∈ V . Hence V is a linear subspace of Cn. To identify its orthogonal
complement, we observe that x ∈ V if and only if 〈y,A′x〉 = 0 for all y ∈ C

n

so 〈Ay, x〉 = 0 for all y; so x is perpendicular to the range of A.
(ii) This follows from the definition of V and (i).

(iii) We have an orthogonal direct sum C
n = V⊕V ⊥, so we can add the dimensions

n = dim(V ) + dim(V ⊥). Note that the row rank of A is equal to the column
rank of A, so rank(A) = rank(A′).

(iv) Using the Gram-Schmidt process or otherwise [? ], we choose an orthonormal
basis {e1, . . . , er } of V⊥ and an orthonormal basis {er+1, . . . , en} of V and let
U be the unitary that takes {e1, . . . , en} to the standard basis of Cn. The matrix
decomposition then follows from (ii).

	


3.7 Positive Definite Matrices

Definition 3.22 (Positive Definite) An n × n complex matrix K is said to be
positive definite if K = K ′ and 〈KZ,Z〉 > 0 for all Z ∈ Cn such that Z �= 0;
we write K � 0. We say that L is negative definite if K = −L is positive definite;
we write L ≺ 0.
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Beware that the product of positive definite matrices is generally not positive
definite. Exercise 3.7 gives basic properties of positive definite matrices. The
fundamental characterization is the following theorem. A principal leading minor
is the determinant of one of the top left corner blocks of a matrix.

Theorem 3.23 (Sylvester) Let K be a (n× n) complex matrix such that K = K ′.
Then the following are equivalent:

(i) 〈KZ,Z〉 > 0 for all Z ∈ C
n such that Z �= 0;

(ii) the eigenvalues κj of K are all real and κj > 0 for all j ;
(iii) the leading principal minors �j of K are all positive, so �j > 0 for all j .

Proof (i) ⇒ (ii) For an eigenvector X with corresponding eigenvalue κ , we have
κX = KX so κ〈X,X〉 = 〈KX,X〉 > 0, hence κ > 0.
(ii)⇒ (i)By the spectral theorem, we haveK = UDU ′ whereD is the diagonal

matrix with entries the eigenvalues of K , which are all positive, so (i) follows.
(i) ⇒ (iii) Let Kj be the j × j submatrix of K in the top left corner. Then

〈KjX,X〉 > 0 by (i). Then the eigenvalues of Kj are all positive since (i)⇒ (ii);
hence�j = detKj > 0.
(iii) ⇒ (i) The proof is by induction on the number n of rows of the matrix.

The basis of induction is the case n = 1, which is evident. Suppose that (iii)⇒ (i)

holds for matrices with n rows, and consider n + 1; that is, consider a self-adjoint
matrixK of the shape

K =
[
A B

B ′ D

] [
n× n n× 1
1× n 1× 1

]

(3.54)

and suppose that all the leading minors have �j > 0. Then by the induction
hypothesis,A is positive definite, and in particular is invertible; alsoA has a positive
definite square root A1/2 with inverse A−1/2 by the exercises. Then

�n+1 = det

[
A B

B ′ D

]

= (detA)(D − B ′A−1B) = �n(D − B ′A−1B) (3.55)

so the final factor is positive. We can then write

〈 [
A B

B ′ D

] [
X

ξ

]

,

[
X

ξ

] 〉
= 〈AX,X〉 + ξ〈B,X〉 + ξ̄〈X,B〉 +D|ξ |2

= ‖A1/2X + ξA−1/2B‖2 + (D − 〈A−1/2B,A−1/2B〉)|ξ |2,
(3.56)

which is a sum of nonnegative terms. If ξ �= 0, then the final term is positive;
whereas if ξ = 0, then we are left with 〈AX,X〉 which is positive unlessX satisfies
X = 0. Hence the matrix K is positive definite. 	
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For small matrices, (iii) is easy to check, and computers can carry out (iii) in
exact arithmetic for medium sized matrices. For large sized matrices, computers
can handle (i). The condition (ii) involves the eigenvalues, which are useful to find
for other purposes, but can be difficult to locate exactly.

Example 3.24 Part (iii) of the Theorem 3.23 is about positive leading minors;
whereas nonnegative leading minors themselves do not carry much information.
The leading minors of

A =
[

0 0
0 −1

]

(3.57)

are �1 = 0 ≥ 0 and �2 = 0 ≥ 0, but A has a negative eigenvalue −1 and is not
positive definite.

Exercise Let B ∈ Mm×n(C). Show that the following are equivalent :

(i) ‖B‖ ≤ 1;
(ii) B ′B has all its eigenvalues less than or equal to 1;

(iii) 〈(In − B ′B)X,X〉 ≥ 0 for all X ∈ Cn.

Definition 3.25 Let K be a (n × n) complex matrix such that K = K ′, and the
eigenvalues κj of K are all real and κj ≥ 0 for all j . Then K is said to be positive
semidefinite.

3.8 Linear Fractional Transformations

An important idea is to compare the scalar function 1/(s − λ) with the matrix
function (sI − A)−1, especially when λ is chosen to be an eigenvalue of A. To
do this systematically, we broaden the scope of the scalar valued functions slightly,
and consider linear fractional transformations.

Definition 3.26 (Linear Fractional Transformations) Given an invertible matrix

M =
[
a b

c d

]

(ad − bc �= 0) (3.58)

we introduce the Möbius or linear fractional transformation

ϕM(s) = as + b
cs + d (cs + d �= 0). (3.59)

Example 3.27 The following are linear fractional transformations:
Tα(s) = s + α, translation through α ∈ C;
Dr(s) = rs, dilation through scale factor r > 0;
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Rθ (s) = eiθ s, rotation about θ ∈ [0, 2π);
J (s) = 1/s, the reciprocal map. This is not to be confused with s �→ s/|s|2,

which gives inversion in the unit circle.
Conversely, any linear fractional transformation is a composition of some

combination of these basic transformations.
To see this, we consider ϕM as above; there are two cases:
suppose c = 0; then a, d �= 0 and we have ϕM(s) = (a/d)s + b/d . so we make

a polar decomposition a/d = reiθ and write ϕM(s) = reiθ s + b/d , so ϕM is the
composition of Rθ followed by Dr , followed by Tα , with α = b/d.

Now suppose c �= 0, and write

ϕM(s) = a
c
− (ad − bc)/c

cs + d (cs + d �= 0), (3.60)

which we can express as a composition of the basic transformations, including J .

Let C be the set of circles and straight lines in C. A typical circle has centre α and
radius r > 0, so has the formulas |s−α| = r , so ss̄−αs̄− ᾱs+|α|2 = r2; a straight
line has the form y = mx + c with m, c ∈ R, so (s − s̄)/(2i) = m(s + s̄)/2+ c; or
x = d with d ∈ R, so s + s̄ = 2d.We suppose that straight lines pass through∞.

Proposition 3.28 Linear fractional transformations map C to itself.

Proof By the example, it suffices to show that Tα, Dr , Rθ and J all map C to itself.
The most challenging case is J , so we consider the line s + s̄ = 2d , which J maps
to s + s̄ = 2dss̄, which is a circle with centre 1/(2d) and radius 1/|2d| for d �= 0.
For s + s̄ = 0, we have the imaginary axis, which is mapped by J to itself. Other
cases are proved likewise. 	

Example 3.29 The following linear fractional transformations are particularly
important.

(i) ϕ(s) = 1
s+1 is used in changes of variable λ = 1

s+1 with inverse s = 1−λ
λ

.

(ii) ϕ(s) = s−1
s+1 takes RHP = {s ∈ C : �s > 0} onto the unit disc D(0, 1) = {s ∈

C : |s| < 1}.
(iii) Suppose that a, d, c, d ∈ R with ad − bc > 0. Then ϕM(s) takes the upper

half plane {s : �s > 0} onto itself. The inverse function is

ϕ−1
M (s) = ϕM−1(s) = ds − b

−cs + a (−cs + a �= 0),

which has a similar form.

Example 3.30 Let T (s) = d+c(s−a)−1b, which is the transfer function of a linear
system with one-dimensional state space. Then {T (iω) : −∞ ≤ ω ≤ ∞} is a circle
or straight line in C, passing through d .
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3.9 Stable Matrices

Definition 3.31 A complex matrix A is said to be stable if all of its eigenvalues lie
in LHP = {λ ∈ C : �λ < 0}.
Proposition 3.32 Let A be stable, and let α ∈ (0,∞) and β ∈ [0,∞). Then A′,
αA− βI and −(I − αA)−1 are also stable.

Proof First observe that det(λI − A) = 0 if and only if det(λ̄ − A′) = 0, so λ is
an eigenvalue of A if and only if λ̄ is an eigenvalue of A′. Also �λ = �λ̄, which
shows A′ is stable if and only if A is stable.

The equations (αA − βI)w = μw and Aw = (μ + β)w/α are equivalent. In
particular, choosing v to be an eigenvector of A corresponding to eigenvalue λ, we
have (αA− βI)v = (αλ− β)v, where �(αλ− β) < 0. The eigenvalues of αA− I
are αλ− 1, where λ is an eigenvalue of A, so αλ− 1 �= 0 and αA− I is invertible.
Also, −(I − αA)−1 has eigenvalues−1/(1− αλ), where

� −1

1− αλ = �
αλ − 1

|1− αλ|2 < 0. (3.61)

	

The notion of stability is fundamentally important in linear systems. Later we

see how stability of A relates to other notions of stability, such as stability of
polynomials and stability of transfer functions. The definition involves locating all
the eigenvalues, which can be computationally difficult for large matrices. Hence we
introduce a stricter notion called strict dissipativity, which can be checked without
finding eigenvalues, and is a route towards proving stability. See [28] for more
details.

3.10 Dissipative Matrices

Definition 3.33

(i) A n × n complex matrix is strictly dissipative if �〈Av, v〉 < 0 for all v ∈
Cn×1 \ {0}. Let Dn be the set of n× n strictly dissipative matrices. See [18].

(ii) A n× n complex matrix A is contractive if ‖A‖ ≤ 1.

Exercise

(i) Show that

2�〈Av, v〉 = 〈Av, v〉 + 〈Av, v〉 = 〈(A+ A′)v, v〉 (3.62)

where A+ A′ is self-adjoint.
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(ii) Suppose that A = [ajk]nj,k=1 is stricly dissipative. Show that the diagonal
entries satisfy �ajj < 0, and trace(A) < 0.

(iii) Suppose that A = A′. Show that A ∈ Dn if and only if all eigenvalues of A lie
in (−∞, 0). (Hence A is negative definite.)

The following diagram describes the location of the eigenvalues of various types
of matrices.

skew

self-adjoint

negative definite

strictly dissipative

i

( , 0)

LHP

A iA

A A + A

eig

eig

eig

eig

Proposition 3.34

(i) If A ∈ Dn, then A is stable.
(ii) αA− βI ∈ Dn for all A ∈ Dn, α ∈ (0,∞) and β ∈ [0,∞).

(iii) A ∈ Dn if and only if A′ ∈ Dn,
(iv) A ∈ Dn if and only if A+ A′ ∈ Dn; that is (A+ A′) is negative definite;
(v) If A1, A2 ∈ Dn, then A1 + A2 ∈ Dn.

(vi) I − αA ∈ Dn for all A ∈ Dn and α ∈ [0,∞), and ‖(I − αA)−1‖ ≤ 1.
(vii) The Cayley transform matrix Z = (I + A)(I − A)−1 satisfies ‖Z‖ ≤ 1.

(viii) For A ∈ Dn, there exists κ > 0 such that

‖ exp(tA)‖ ≤ e−κt (t > 0). (3.63)

(ix) Conversely, if A is an n × n complex matrix that satisfies the inequality of
(viii) for some κ > 0, then A ∈ Dn.
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Proof

(i) The eigenvalue equation gives v ∈ C
n×1 \ {0} such that Av = λv, so

�〈Av, v〉 = �λ〈v, v〉 (3.64)

where �〈Av, v〉 < 0 and 〈v, v〉 > 0, so �λ < 0, and A is stable.
(ii) For all v ∈ Cn×1 \ {0}, we have

�〈(αA− βI)v, v〉 = α�〈Av, v〉 − β〈v, v〉 < 0. (3.65)

(iii) We observe that

〈Av, v〉 = 〈v,A′v〉 = 〈A′v, v〉, (3.66)

so �〈Av, v〉 = �〈A′v, v〉, hence (iii).
(iv) The proof of (iii) also gives (iv). Observe thatA+A′ is self-adjoint and strictly

dissipative, ie equivalent to K = −(A+ A′) being positive definite.
(v) Likewise, we have

�〈(A1 + A2)v, v〉 = �〈A1v, v〉 + �〈A2v, v〉 < 0. (3.67)

(vi) By the Cauchy-Schwarz inequality, we write

‖(I−αA)v‖‖v‖ ≥ �〈(I−αA)v, v〉 = 〈v, v〉−α�〈Av, v〉 ≥ ‖v‖2 (3.68)

for all v ∈ Cn×1. From this we deduce that ‖(I − αA)v‖ ≥ ‖v‖, so I − αA
has zero nullspace and hence is invertible. For all w ∈ Cn×1, there exists
v ∈ Cn×1 such that w = (I − αA)v and ‖w‖ ≥ ‖(I − αA)−1w‖.

(vii) We have

‖(I + A)v‖2 = 〈v, v〉 + 〈(A+ A′)v, v〉 + 〈Av,Av〉
≤ 〈v, v〉 − 〈(A+ A′)v, v〉 + 〈Av,Av〉
= ‖(I − A)v‖2,

and since I − A is invertible, we can replace v by v = (I − A)−1w to give
‖(I + A)(I − A)−1w‖ ≤ ‖w‖.

(viii) First we show that the exponentials satisfy ‖ exp(tA)‖ ≤ 1 for all t > 0. For
v ∈ Cn×1, the function V (t) = 〈exp(tA)v, exp(tA)v〉 is non-negative and
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V (0) = ‖v‖2. Also V (t) is differentiable, with

dV

dt
= 〈A exp(tA)v, exp(tA)v〉 + 〈exp(tA)v,A exp(tA)v〉
= 〈(A+ A′) exp(tA)v, exp(tA)v〉 ≤ 0, (3.69)

since A is dissipative, so V (t) is decreasing. Hence

‖v‖2 = V (0) ≥ 〈exp(tA)v, exp(tA)v〉 = ‖ exp(tA)v‖2 (t > 0).
(3.70)

We refine this estimate as follows. Consider the unit sphere Sn−1 = {v ∈
Cn : ‖v‖ = 1}, and the continuous map Sn−1 → R v �→ �〈Av, v〉, which
attains its supremum at v0, say. Then �〈Av, v〉 ≤ �〈Av0, v0〉 = −κ0, where
κ0 > 0 since A is strictly dissipative. Then A + (κ0/2)I is also strictly
dissipative since

�〈(A+ (κ0/2))v, v〉 = �〈Av, v〉 + κ0/2 ≤ −κ0/2 < 0, (3.71)

for all v ∈ Sn, so �〈(A+ (κ0/2))v, v〉 ≤ −κ0‖v‖2/2 for all v ∈ C
n.

Then we write exp(tA) = e−κ0t/2 exp(t (A+(κ0/2)I)t), so by the previous
estimate, we have

‖ exp(tA)‖ ≤ e−κ0t/2‖ exp(t (A+ (κ0/2)I)t)‖ ≤ e−κ0t/2 (t > 0).
(3.72)

(ix) Let W(t) = 〈exp(t (A + κI))v, exp(t (A + κI))v〉, which satisfies W(t) ≤
W(0) by hypothesis, so (W(t) − W(0))/t ≤ 0 for all t > 0, hence taking
t → 0+, we deduce that

〈(A+ κI)v, v〉 + 〈v, (A + κI)v〉 = W ′(0) ≤ 0, (3.73)

so A is strictly stable.
	


Remark 3.35 Part (iv) of the Proposition 3.34 can be checked in many different
ways, as discussed in Theorem 3.23. Part (v) is a simple result, but can be used
even when A1 and A2 do not commute. For these reasons, it is a good idea to check
whether A is strictly dissipative before embarking on an eigenvalue hunt to see
whether A is stable.
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The following diagram summarizes the effect of the matrix exponential function,
denoted expm in MATLAB, on some spaces of matrices.

skew

self-adjoint

negative definite

strictly dissipative

unitary

self-adjoint

self-adjoint and contractive

contractive

A iA

A A + A

expm

expm

expm

expm

Proposition 3.36 For all A ∈ Dn,
(
I − t

m
A
)−m → exp(tA) (m→∞), (t > 0). (3.74)

Proof See [18]. The relevance of the following calculation will become clear at the
end of the proof. Let X be a Poisson random variable with parameter m, so that
P[X = k] = e−mmk/k! for k = 0, 1, . . . . Then X has expectation

EX =
∞∑

k=1

kP[X = k] =
∞∑

k=0

e−m km
k

k! = me
−m

∞∑

�=0

m�

�! = m (3.75)

and X2 has expectation

EX2 =
∞∑

k=1

k2
P[X = k]

=
∞∑

k=0

e−m k(k − 1)mk

k! +
∞∑

k=0

e−m km
k

k!
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= m2e−m
∞∑

�=0

m�

�! +me
−m

∞∑

�=0

m�

�!
= m2 +m.

Then the variance ofX is EX2−(EX)2 = m, so the standard deviation is
√
m. Also

E|X − EX| ≤ (
E|X − EX|2)1/2 = √m (3.76)

so

E|X − EX| =
∞∑

k=0

|k −m|P[X = k] = e−m
∞∑

k=0

|k −m|mk
k! . (3.77)

is bounded above by
√
m.

We choose α = t/m > 0 and observe that by (vi),

∥
∥
∥
(
I − t

m
A
)−m

v

∥
∥
∥ ≤ ‖v‖. (3.78)

To prove the limit formula, we introduce L = (I − tA/m)−1, so that ‖L‖ ≤ 1
by (vi), and L− I = (tA/m)(I − tA/m)−1, so

m(L− I) = tA(I − tA/m)−1 → tA (3.79)

as m→∞, hence one can check that exp(m(L− I))→ exp(tA) as m→∞.
We have

exp
(
m(L− I)))− Lm = e−m( exp(mL)− emLm)

= e−m
( ∞∑

k=0

mkLk

k! −
∞∑

k=0

Lmmk

k!
)

= e−m
∞∑

k=0

mk(Lk − Lm)
k! .

Now for k > m, we have

Lk − Lm = (Lk−m − I)Lm = (L− I)(Lk−m−1 + Lk−m−2 + · · · + I)Lm

so

‖Lk−Lm‖ ≤ ‖L−I‖(‖Lk−m−1‖+· · ·+‖I‖)‖Lm‖ ≤ (k−m)‖‖L−I‖ (3.80)



3.10 Dissipative Matrices 75

and likewise for k < m, we have

‖Lk − Lm‖ ≤ (m− k)‖L− I‖. (3.81)

Hence we have

∥
∥
∥ exp

(
m(L− I))) − Lm

∥
∥
∥ ≤ e−m

∞∑

k=0

mk‖Lm − Lk‖
k! ≤ ‖L− I‖e−m

∞∑

k=0

mk|m− k|
k!

(3.82)

which by the example of Poisson random variables is

∥
∥
∥ exp

(
m(L− I)))− Lm

∥
∥
∥ ≤ √m‖L− I‖

= √m
∥
∥
∥
tA

m

(
I − tA

m

)−1∥∥
∥

≤ t‖A‖√
m

Hence

(
I − t

m
A
)−m − exp

(
tA

(
I − tA

m

))
→ 0 (m→∞). (3.83)

	

Proposition 3.37 (i) Suppose that a, d, c, d ∈ R with ad − bc > 0.

(i) Then

ϕ(s) = as − ib
ics + d (ics + d �= 0) (3.84)

takes RHP onto RHP .
(ii) If A has all its eigenvalues in LHP, then ϕ(A) also has all its eigenvalues in

LHP.
(iii) If A is strictly dissipative, then ϕ(A) is also strictly dissipative.

Proof

(i) Consider ψ(s) = as+b
cs+d , which maps the upper half plane onto itself. Then

ϕ(s) = −iψ(is), and this has the effect of rotating the left half-plane through
π/2 to the upper half plane, transforming the upper half plane by ψ , then
rotating the upper half plane back to the left half-plane. The inverse function is

ϕ−1(s) = ds + ib
−ics + a (−ics + a �= 0). (3.85)
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(ii) Let λ be an eigenvalue of A in LHP with corresponding eigenvector v, so
Av = λv. This equation leads to (aA−ibI)v = (aλ−ib)v and (icA+dI)v =
(icλ+ d)v, so ϕ(A)v = ϕ(λ)v, so ϕ(A) has eigenvalues in the left half-plane.

(iii) We consider

ϕ(A)+ ϕ(A)′

= (icA+ dI)−1(aA− ibI)+ (aA′ + ibI)(−icA′ + dI)−1

= (icA+ dI)−1
(
(aA− ibI)(−icA′ + dI)

+ (icA+ dI)(aA′ + ibI)
)
(−icA′ + dI)−1

= (icA+ dI)−1(ad − bc)(A+ A′)(−icA′ + dI)−1

in which ad−bc > 0, icA+dI is invertible and−(A+A′) is positive definite,
so −(ϕ(A)+ ϕ(A)′) is also positive definite.

	


3.11 A Determinant Formula

Lemma 3.38 Let A and B be (n× n) complex matrices.

(i) Then the characteristic polynomials of AB and BA are equal

det(sI − AB) = det(sI − BA). (3.86)

and the eigenvalues of AB are equal to the eigenvalues of BA.
(ii) For s �= 0 such that det(sI − AB) �= 0, the inverses satisfy

(sI − AB)−1 = s−1(I + A(sI − BA)−1B
)
. (3.87)

Proof

(i) We consider the (2n× 2n) matrices

X =
[
I A

0 I

]

, Y =
[
sI −A
−B I

]

, Z =
[
I A/s

0 I

]

, (3.88)

with products

XY =
[
I A

0 I

] [
sI −A
−B I

]

=
[
sI − AB 0
−B I

]

(3.89)



3.11 A Determinant Formula 77

so

det

[
I A

0 I

]

det

[
sI −A
−B I

]

= det

[
sI − AB 0
−B I

]

(3.90)

hence

det

[
sI −A
−B I

]

= det(sI − AB); (3.91)

also

YZ =
[
sI −A
−B I

] [
I A/s

0 I

]

=
[
sI 0
−B I − BA/s

]

, (3.92)

det

[
sI −A
−B I

]

det

[
I A/s

0 I

]

= det

[
sI 0
−B I − BA/s

]

(3.93)

det

[
sI −A
−B I

]

= sn det(I − BA/s) = det(sI − BA); (3.94)

hence by combining (3.91) and (3.94), we obtain

det(sI − AB) = det(sI − BA). (3.95)

Hence λ is an eigenvalue of AB if and only if both of these are zero as s = λ,
or equivalently λ is an eigenvalue of BA.

(ii) We have

(sI − AB)s−1(I+A(sI − BA)−1B
)

= s−1(sI − AB + (sI − AB)A(sI − BA)−1B
)

= s−1(sI − AB + A(sI − BA)(sI − BA)−1B
)

= s−1(sI − AB + AB) = I, (3.96)

and similarly

s−1(I + A(sI − BA)−1B
)
(sI − AB) = I. (3.97)

We can also swap A and B in these formulas.
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3.12 Observability and Controllability

See [25]. Let (A,B,C,D) be a MIMO whereA ∈ Mn×n(C), with transfer function
T (s) = D + C(sI − A)−1B, which we expand as

T (s) = D +
∞∑

k=0

CAkB

sk+1 (|s| > ‖A‖). (3.98)

This suggests that the coefficients CAkB should contain useful information about
the linear system. In this section we study the vector spaces span{AjB : j =
0, . . . , n − 1} and span{CAj : j = 0, . . . , n − 1}, and use them to obtain
decompositions of the state space.
Let (A,B,C,D) be a SISO, and suppose that A is n × n and C is 1× n. Then we
introduce the n× 1 complex matrix

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C

CA

CA2

...

CAn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (3.99)

Proposition 3.39 (Observability) The following conditions are equivalent:

(i) span{C,CA, . . . , CAn−1} = C1×n;
(ii) If CAjv = 0 for j = 0, . . . , n− 1, then v = 0;

(iii) rank(L) = n;
(iv) the observability Gramian L′L is positive definite.

Proof (ii)⇔ (iv)We observe that

L′L = [
C′ A′C′ . . . (A′)(n−1)C′

]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C

CA

CA2

...

CAn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=
n−1∑

j=0

(A′)jC′CAj (3.100)

so that L′L is positive definite if and only if
∑n−1
j=0 ‖CAjv‖2 > 0 for all v �= 0,

which is equivalent to (i).
(iii) ⇔ (iv) We observe that ‖Lv‖2 = 〈L′Lv, v〉, so the null space of L′L is

equal to the null space of L, hence (iv) is equivalent to the nullity of L being zero.
But rank(L)+ nullity(L) = n, so (iv) is equivalent to the rank(L) = n.
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(i) ⇔ (iii). We observe that (i) is equivalent to the statement that
span{C,CA, . . . , CAn−1} has dimension equal to n, which is equivalent to (iii). 	

Definition 3.40 (Observability) A linear system (A,B,C,D) that satisfies the
equivalent conditions of Proposition 3.39 is called observable.

Remark 3.41 The terminology observable refers to ability to observe an initial state
of the system via the output. See [11]. Clearly only A and C are involved in the
conditions. By the Cayley–Hamilton Theorem 2.29, all the vectors CAk belong to
span{C,CA, . . . , CAn−1}, so we only need to consider the first n such expressions.
Condition (iii) is convenient for computer calculation, as one can find the echelon
form of L. Condition (iv) brings us to the familiar criteria for positive definiteness
of a finite matrix, as in Theorem 3.23.

Now let K : Cn → Cn be the linear transformation with matrix

K = [
B AB A2B . . . An−1B

]
. (3.101)

Proposition 3.42 For a SISO (A,B,C,D) consider range(K) for K as above.

(i) Then range(K) = {0} if and only if B = 0.
(ii) range(K) has dimension one, if and only if B is an eigenvector of A.

(iii) range(K) has dimension n, if and only if K has rank n.

Proof We observe that

range(K) =
{ n∑

j=1

ajA
j−1B; (aj )nj=1 ∈ C

n
}

(3.102)

= span{AjB; j = 0, . . . } (3.103)

is the column space of K . Then one can consider the various cases.

(i) If B = 0, then K = 0, The converse is clear.
(ii) If B is an eigenvector, then AB = λB for λ the eigenvalue, where B �= 0 by

definition of eigenvector, hence AjB = λjB for j = 1, . . . , n, so the column
space ofK has basis (B). Conversely, if the column space ofK has dimension
one, then B �= 0 by (i) and K is spanned by B. Hence AB is a multiple of B,
so B is an eigenvector of A.

(iii) The rank of K is the dimension of the column space of K , hence result.
	


Proposition 3.43 (Controllability) The following conditions are equivalent:

(i) span{B,AB, . . . , A(n−1)B} = Cn×1;
(ii) span{B ′, B ′A′, . . . , B ′(A′)(n−1)} = C1×n;

(iii) If B ′(A′)j v = 0 for j = 0, . . . , n− 1, then v = 0;
(iv) rank(K ′) = n;
(v) the controllability Gramian KK ′ is positive definite.
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Proof (i) ⇔ (ii) follows by taking the adjoint, which clearly does not change the
dimension of a vector space.

The remainder of the proof follows by replacing (A,C) by (A′, B ′), and L by
K ′. 	

Corollary 3.44 Suppose thatA has characteristic polynomial sn+∑n−1

j=0 aj s
j , and

that V = span{B,AB, . . . , An−1B} has dimension n. Then V has (non-orthogonal)
basis (ej )nj=1 where ej = Aj−1B for j = 1, . . . , n, and

Aej = ej+1, (j = 1, . . . , n− 1); Aen = −
n−1∑

j=1

aj−1ej , (3.104)

so A gives a linear transformation of V such that A is similar to

⎡

⎢
⎢
⎢
⎢
⎣

0 0 . . . −a0

1 0 . . .
...

0
. . .
. . . −an−2

0 . . . 1 −an−1

⎤

⎥
⎥
⎥
⎥
⎦
, (3.105)

which is the transpose of a companion matrix.

Definition 3.45 (Controllable)

(i) A linear system (A,B,C,D) that satisfies the equivalent conditions of Propo-
sition 3.43 is called controllable.

(ii) The controllability space of (A,B) is span{An−1B, . . . , AB,B}.
Remark 3.46

(1) The terminology controllable refers to ability to attain any state of the system
from the input, and thereby control the states of the system. Here only A and B
are involved in the conditions.

(2) The discussion shows that (A,B,C,D) is observable if and only if
(A′, C′, B ′,D′) is controllable.

(3) We also observe that

LK =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CB CAB CA2B . . . CAn−1B

CAB CA2B . . . . . . CAnB

CA2B CA3B . . .
... . . . . . . . . .

CAn−1B . . . . . . . . . CA2n−2B

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3.106)
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is a matrix which is constant on cross diagonals. This is called a finite Hankel
matrix, and the entries are the coefficients of the power series T (s) = D +∑∞
k=0 CA

kB/sk+1.

Theorem 3.47 (Popov–Belevitch–Hautus Test for Controllability) Let A be a
n× n complex matrix and B be a n× 1 column matrix; let

V =
{ n−1∑

j=0

ajA
jB; aj ∈ C; j = 0, . . . , n− 1

}
. (3.107)

Then the following conditions are equivalent:

(i) V = C
n×1;

(ii) the nullspace of B� contains no eigenvectors of A�;
(iii) the rank of [A− λI B] equals n for all λ ∈ C;
(iv) the rank ofQ equals n, whereQ = [

B AB A2B . . . An−1B
]
.

Proof (not (iii) implies not (ii)) Suppose that there exists λ ∈ C such that [A−λI B]
has rank k where k < n. Then by the rank-nullity theorem 2.2, the nullspace of

[
A� − λI
B�

]

(3.108)

has dimension n − k > 0, so there exists on non-zero y ∈ Cn×1 in the nullspace;
hence

(A� − λI)y = 0, B�y = 0; (3.109)

thus the nullspace of B� contains an eigenvector of A�, namely y.
(not (ii) implies not (i)) Suppose that Y ∈ C

n×1 satisfies

A�y = λy, B�y = 0, y �= 0. (3.110)

Then

n−1∑

j=0

ajB
�(A�)j y =

n−1∑

j=0

ajλ
jB�y = 0 (3.111)

for all aj ∈ C. Hence y is perpendicular to V , so V is a strictly proper subspace of
Cn×1.

(not (i) implies not (iii)) Suppose that V is a strictly proper subspace of Cn×1, so
there exists a nonzero y ∈ Cn×1 such that

n−1∑

j=0

ajB
�(A�)j y = 0. (3.112)
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Then the subspaceW = {∑n−1
j=0 aj (A

�)j y} is non zero and mapped to itself by left

multiplication by A�, hence W contains an eigenvector z of A�. Now A�z = λz
for some λ and B�z = 0. Hence z is in the nullspace of B� and is an eigenvector
of A�. So

[
A� − λI
B�

]

z = 0 (3.113)

so by the rank-nullity theorem 2.2, the rank of [A− λI B] is less than n.
((i) is equivalent to (iv)) We have

V =
{ n−1∑

j=0

ajA
jB; aj ∈ C; j = 0, . . . , n− 1

}

=
{ [
B AB A2B . . . An−1B

]

⎡

⎢
⎢
⎢
⎣

a0

a1
...

an−1

⎤

⎥
⎥
⎥
⎦
: aj ∈ C; j = 0, . . . , n− 1

}

=
{
Q

⎡

⎢
⎢
⎢
⎣

a0

a1
...

an−1

⎤

⎥
⎥
⎥
⎦
: aj ∈ C; j = 0, . . . , n− 1

}
(3.114)

so V equals the range ofQ; hence dimV = rank(Q). We deduce that V = Cn×1 if
and only if dimV = rank(Q) = n.

In condition (iii) we consider the vector space spanned by the rows of [A −
λI B], which depends upon λ ∈ C, and its dimension could possibly depend upon
λ. Clearly rank[A− λI B] = n for large |λ|, and rank[A− λI ] < n when λ is an
eigenvalue of A. The condition states that, nevertheless, rank[A− λI B] = n is all
cases. 	


3.13 Kalman’s Decomposition

Before considering the general result, we look at a special case.

Proposition 3.48 Let (A,B,C,D) be a SISO.

(i) Then the state space Cn has an orthogonal decomposition

C
n×1 = span{AjB : j = 0, 1, . . . } ⊕ {X ∈ C

n×1 : B ′(A′)jX = 0; j = 0, 1, . . . }.
(3.115)
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(ii) Then A is similar to a block matrix with respect to this decomposition

[
A1 A2

0 A4

]

. (3.116)

Proof

(i) With the n× n matrix

K = [
B AB A2B . . . An−1B

]
, (3.117)

we have an orthogonal decomposition

C
n×1 = range(K)⊕ null(K ′), (3.118)

where

range(K) = {K(aj )nj=1 : (aj )nj=1 ∈ C
n×1}

=
{ n∑

j=1

ajA
j−1B : (aj )nj=1 ∈ C

n×1
}

= span{AjB : j = 0, . . . , n− 1}
= span{AjB : j = 0, 1 . . . , } (3.119)

where the final step follows from the Cayley-Hamilton theorem 2.29.
Likewise, we have

null(K ′) = {
X ∈ C

n×1 : K ′X = 0
}

(3.120)

= {
X ∈ C

n×1 : 〈X,K(aj )nj=1〉 = 0 : (aj )nj=1 ∈ C
n×1}

=
{
X ∈ C

n×1 :
n∑

j=1

aj 〈X,Aj−1B〉 = 0 : (aj )nj=1 ∈ C
n×1

}

= {
X ∈ C

n×1 : 〈X,Aj−1B〉 = 0 : j = 1, . . . , n
}

= {
X ∈ C

n×1 : 〈X,Aj−1B〉 = 0 : j = 1, 2, . . .
}

(3.121)

where the final step follows from the Cayley-Hamilton theorem 2.29.
(ii) The subspace range(K) is evidently invariant under A, so we can choose bases

of range(K) and null(K ′) so that A can be expressed as a matrix of the stated
block form.
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Consider a linear system represented by (A,B,C,D) where A is n× n and B is
n× k. The basic idea is to introduce a basis for Cn×1 which is especially adapted to
(A,B,C) such that the linear systems has a special block form. To deal with (A,B),
we let V be the linear span of the columns in

[
An−1B An−2B . . . AB B

]
, so that

V is a linear subspace of Cn×1 which is invariant under left multiplication by A.
Suppose that V has dimension � < n; then we choose a basis {v1, . . . , v�} of V , and
extend to a basis {v1, . . . , vn} of Cn×1, thereby introducing a complementary space
W spanned by {v�+1, . . . , vn}. We can find these bases by carrying out elementary
column operations to find echelon forms. There is an invertible linear transformation
S on Cn×1 determined by Svj = ej where {e1, . . . , en} is the standard basis. Then
in term of {v1, . . . , vn}, we have an upper triangular block form

S−1AS =
[
A1 A2

0 A4

]

, S−1B =
[
B1

0

]

, CS = [
C1 C2

]
(3.122)

and as similarity does not change the transfer matrix, we have

T (s) = D + C(sI − A)−1B

= D + [
C1 C2

]
[
sI − A1 −A2

0 sI − A4

]−1 [
B1

0

]

= D + C1(sI − A1)
−1B1. (3.123)

We now consider A1 : V → V and its transpose A�1 : V → V , and let V1 be the
subspace of V that is spanned by the columns of

[
A
�,�−1
1 C�1 A

�,�−2
1 C�1 . . . A�1 C�1 C�1

]
. (3.124)

Then V1 is a subspace of V that is invariant under left multiplication by A�1 , so
as before, V1 has a complementary subspace W1 in V , and we can introduce an
invertible transformation S1 : V → V such that the upper triangular block form

S−1
1 A�1 S1 =

[
A�1,1 A�2,1

0 A�2,2

]

, S−1
1 C�1 =

[
C�1,1

0

]

, B�1 S1 =
[
BT1,1 B

�
1,2

]
, (3.125)

which transposes to a lower triangular block form

S�1 A1S
−�
1 =

[
A1,1 0
A2,1 A2,2

]

, S�1 B1 =
[
B1,1

B1,2

]

, C1S
−�
1 = [

C1,1 0
]
, (3.126)
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Hence we can further reduce the transfer function

T (s) = D + C1(sI − A1)
−1B1

= D + [C1,1 0]
[
sI − A1,1 0
−A2,1 sI − A2,2

]−1 [
B1,1

B1,2

]

= D + C1,1(sI − A1,1)
−1B1,1.

The full Kalman decomposition of the linear system is

d

dt

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

B1

B2

0
0

⎤

⎥
⎥
⎦ (3.127)

y = [
C1 0 C3 0

]

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦+Du (3.128)

for a suitable basis of Cn×1. The basis can be found by elementary row and column
operations, as above. 	


3.14 Kronecker Product of Matrices

Let (ejk)
r,s
j=1,k=1 ofMr,s(C) such that

r∑

j=1

s∑

k=1

aj,kej,k =
⎡

⎢
⎣

a1,1 . . . a1,s
...
. . .

...

ar,1 . . . ar,s

⎤

⎥
⎦ (3.129)

where aj,k ∈ C. Then for Aj,k ∈ Mp,q(C), we form the block matrix

r∑

j=1

s∑

k=1

Aj,k ⊗ ej,k =
⎡

⎢
⎣

A1,1 . . . A1,s
...
. . .

...

Ar,1 . . . Ar,s

⎤

⎥
⎦ (3.130)

with r block rows and s block columns, so the block matrix belongs to Mpr,qs(C).
This defines the Kronecker product Mp,q(C) ⊗ Mr,s(C) = Mpr,qs(C), with
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multiplication of blocks. We also take scalars across the tensor ⊗ symbol, so

r∑

j=1

s∑

k=1

Aj,k ⊗ xj,kej,k =
r∑

j=1

s∑

k=1

xj,kAj,k ⊗ ej,k =
⎡

⎢
⎣

x1,1A1,1 . . . x1,sA1,s
...

. . .
...

xr,1Ar,1 . . . xr,sAr,s

⎤

⎥
⎦ .

(3.131)

Given a linear map φ : Mp,q(C)→ (C) there exists a unique linear map

� : Mp,q(C)⊗Mr,s(C)→ Mr,s(C) :
⎡

⎢
⎣

A1,1 . . . A1,s
...
. . .

...

Ar,1 . . . Ar,s

⎤

⎥
⎦ �→

⎡

⎢
⎣

φ(A1,1) . . . φ(A1,s)
...

. . .
...

φ(Ar,1) . . . φ(Ar,s)

⎤

⎥
⎦

(3.132)

obtained by applying φ to the blocks in the matrix.

3.15 Exercises

Exercise 3.1 (Hadamard Matrices) The Hadamard matrices have applications in
signal processing. This exercise gives the construction for matrices of size 2n×2n.

(i) Let H be an n× n matrix. Show that

H ⊗
[

1 1
1 −1

]

=
[
H H

H −H
]

. (3.133)

(ii) Let

H0 = 1, H1 =
[

1 1
1 −1

]

, H2 = H1 ⊗
[

1 1
1 −1

]

, . . . , Hn+1 = Hn ⊗
[

1 1
1 −1

]

.

(3.134)

(iii) Show that Hn has size 2n × 2n, that HTn = Hn and HnHTn = 2nI2n .
(iv) Show that all the entries of Hn are in {∓1}.
Exercise 3.2 A complex square matrix is stable if all the eigenvalues λ have
�λ < 0, where �λ is the real part of λ. For each of the following matrices, find
the eigenvalues numerically using computer software to test whether ±A,±B,±C
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are stable:

A =
⎡

⎣
1 1 3
2 7 5
1 8 2

⎤

⎦ , B =
⎡

⎣
1 1 7
9 8 4
2 2 9

⎤

⎦ , C =

⎡

⎢
⎢
⎣

1 1 1 1
2 7 9 4
8 1 7 ı
2 2ı 2 4

⎤

⎥
⎥
⎦ . (3.135)

Exercise 3.3 Let

A =

⎡

⎢
⎢
⎣

0 1 0 0
3 0 0 2
0 0 0 1
0 −2 0 1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0 0
1 0
0 0
0 1

⎤

⎥
⎥
⎦ ; (3.136)

letQ be the (4× 8) matrix written as (4× 2) blocks

Q = [
B AB A2B A3B

]
. (3.137)

Find the rank ofQ.

Exercise 3.4 LetA be a (n×n) complex matrix andC be a (1×n) complex matrix;
then let

Q =

⎡

⎢
⎢
⎢
⎣

C

CA
...

CAn−1

⎤

⎥
⎥
⎥
⎦
, R = [

C� A�C� . . . (A�)n−1C�
]
, (3.138)

which are n× n complex matrices, and C� is the transpose of C.

(i) Show thatQ� = R and rank(Q) = rank(R).
(ii) Suppose that C� is an eigenvector of A�. Find R, and compute rank(R).

(iii) Find the rank ofQ when

A =

⎡

⎢
⎢
⎣

1 3 5 0
0 1 9 6
1 1 4 −7
2 2 1 8

⎤

⎥
⎥
⎦ , C = [

1 −5 −1/2 3
]
. (3.139)

Exercise 3.5

(i) Let D be a (n × n) diagonal matrix with positive diagonal entries κ1 ≥ κ2 ≥
· · · ≥ κn. Show that

κ1‖X‖2 ≥ 〈DX,X〉 ≥ κn‖X‖2 (X ∈ R
n×1). (3.140)
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(ii) Let K be a (n× n) real symmetric matrix with positive eigenvalues κ1 ≥ κ2 ≥
· · · ≥ κn. Show that

κ1‖X‖2 ≥ 〈KX,X〉 ≥ κn‖X‖2 (X ∈ R
n×1). (3.141)

Exercise 3.6 The Lorenz system is

dx

dt
= −σx + σy

dy

dt
= ρx − y − xz

dz

dt
= −βz+ xy.

where ρ, β and σ are real constants. A linear version of this system is

d

dt

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
−σ σ 0
ρ −1 0
0 0 −β

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ . (3.142)

Find the eigenvalues of this matrix

A =
⎡

⎣
−σ σ 0
ρ −1 0
0 0 −β

⎤

⎦ , (3.143)

and state conditions on ρ, β and σ for all the eigenvalues λ to lie in {λ ∈ C : �λ <
0}.
Exercise 3.7 Consider (n × n) matrices A, S,K,L. Let K be a positive definite
matrix.

(i) Show that if λ is an eigenvalue of K , then λ > 0.
(ii) Deduce that detK > 0 and trace(K) > 0.

(iii) Let S an invertible matrix. Show that S′KS is also positive definite.
(iv) Deduce that exp(A′)K exp(A) is also positive definite.
(v) Suppose that L is positive definite. Show that K + L is also positive definite.

Exercise 3.8 Let U be a nonzero proper subspace of a finite-dimensional vector
space V , and T : V → V a linear transformation.

(i) Show that T maps U into itself, if and only if T has the block form

T =
[
A B

0 D

]
U

W
(3.144)
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with respect to a suitable basis of V = U ⊕W , where W is a complementary
subspace of U .

(ii) Show that such a T is invertible, if and only if A and D are both invertible, in
which case

T −1 =
[
A−1 −A−1BD−1

0 D−1

]

. (3.145)

Exercise 3.9

(i) Let B be n ×m complex matrix, such that ‖B‖ ≤ 1. Show that this condition
is equivalent to the condition that I −B ′B is a self-adjointm×m matrix with
nonnegative eigenvalues.

(ii) By considering the binomial series

C =
∞∑

k=0

(−1)k
(

1/2

k

)

(B ′B)k (3.146)

show that there exists a self-adjoint m × m matrix C with nonnegative
eigenvalues such that C2 = I − B ′B.

(iii) Show that ‖B ′‖ ≤ 1. Deduce that there exists a self-adjoint n × n matrix D
with nonnegative eigenvalues such that D2 = I − BB ′.

(iv) Deduce that

U =
[
B D

−C B ′
]

(3.147)

satisfies UU ′ = I .

This exercise shows that a sub-block of a unitary matrix is equivalent to a matrix B
of norm less than or equal to one.

Exercise 3.10 LetA1, A2 ∈ Dn. Without assuming thatA1 andA2 commute, show
that

((
I − t

m
A1

)(
I − t

m
A2

))−m→ exp(t (A1 + A2)) (m→∞), (t > 0).

(3.148)

Exercise 3.11 Consider C ∪ {∞} with the interpretation that z→∞ means |z| →
∞.

(i) Show that for distinct z1, z2, z3 ∈ C ∪ {∞}, there exists a L ∈ C that passes
through z1, z2 and z3.

(ii) Show there exists a linear fractional transformation ϕ such that

ϕ(z1) = 0, ϕ(z2) = ∞, ϕ(z3) = 1.
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(iii) Deduce that given L1, L2 ∈ C, there exist a linear fractional transformation φ
such that φ(L1) = L2.

(iv) Deduce that the group of linear fractional transformations acts transitively on
C.

Exercise 3.12 Let

M =
[
a b

c d

]

∈ M2×2(C) (3.149)

have ad − bc �= 0, and let ϕM be the corresponding linear fractional transforma-
tion.

(i) Show that for λ ∈ C \ {0}, the matrices M and λM give the same linear
fractional transformation.

(ii) Show that there exists λ ∈ C \ {0} such that det(λM) = 1.
(iii) Suppose thatM ∈ M2×2(R) has detM �= 0. Show that there exists λ ∈ R \ {0}

such that det(λM) ∈ {1,−1}.
Exercise 3.13 (Controllability and Block Matrices) Let A1 ∈ Mk×k(C), A2 ∈
Mm×m(C) and B1 ∈ Ck×1, B2 ∈ Cm×1, then form the block matrices

A =
[
A1 0
0 A2

]

, B =
[
B1

B2

]

. (3.150)

(i) Find L ∈ Mk×(m+k)(C) andM ∈ Mm×(m+k)(C) such that

K = [
An−1B . . . AB B

] =
[
L

M

]

. (3.151)

(ii) By consideringK�, show that

rank(K) = rank(L)+ rank(M)− dim(range(L�)∩ range(M�)). (3.152)

(iii) Deduce a formula relating the dimension of the controllability space of (A,B)
to the dimensions of the controllability spaces of (A1, B1) and (A2, B2).

(iv) Show that the controllability space of (A,B) has dimensionm+ k if and only
if

KK ′ =
[
LL′ LM ′
ML′ MM ′

]

(3.153)

is positive definite.
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Exercise 3.14

(i) Suppose that T (s) = D + C(sI − A)−1B is invertible. Show that

T (s)−1 = [
0 I

]
[
sI − A B
C D

]−1 [
0
I

]

. (3.154)

(ii) (Higman’s trick) Discuss the validity of the formula

[[1 0
]
[
f a

−b 1

]−1 [
1
0

]

= 1

f + ab . (3.155)

Exercise 3.15 Let A ∈ Mn×n(C) have eigenvalue λ and B ∈ Mm×m(C) have
eigenvalue μ.

(i) Show that A⊗ B has eigenvalue λμ.
(ii) Show that A⊗ Im + In ⊗ B has eigenvalue λ+ μ.

(iii) Show that

exp
(
t (A⊗ Im + In ⊗ B)

) = exp(tA)⊗ exp(tB) (t ∈ R). (3.156)

Exercise 3.16 (i) (Second Resolvent Identity) Let A and A× be n × n complex
matrices. Show that their resolvents satisfy

(sI − A)−1 − (sI − A×)−1 = (sI − A)−1(A− A×)(sI − A×)−1

when s is in the resolvent set of A and the resolvent set of A×.
(ii) (Inverse of a transfer function) Suppose that� = (A,B,C,D) hasD invertible

and let T (s) = D + C(sI − A)−1B be the transfer function; then let

�× =
[
A× B×
C× D×

]

=
[
A− BD−1C BD−1

−D−1C D−1

]

have transfer function T ×(s) = D× + C×(sI − A×)−1B×. Show that

T ×(s)T (s) = I.

Exercise 3.17

(i) Let V ∈ Mn×1(C) and C = M1×n(C), so VC is of rank one. By considering
the Jordan form of VC or otherwise, show that

det(I − sV C) = 1− straceVC = 1− sCV.
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(ii) Deduce that

det(sI − A− VC) = det(sI − A)− Cadj(sI − A)V.

(iii) Suppose that V is an eigenvector of A corresponding to eigenvalue λ. Deduce
that there is a factorization of polynomials

det(sI − A− VC) = det(sI − A)
s − λ

(
s − λ− CV )

.

Exercise 3.18 Let X ∈ M2×2(C) satisfy trace(X) = 0.

(i) Use the Cayley-Hamilton theorem 2.29 to show that X2 = −δ2I2 for some
δ ∈ C.

(ii) Deduce that, the terminology of Definition 4.43,

exp(X) = cos(δ)I2 + sinc(δ)X.

(iii) Deduce that the equation

exp(X) =
[−1 1

0 −1

]

has no such solution X. [In [52], p111, this example is credited to Engel.]

Exercise 3.19 (Matrix Logarithm) Show that for X ∈ Mn×n(C) with ‖X‖ < 1,
the integral

L(X) =
∫ ∞

0

(
(1+ t)−1In − (tI + I + X)−1

)
dt (3.157)

is convergent.
(ii) By considering Taylor’s series of L(λX) or otherwise, obtain the formula

L(X) = X − X
2

2
+ X

3

3
− X

4

4
+ . . . ,

as in L(X) = log(I +X).
(iii) Using the integral from (i), show how to define a positive definite L(X) for

X positive definite.
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Exercise 3.20 Suppose that S is an invertible matrix. From the SISO system
(A,B,C,D), we introduce another SISO by (Â, B̂, Ĉ, D̂) = (S−1AS, S−1B,CS,

D).

(i) Show that

det

[
A− sI B
C D

]

= det

[
Â− sI B̂
Ĉ D̂

]

. (3.158)

(ii) Using Lemma 3.14, or otherwise, deduce that the transfer functions of these
linear systems are equal.

Exercise 3.21 (Variant of the Schur Complement Formula) Let (A,B,C,D)
haveD invertible.

(i) Derive the formula

[
A B

C D

]−1

=
[

0 0
0 D−1

]

+
[

I

−D−1C

]

(A− BD−1C)−1 [
I −BD−1

]
.

(ii) Replace A by A− sI and compute the right-hand side.



Chapter 4
Laplace Transforms

The Laplace transform is a fundamental tool for solving differential equations with
constant coefficients. The merit of the Laplace transform is that solutions of linear
systems such as constant coefficient ordinary differential equations have Laplace
transforms which are well-behaved functions, such as holomorphic on a half plane.
Holomorphic means analytic, or differentiable as a function of a complex variable.
In this chapter, we present several of the fundamental results about the Laplace
transform and obtain famous results such as Heaviside’s expansion theorem which
was important in the historical development of linear systems. In this book, we have
introduced the theory in terms of state space models with a differential equation
in time variable t for a state vector X satisfying a linear differential equation with
constant matrix coefficients. Here we consider how the MIMO system (A,B,C,D)
can be transformed via the Laplace transform, and we discover the meaning of
the transfer function T (s) which previously was defined by a largely unmotivated
formula. The Laplace transform replaces d/dt by multiplication by a variable s,
which leads to a description of linear systems in terms of algebra in which T (s)
is central to the discussion. In Chap. 5, we will also interpret transfer functions
geometrically in terms of plots involving s.

4.1 Laplace Transforms

Definition 4.1 (Laplace Transform)

(i) A function f : (0,∞)→ C is said to be piecewise continuous if there exists an
increasing sequence (aj )∞j=1 with aj →∞ as j →∞ such that the restricted
function f |(aj , aj+1) is continuous.

(ii) Suppose that f : (0,∞)→ C is a piecewise continuous function such that

(E) |f (x)| ≤ Meβx (x > 0) (4.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Blower, Linear Systems, Mathematical Engineering,
https://doi.org/10.1007/978-3-031-21240-6_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21240-6_4&domain=pdf

 -151
4612 a -151 4612 a
 
https://doi.org/10.1007/978-3-031-21240-6_4


96 4 Laplace Transforms

for some M > 0 and β ∈ R. Here β is called the exponential type or growth
rate. Then we say that f is of exponential type, or satisfies (E).

(iii) We then define the Laplace transform by

L(f )(s) =
∫ ∞

0
f (x)e−sx dx (�s > β). (4.2)

Sometimes L(f )(s) is written as f̂ (s). Here x, t are time variables; whereas
s is the transform variable. Writers often contrast the time domain with s-
space, to emphasize the difference in interpretation. The term s-space is not an
abbreviation for state space, since the latter relates to the time domain.

Example 4.2 (Laplace Transform Table) Let a be a non-zero real number, b > 0
and α > −1.

f (t) L(f )(s)
1 1/s

tn
n!
sn+1

eat
1

s − a (s > a)

tα
�(α + 1)

sα+1

sin at
a

s2 + a2

cos at
s

s2 + a2

δb(dt) e−bs

H(t − b) e−bs

s

f (t/b) bf̂ (bs)

H(t − b)f (t − b) e−bsf̂ (s)

eatf (t) f̂ (s − a)

Example 4.3 Calculating Some Laplace Transforms

(i) For all ε, t ≥ 0 and � ∈ N, we have

eεt = 1+ εt + ε
2t2

2! + · · · +
ε�t�

�! + · · · ≥
ε�t�

�! ,

so t� ≤ �!eεt/ε�, so t� satisfies (E).
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(ii) Now consider f (t) = t2, with

L(t2; s) = 2

s3 (s > 0). (4.3)

To see this, consider R > 0 and integrate by parts

∫ R

0
t2e−st dt =

[ t2e−st

−s
]R

0
+ 2

s

∫ R

0
te−st dt

=
[ t2e−st

−s
]R

0
+

[2te−st

−s2

]R

0
+ 2

s2

∫ R

0
e−st dt

=
[ t2e−st

−s
]R

0
+

[2te−st

−s2

]R

0
+

[2e−st

−s3

]R

0

= −R
2e−Rs

s
− 2Re−Rs

s2 − 2e−Rs

s3 + 2

s3 (s > 0)

→ 2

s3 as R→∞.

Remark 4.4 Comments Concerning Some Functions

(i) In the above table tα satisfies (E) for α ≥ 0; for 0 > α > −1, tα diverges as
x → 0+, but the Laplace transform integral exists as an improper Riemann
integral.

(ii) The Dirac delta function δb is not actually a function, instead δb is the measure
that assigns unit mass to the point b ≥ 0 on the line. So

∫
f (t)δb(dt) = f (b)

for all continuous real functions f . The measure δ0 is often called the unit
impulse function; as an input, it gives the system a kick start.

(iii) The Heaviside function

H(t) = 1, t ≥ 0;
H(t) = 0, t < 0; (4.4)

is a step function with a jump at x = 0, so H(x − b) is a step function with a
jump at x = b. Hence H(x − b) = ∫

(−∞,x] δb(dt). While H has a jump, it is
piecewise continuous and bounded, so the Laplace transform is defined using
the same formula as above. The Heaviside function has

L(H(t − b); s) =
∫ ∞

0
H(t − b)e−st dt

=
∫ ∞

b

e−st dt

= e
−sb

s
(s > 0).
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Exercise Suppose that (an)∞n=0 is a complex sequence such that |an| ≤ Mrn for
all n = 0, 1, . . . for some M, r > 0. Show that f (t) = ∑∞

n=0 ant
n/n! converges

for all t ∈ C and defines a continuous function of type (E) on [0,∞). Show how
f (t) = sin(2t) and f (t) = cos(4t) arise in this way.

Proposition 4.5 (Properties of the Laplace Transform) Here (E) refers to some
M > 0 and β ∈ R, and s is real.

(i) The Laplace transform exists for all s > β, and |L(f )(s)| ≤ M
s−β for all s > β.

(ii) The Laplace transform is linear so, that if f, g satisfy (E), then for all λ,μ ∈ C

the function λf + μg also satisfies (E) and

L(λf + μg)(s) = λL(f )(s)+ μL(g)(s). (4.5)

(iii) tf (t) also satisfies (E) and L(f )(s) is differentiable with

L(tf (t))(s) = − d
ds

L(f )(s). (4.6)

(iv) If f is continuously differentiable and df/dt satisfies (E), then f also satisfies
(E) and L(df/dt)(s) = sL(f )(s)− f (0).

Proof

(i) Let |f (x)| ≤ Meβx . Then for 0 < W < R

∣
∣
∣

∫ R

W

e−sxf (x) dx
∣
∣
∣ ≤ M

∫ R

W

eβxe−sx dx

=
[ M

β − s e
(β−s)x]R

W

= M

β − s e
(β−s)R − M

β − s e
(β−s)W → 0

asW →∞. Also, we can let R→∞ andW → 0+ to get

∣
∣
∣

∫ ∞

0
e−sxf (x) dx

∣
∣
∣ ≤ M

s − β . (4.7)

(ii) Suppose that |f (x)| ≤ Peax and |g(x)| ≤ Rebx for all x > 0. Then with
β = max{a, b} andM = |λ|P + |μ|R, we have

|λf (x)+ μg(x)| ≤ Meβx, (4.8)
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so we can integrate

∫ ∞

0
e−sx(λf (x)+ μg(x)) dx = λ

∫ ∞

0
e−sxf (x) dx + μ

∫ ∞

0
e−sxg(x) dx.

(4.9)

(iii) Suppose that |df/dx| ≤ Meβx for all x > 0 and some β > 0, so df/dx
belongs to (E); we verify that f also belongs to (E). By fundamental theorem
of calculus,

f (x) = f (0)+
∫ x

0

df

dt
(t) dt,

so

|f (x)| ≤ |f (0)| +
∫ x

0
Meβt dt

= |f (0)| +
[Meβt

β

]x

0

= |f (0)| + Me
βx

β
− M
β
,

so f satisfies (E). Now for s > β, we integrate by parts to get

∫ R

0
e−sx df

dx
dx =

[
e−sxf (x)

]R

0
+ s

∫ R

0
e−sxf (x) dx

= e−sRf (R)− f (0)+ s
∫ R

0
e−sxf (x) dx

so we let R→∞ to get

∫ ∞

0
e−sx

df

dx
dx = −f (0)+ s

∫ ∞

0
e−sxf (x) dx.

(iv) Differentiating Laplace transforms: Let s > β+δ for some δ > 0 and consider
−δ < h < δ. Note that eδxe−sxf (x) is integrable, and x ≤ eδx/δ, so xf (x)
also satisfies (E). Also

e−(s+h)x − e−sx
h

= e−sx
(e−hx − 1

h

)
→ −xe−sx (4.10)
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as h→ 0. Hence

L(f )(s + h)− L(f )(s)
h

=
∫ ∞

0

e−(s+h)x − e−sx
h

f (x) dx

=
∫ ∞

0

e−xh − 1

h
e−sxf (x) dx

→ −
∫ ∞

0
xe−sxf (x) dx.

To make this precise, we consider

e−xh − 1

h
+ x = h

(e−xh − 1+ hx
h2

)
(4.11)

where by comparing the coefficients in the power series

∣
∣
∣
e−xh − 1+ hx

h2

∣
∣
∣ =

∣
∣
∣
x2

2! −
hx3

3! +
h2x4

4! − . . .
∣
∣
∣

≤ x
2

2! +
δx3

3! +
δ2x4

4! + . . .

= e
δx − 1− δx

δ2 ≤ δ−2eδx

we have eδxe−sxf (x) is integrable, and

∣
∣
∣

∫ ∞

0

e−xh − 1+ hx
h

e−sxf (x) dx
∣
∣
∣ ≤ |h|

∫ ∞

0
δ−2eδxe−sxf (x) dx.

(4.12)
	


Proposition 4.6 (Holomorphic Laplace Transform) Suppose that f satisfies (E).
Then

(i) L(f )(s) defines a holomorphic (complex differentiable) function of s on the
open left half-plane {s ∈ C : �s > β};

(ii) L(f )(s)→ 0 as s →∞ along (0,∞).
(iii) Let f̄ be the complex conjugate of f . Then L(f̄ )(s) = L(f )(s̄).
Proof

(i) Similar to Proposition 4.5 (iii)
(ii) This is similar to Proposition 4.5 (i).

(iii) We have

L(f̄ )(s) =
∫ ∞

0
f̄ (t)e−st dt (4.13)



4.2 Laplace Convolution 101

is the complex conjugate of

L(f )(s̄) =
∫ ∞

0
f (t)e−s̄t dt. (4.14)

	

Definition 4.7 Let Euler’s Gamma function be �(α) = ∫∞

0 tα−1e−t dt for α > 0.

Proposition 4.8 (Laplace Transform of Exponentials and Powers) Let νj > −1
and let pj ∈ C for j = 1, . . . , N . Then

f (t) =
N∑

j=1

aj t
νj epj t (4.15)

satisfies (E) for β > max{�pj } and L(f )(s) is holomorphic for �s > β.

Proof By direct calculation, we have

L(f )(s) =
N∑

j=1

aj
�(νj + 1)

(s − pj )νj+1
. (4.16)

The Laplace transform is holomorphic on the half plane {s ∈ C : �s > β}, so
we stay to the right of the singularities at the pj . If the νj are all integers, then
L(f )(s) has a pole of order νj + 1 at pj , and L(f )(s) is a rational function which
is holomorphic on C \ {p1, . . . , pN }. 	


4.2 Laplace Convolution

Definition 4.9 (Convolution) Suppose that f and g both satisfy (E). Then their
Laplace convolution is

f ∗ g(x) =
∫ x

0
f (x − y)g(y) dy. (4.17)

Observe that the variable y moves along the range of integration [0, x], and we have
y and x−y in the integrand. We use the phrase Laplace convolution to avoid possible
confusion with convolution on R, where in the latter case the range of integration is
R. We can take our functions f and g to live on [0,∞), so there is no ambiguity.

Proposition 4.10 The Laplace convolution is:

(i) commutative, so f ∗ g = g ∗ f ;
(ii) linear, so (λf + μg) ∗ h = λf ∗ h+ μg ∗ h;
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(iii) multiplicative with respect to the Laplace transform, so f ∗ g satisfies (E) and

L(f ∗ g)(s) = L(f )(s)L(g)(s) (s > s0); (4.18)

(iv) associative, so f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Proof

(i) Change variable to u = y − x.
(ii) is easy.

(iii) Bounds on convolution formula: We chooseM,β such that

|f (x)| ≤ Meβx, |g(x)| ≤ Meβx (x > 0); (4.19)

then

|f (x − y)g(y)| ≤ Meβ(x−y)Meβy = M2eβx (4.20)

so
∣
∣
∣

∫ x

0
f (x − y)g(y) dy

∣
∣
∣ ≤ xM2eβx (4.21)

so f ∗ g satisfies (E).
Proof of convolution formula: Also, when we change order of integration,

then let u = x − y,

L(f ∗ g)(s) =
∫ ∞

0
e−sxf ∗ g(x) dx

=
∫ ∞

0
e−sx

∫ x

0
f (x − y)g(y) dy dx

=
∫ ∞

0

( ∫ ∞

y

e−s(x−y)f (x − y) dx
)
e−syg(y) dy

=
∫ ∞

0
e−suf (u) du

∫ ∞

0
e−syg(y) dy

= L(f )(s)L(g)(s).

Thus the Laplace transform converts convolution to multiplication.
(iv) Associativity: This can be proved in a similar way to (i). Alternatively, one

uses (iii) to compute

L((f ∗ g) ∗ h)(s) = L(f ∗ g)(s)L(h)(s) = L(f )(s)L(g)(s)L(h)(s)
= L(f ∗ (g ∗ h))(s) (4.22)

and then use uniqueness, as discussed below.
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4.3 Laplace Uniqueness Theorem

Theorem 4.11 Suppose that f and g satisfy (E) and that there exists s0 such that

L(f )(s) = L(g)(s) (s > s0). (4.23)

Then f (x) = g(x) for all x > 0 at which f − g is continuous.

Proof We defer the proof of this theorem until Sect. 4.10. In Corollary 9.5 we obtain
a stronger version due to Lerch. 	


Meanwhile, if one knows that F(s) occurs as L(f )(s) for some f , then the best
way to find f is by comparing F with known Laplace transforms in tables, then
invoking the uniqueness theorem. It would also help to describe the functions F(s)
that arise as Laplace transforms, and have an effective formula that produces an
explicit f (t) fromF(s). There is an inversion formula, credited to Bromwich, which
takes a suitable F(s) and produces this function f (t) via a contour integral as in [53]
page 177. The following result covers some cases of interest.

Proposition 4.12 (Holomorphic at Infinity) Suppose that F(s) is holomorphic
near ∞ with F(∞) = 0 so that F(s) has a convergent Laurent series F(s) =∑∞
n=0 ans

−n−1 on {s : |s| > σ } for some σ > 0. Then f (t) = ∑∞
n=0 ant

n/n! is of
type (E) and F(s) is the Laplace transform of f (t).

Proof A functionF is holomorphic at infinity if F(1/s) has a removable singularity
at 0, so we can write F(1/s) = a−1 + ∑∞

n=0 ans
n+1 where F(1/s) → a−1 as

s → 0, and we can interpret a−1 as F(∞). In particular,F vanishes at infinity when
F(∞) = 0. See page 123 [? ] and Exercise 4.13. Note that F(s) is holomorphic on
the half plane {s : �s > σ } with F(s)→ 0 as s →∞, as in Sect. 4.1. 	

Remark 4.13

(i) A strictly proper rational function F(s) is holomorphic near∞ with F(∞) =
0, and we obtain an explicit form for f (t) in terms of partial fractions and
residues in Proposition 6.55. In linear systems, strictly proper stable rational
functions with simple poles occur frequently, so we deal with this special case
in Sect. 4.7 with Heaviside’s expansion.

(ii) The algebraic function 1/
√

1+ s2 is holomorphic at infinity, and this occurs
in the theory of Bessel functions as in Exercise 4.12.

(iii) Whereas
√
π/
√
s is holomorphic on C \ (−∞, 0] it is not holomorphic at∞.

This function arises as the Laplace transform of 1/
√
t , but the inversion is

much more complicated and uses a specially chosen contour.
(iv) In Sect. 10.7, we prove the Paley-Wiener theorem 10.36 which gives the

definitive description of the functions that arise as Laplace transforms of square
integrable functions, along with a general inversion theorem.
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Example 4.14 We consider some examples relating to exponential and trigonomet-
ric functions, which are interesting in applications, and we use methods which also
work for Bessel functions in subsequent sections.

(i) The hyperbolic function sinh at has a series sinh at =∑∞
n=0(at)

2n+1/(2n+1)!
that gives a function satisfying (E), and for s > a > 0, this has Laplace
transform

L(sinh at)(s) =
∫ ∞

0

∞∑

n=0

a2n+1t2n+1

(2n+ 1)! e
−st dt

=
∞∑

n=0

∫ ∞

0

a2n+1t2n+1

(2n+ 1)! e
−st dt

=
∞∑

n=0

a2n+1

s2n+2

= a

s2 − a2 ,

where the change in order of integration and summation is justified by uniform
convergence or the monotone convergence theorem. The Laplace transform
is rational and holomorphic at infinity. One can otherwise obtain this integral
from sinh at = (eat − e−at )/2.

(ii) The Laplace transform of f (t) = t−1/2 cos(at1/2) is
√
(π/s)e−a2/(4s) for a ∈

R. To check this, we compute

Lf (s) =
∫ ∞

0
e−st

∞∑

j=0

(−1)ja2j tj−1/2

(2j)! dt

=
∞∑

j=0

∫ ∞

0

(−1)ja2j e−st tj−1/2

(2j)! dt

=
∞∑

j=0

(−1)j a2j�(j + 1/2)

(2j)!sj+1/2 , (4.24)

and we can simplify this by multiplying the numerator and denominator by
2j j ! to obtain

Lf (s) =
√
π√
s

∞∑

j=0

(−1)ja2j

22j j !sj

=
√
π√
s
e−a2/(4s).
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(iii) We introduce the error function by erf (x) = 2
∫ x

0 e
−t2dt/

√
π. This defines an

entire function, with Taylor expansion

erf (x) = 2√
π

∞∑

j=0

(−1)jx2j+1

(2j + 1)j ! .

Let g(t) = t−1 sin(at1/2); then by a similar calculation to the preceding one
(4.24), the Laplace transform satisfies

Lg(s) =
√
π√
s

∞∑

j=0

(−1)ja2j

2j (2j + 1)j !sj ,

and we deduce that

Lg(s) = πerf
( a

2
√
s

)
,

which is holomorphic at infinity.

Example 4.15 To solve the integral equation

y(t) = 2eat +
∫ t

0
eb(t−u)y(u) du (4.25)

where a, b are constants with a �= b + 1, and y satisfies (E).
Solution Note that the the integral is a convolution of y with ebt , so by Proposi-
tion 4.10(iii), we have

ŷ(s) = 2

s − a +
ŷ(s)

s − b ; (4.26)

after a little reduction we obtain

ŷ(s) = 2(s − b)
(s − a)(s − b − 1)

; (4.27)

which we write as partial fractions

ŷ(s) = A

s − a +
B

s − b − 1
; (4.28)

then

A = 2(a − b)
a − b − 1

; B = −2

a − b − 1
; (4.29)
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by the uniqueness of Laplace transforms, we have a unique solution

y(t) = 2(a − b)eat − 2e(b+1)t

a − b − 1
. (4.30)

Example 4.16 (Unique Solutions of a Population Equation) Let x be the size of a
population at time t > 0. The birth rate and death rate depend upon the age profile
of the population, as represented by a function g, and there can be emigration and
immigration, represented by an input u, so the rate of change of population is given
by

dx

dt
=

∫ t

0
g(t − τ )x(τ )dτ + u(t). (4.31)

This is equivalent to the integral equation

x(t) = x0 +
∫ t

0

∫ t−τ

0
g(v)dvx(τ )dτ +

∫ t

0
u(τ)dτ (t > 0). (4.32)

Assuming g and u are bounded and piecewise continuous, one use a version of
Gronwall’s inequality to deduce that x satisfies (E); see [26] page 371. Then we
deduce that the equation has Laplace transform

sX(s)− x(0) = G(s)X(s)+ U(s) (4.33)

so

X(s) = x(0)

s −G(s) +
1

s −G(s)U(s). (4.34)

If we can invert the Laplace transform on the right-hand side, then this leads to an
explicit solution. Otherwise, we can regard this as a uniqueness result pertaining to
the solution.

4.4 Laplace Transform of a Differential Equation

Proposition 4.17 Suppose that y(0) = p0,
dy
dt
(0) = p1, . . . ,

dn−1y

dtn−1 (0) = pn−1 and

dny

dtn
(t)+ an−1

dn−1y

dtn−1
(t)+ · · · + a0y = u(t) (4.35)
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where the coefficients are complex constants and u satisfies (E). Then there exists a
complex polynomial qn−1(s) of degree ≤ n− 1, that depends only upon the aj and
pk , such that

(sn + an−1s
n−1 + · · · + a0)L(y)(s)+ qn−1(s) = L(u)(s) (4.36)

where sn + an−1s
n−1+ · · · + a0 is the characteristic polynomial, as in Lemma 1.10

and Definition 2.10.

Proof By Theorem 2.40, we know that this initial value problem has a solution y,
and by Sect. 4.5 y is of type (E). By repeatedly applying Proposition 4.5, we have

L
(dy

dt

)
(s) = sL(y)(s)− y(0)

L
(d2y

dt2

)
(s) = sL

(dy

dt

)
(s)−

(dy

dt

)
(0)

L
(dny

dtn

)
(s) = sL

(dn−1y

dtn−1

)
(s)−

(dn−1y

dtn−1

)
(0),

so we can substitute backwards and get

L
(d2y

dt2

)
(s) = s2L(y)(s)− sy(0)−

(dy

dt

)
(0)

L
(d3y

dt3

)
(s) = s3L(y)(s)− s2y(0)− s

(dy

dt

)
(0)−

(dy2

dt2

)
(0)

and thus obtain qn−1(s) with coefficients pj = djy

dtj
(0) as in the initial conditions

y(0), . . . , d
n−1y

dtn−1 (0). The characteristic polynomial here is the same as we get from
Lemma 1.10 and Definition 2.10. 	


Proposition 4.17 takes us from the data in the differential equation to an algebraic
relation between their Laplace transforms. This leads directly to some interesting
information, as we see in Chap. 5, but to make full use of the result, we need a
systematic method for deriving the solution in the time variable. In Theorem 4.27
we obtain such an inversion process that works for stable characteristic polynomials.

Example 4.18 (Laplace Transform of Differential Equation) To find the Laplace
transform of

d3y

dt3
+ 2

d2y

dt2
− dy
dt
+ y =u

d2y

dt2
(0) = 5,

dy

dt
(0) = −1, y(0) =7

where u ∈ (E).
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Solution The Laplace transforms are found recursively, with

L(y)(s) = ŷ(s)

L
(dy

dt

)
(s) = sŷ(s)− 7

L
(d2y

dt2

)
(s) = s2ŷ(s)− 7s + 1

L
(d3y

dt3

)
(s) = s3ŷ(s)− 7s2 + s − 5

and substituting this into

L
(d3y

dt3

)
+ 2L

(d2y

dt2

)
− L

(dy

dt

)
+ L(y) = L(u) (4.37)

gives

(s3 + 2s2 − s + 1)ŷ(s)− 7s2 − 13s + 4 = û(s), (4.38)

which we write as

ŷ(s) = 7s2 + 13s − 4

s3 + 2s2 − s + 1
+ 1

s3 + 2s2 − s + 1
û(s), (4.39)

where the first term on the right-hand side is the Laplace transform of the com-
plementary function with constants chosen four the boundary values and the final
term is the Laplace transform of the particular integral.To make further progress,
one needs to find the roots of s3 + 2s2 + 13s − 4 = 0, which are approximately
−2.8312 and 0.4156± 0.4248i.

Remark 4.19

(i) Alternatively, we can represent this as an (A,B,C,D) SISO system and use
the theorem of the next section.

(ii) We often take s such that �s ≥ 0, so s is in the left half-plane, and denote the
points on the imaginary axis by s = iω, where ω ∈ R is the angular frequency.

4.5 Solving MIMO by Laplace Transforms

Definition 4.20 (Transfer Function) Consider a linear system Y = LU where L
is a linear operator, and such that all the entries of the (k × 1) input U and (m× 1)
output Y satisfy (E), and let the initial conditions be zero. Suppose that T (s) is a
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(m× k) matrix of functions such that

Ŷ (s) = T (s)Û(s) (s > β). (4.40)

Then T (s) is called the transfer function of the linear system.

Theorem 4.21 Let A,B,C,D be constant matrices, and suppose that the input
function satisfies (E). Then the output Y of the linear system

dX

dt
= AX + BU

Y = CX +DU (4.41)

with initial condition X(0) = 0 in (E) is uniquely determined, and the Laplace
transform satisfies

Ŷ (s) = T (s)Û(s) (4.42)

where the transfer function is T (s) = D + C(sI − A)−1B.

Proof By Theorem 2.40, the solution is determined by the state

X(t) =
∫ t

0
exp(((t − v)A)BU(v) dv (4.43)

which is a convolution type integral of functions in (E), since

‖ exp(tA)‖ ≤ M1e
β1t , ‖U(t)‖ ≤M2e

β2t (4.44)

so with M =M1M2‖B‖ and β = max{β1, β2}, we have

‖ exp(((t − v)A)BU(v)‖ ≤ Meβt (4.45)

so

‖X(t)‖ ≤ tMeβt ≤Me(β+1)t (4.46)

and so X satisfies (E) and has a Laplace transform. From the differential equation,
dX/dt also satisfies (E) and has a Laplace transform, and likewise Y satisfies (E).

The Laplace transform of

dX

dt
= AX + BU

Y = CX +DU (4.47)
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is

sX̂(s)−X(0) = AX̂(s)+ BÛ(s)
Ŷ (s) = CX̂(s)+DÛ(s). (4.48)

Hence when s is not an eigenvalue of A,

X̂(s) = (sI − A)−1BÛ(s)+ (sI − A)−1X(0)

Ŷ (s) = C(sI − A)−1BÛ(s)+DÛ(s)+ C(sI − A)−1X(0). (4.49)

When X(0) = 0 we get Ŷ (s) = T (s)Û(s). 	


. B + +1/s

A

. C

D

Û X̂ Ŷ

Û

DÛ
DÛ

X̂A X̂

Block diagram for the Laplace transform of the MIMO system

4.6 Partial Fractions

In the previous Sects. 4.4 and 4.5, we have obtained solution of differential equations
such that the Laplace transforms are rational functions. In this section we give an
informal discussion of how to express these rational functions, which we will make
more systematic in Chap. 6. See also [6], page 79.

Proposition 4.22

(i) Let f (s) be a complex rational function. Then there exists a complex polynomial
q(s), integersmj > 0 and poles λj ∈ C and aj,k ∈ C, all uniquely determined,
such that

f (s) = q(s)+
N∑

j=1

mj∑

k=1

aj,k

(s − λj )k . (4.50)
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(ii) Suppose that f (s) = r(s)/h(s) where the degree N of h(s) is greater than the
degree of r(s) and h(s) has only simple zeros at z1, . . . , zN . Then the partial
fractions decomposition of f (s) is

f (s) =
N∑

j=1

r(zj )

dh
ds
(zj )(s − zj )

. (4.51)

Proof

(i) Outline of the proof of existence. Recall the process of long division for
polynomials; see [6], page 64. Starting with f (s) = g(s)/h(s), we use the
Euclidean algorithm to write

g(s) = q(s)h(s)+ r(s) (4.52)

where q(s) and r(s) are polynomials, and either r(s) = 0 or the degree of r(s)
is strictly less than the degree of h(s); hence

f (s) = q(s)+ r(s)
h(s)

(4.53)

where r(s)/h(s) is strictly proper. Now by the fundamental theorem of algebra
[6] page 101,

h(s) = b
N∏

j=1

(s − λj )mj (4.54)

where the λj ∈ C are distinct. One can derive from this a partial fractions
decomposition by repeatedly using the division algorithm for polynomials, as
we discuss in Proposition 6.24. By such a process, we obtain coefficients aj,k
such that

r(s)

h(s)
=

N∑

j=1

mj∑

k=1

aj,k

(s − λj )k , (4.55)

with integers mj that give the multiplicity of the poles λj . The poles λj and
coefficients aj,k , are unique, as one can show by considering the Cauchy
integral formula to (z − λj )pf (z) to suitably chosen contour integrals about
the λj .
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(ii) The function

g(s) = f (s)−
N∑

j=1

r(zj )

dh
ds
(zj )(s − zj )

is proper and rational, with h(s) → 0 as s → ∞. The only possible poles are
simple poles at the zj , but we find that (s − zj )g(s) → 0 as s → zj , so there
are no such poles. Hence g(s) is holomorphic and bounded on C, so g(s) is
constant by Liouville’s theorem. But the constant must be zero, since g(s)→ 0
as s →∞.

	

This result is very useful, so long as one can locate the poles λj . Using Corol-
lary 6.27, one can check simplicity of the poles, as in the hypothesis (ii) of
Proposition 4.22, without locating the poles λj .

Corollary 4.23 (Laplace Transforms Which Are Strictly Proper Rationals) Let
y(t) be a function of the form

y(t) =
n∑

j=1

aj,nj t
nj eλj t . (4.56)

Then the Laplace transform Y of y is a strictly proper rational function with partial
fraction decomposition

Y (s) =
n∑

j=1

nj !aj,nj
(s − λj )nj+1 . (4.57)

Conversely, all strictly proper rational functions arise thus.

Proof Let �λ < β and β < s. We substitute z = (s − λ)t and find

∫ ∞

0
tneλt e−st dt =

∫ ∞

0
tne−(s−λ)t dt

= 1

(s − λ)n+1

∫ ∞

0
zne−zdz;

this can be justified by Cauchy’s theorem from complex analysis. Integrating by
parts, we obtain

∫ ∞

0
tneλt e−st dt = 1

(s − λ)n+1

[
− zne−z

]∞
0
+ n

(s − λ)n+1

∫ ∞

0
zn−1e−z dz

= 0+ n

(s − λ)n+1

[
− zn−1e−z

]∞
0
+ n(n− 1)

(s − λ)n+1

∫ ∞

0
zn−2e−z dz
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and so until
∫ ∞

0
tneλte−st dt = n!

(s − λ)n+1 . (4.58)

	

In the next section, we give an inversion formula via a contour integral when the

poles are simple.

4.7 Dirichlet’s Integral and Heaviside’s Expansions

Inverting the Laplace transform involves the following crucial calculation. We write
sgn(t) = 1 for t > 0 and sgn(t) = −1 for t < 0.

Lemma 4.24 (Dirichlet’s Integral)

lim
R→∞

∫ R

0

sin tω

ω
dω = π

2
sgn(t). (4.59)

Proof By a simple scaling argument, we can replace tω by ω, taking account of the
change in sign of the resulting integral when t < 0. The function f (s) = e−s/s is
holomorphic except for a simple pole at s = 0, so we use the contour

� = [−Ri,−δi] ⊕ Sδ ⊕ [δi, Ri] ⊕ (−SR), (4.60)

where 0 < δ < R and the indentation around s = 0 ensures that 0 lies to the left of
� as in Fig. 4.1. By Cauchy’s Theorem,

∫

�

e−s

s
ds = 0.

We can express this integral as the sum of the four parts corresponding to the arcs
in (4.60), taking first the two segments on the imaginary axis with s = iω

∫

[−Ri,−δi]
+

∫

[δi,Ri]
e−s

s
ds =

∫ −δ

−R
+

∫ R

δ

e−iω

ω
dω

=
∫ R

δ

e−iω − eiω
ω

dω

= −2i
∫ R

δ

sinω

ω
dω;



114 4 Laplace Transforms

Fig. 4.1 Semicircular
contour in the left half-plane
with indentation

then taking the integral round the indentation, with s = δeiθ for −π/2 ≤ θ ≤ π/2,

∫

Sδ

e−s

s
ds = i

∫ π/2

−π/2
e−δeiθ dθ

→ πi (δ→ 0+);

and finally taking the integral round the large semicircle with s = Reiθ for−π/2 ≤
θ ≤ π/2

∫

SR

e−s

s
ds = i

∫ π/2

−π/2
e−Reiθ dθ

= i
∫ π/2

−π/2
e−R cos θ−iR sin θ dθ;

where the final integral is bounded by

2
∫ π/2

0
e−R cos θdθ = 2

∫ π/2

0
e−R sinφdφ

≤ 2
∫ π/2

0
e−2Rφ/πdφ

≤ π
R
.
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Combining these identities, we deduce that

∫ R

0

sinω

ω
dω = π

2
+O

( 1

R

)
(R→∞). (4.61)

	

Definition 4.25 (Hilbert Transform) The Hilbert transform is defined by the
Cauchy principal value integral

Hg(y) = lim
ε→0+

{ ∫ y−ε

−∞
+

∫ ∞

y+ε

} g(ω)

y − ω
dω

π
(4.62)

for g ∈ L2(R).

Example 4.26 It follows from Dirichlet’s integral 4.24 with the change of variable
ω �→ ω − y that

lim
ε→0+

{ ∫ y−ε

−∞
+

∫ ∞

y+ε

} eitω

y − ω
dω

π
= −isgn(t)eity . (4.63)

The following is a useful inversion formula for special Laplace transforms, which
we extend in Proposition 6.55.

Proposition 4.27 (Heaviside’s Expansion Theorem) Let F(s) = p(s)/q(s) be a
strictly proper rational function with simple poles at zj ∈ LHP for j = 1, . . . , n,
and let

f (t) = lim
R→∞

1

2πi

∫ iR

−iR
estF (s) ds (t > 0). (4.64)

Then F(s) is the Laplace transform of f (t), and

f (t) =
n∑

j=1

p(zj )

dq
ds
(zj )

etzj (t > 0). (4.65)

Proof The rational function has a partial fractions decomposition

F(s) =
n∑

j=1

p(zj )

dq
ds
(zj )(s − zj )

(4.66)

where we have computed the residues of p(s)/q(s) at the simple poles zj by the
formula of Proposition 4.22. Note that est appears instead of e−st , and for t > 0
the function est is bounded for s in the left half-plane. We integrate estF (s) round



116 4 Laplace Transforms

a semicircular contour of large radius R > 0 in the LHP, which winds round all the
poles. As in the calculation of Lemma 4.24 Dirichlet’s integral , the contribution of
the semicircular arc tends to 0 as R→∞. The poles are all simple, and residues of
estF (s) are

Res
{
estF (s); zj

} = lim
s→zj

(s − zj )p(s)est
q(s)

= p(zj )

dq
ds
(zj )

etzj , (4.67)

so the formula for f (t) follows from Cauchy’s Residue Theorem. Then F(s)
coincides with the Laplace transform of f (t) by a simple case of Corollary 4.23.
If F(s) = O(1/s2) as s →∞, then the integral (4.64) is absolutely convergent. 	

Remark 4.28

(i) If F(s) has multiple poles, then the formula (4.64) is still valid, but the
expansion formula needs amending with more complicated formulas for the
residues at the multiple poles. See Proposition 6.55 for details.

(ii) The reader will find it instructive to extend to the case in which the poles are
possibly in RHP ; it only takes a translation in the variable s.

Heaviside’s expansion gives a succinct solution of some differential equations. For
polynomial q(s) = amsm + · · · + a0 we write

q
( d

dt

)
= am d

m

dtm
+ · · · + a1

d

dt
+ a0,

as in the style of Proposition 4.17.

Corollary 4.29 (Heaviside’s Solution) Suppose that q is a complex polynomial of
degree m with all its zeros simple and in LHP , and suppose that p is a complex
polynomial of degree n where n < m and let f (t) be as in (4.65). Then for any
n-times continuously differentiable input u of the type (E), the unique solution of
the initial value problem

q
( d

dt

)
y = p

( d

dt

)
u (4.68)

y(0) = dy
dt
(0) = · · · = d

m−1y

dtm−1 (0) = 0 = u(0) = · · · = d
n−1u

dtn−1 (0) (4.69)

is

y(t) =
∫ t

0
f (t − τ )u(τ ) dτ (t > 0). (4.70)

Proof By Theorem 2.40, there exists a unique solution, which belongs to (E)
by section 4.5. The Laplace transform of the differential equation is q(s)Y (s) =
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p(s)U(s) so Y (s) = F(s)U(s), so the solution is expressed as a convolution with
f as in (4.65). 	


4.8 Final Value Theorem

The results of this section are useful for finding or checking constants in solutions
of differential equations. For a continuous and bounded function f : (0,∞)→ C,
we can interpret

sF (s) = s
∫ ∞

0
e−stf (t)dt (s > 0) (4.71)

as a weighted average of f , since s
∫∞

0 e−st dt = 1. This suggests that the values
of sF (s) should be strongly related to the values of f as s → 0 or s →∞. In the
literature there are two types of results about limits of Laplace transforms:

(i) Abelian theorems, which show that f (t) has certain limits as t → 0+ or t →
∞;

(ii) Tauberian theorems, which have the hypothesis that f (t) has certain limits as
t → 0+ or t →∞, and conclusions that F(s) has certain limits as s →∞ or
s → 0+.

It is important not to confuse the hypotheses and conclusions. See [56].
There following two results are Tauberian theorems for the Laplace transform,

and may be applied with due care about the hypotheses. See [53].

Proposition 4.30 (Final Value Theorem) Suppose that f : (0,∞) → C is a
continuous and bounded function such that f (t)→ L as t →∞ for some L ∈ C.
Then the Laplace transform F(s) of f satisfies lims→0+ sF (s) = L.

Proof TakeM such that |f (t)| ≤ M for all t > 0, and let ε > 0. Then we split the
integral

sF (s)− L =
∫ ∞

0
(f (t)− L)se−st dt (4.72)

into
∫ R

0 +
∫∞
R

; where R > 0 is to be chosen. We take R such that |f (t) − L| < ε
for all t > R, so

∣
∣
∣

∫ ∞

R

(f (t)− L)se−st dt
∣
∣
∣ ≤ ε

∫ ∞

R

se−st dt ≤ ε; (4.73)

when we have |f (t)− L| ≤ M + |L| ≤ 2M , so

∣
∣
∣

∫ R

0
(f (t)− L)se−st dt

∣
∣
∣ ≤ 2M

∫ R

0
se−st dt = 2M(1− e−sR); (4.74)
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there exists s0 > 0 such that 2M(1 − e−sR) ≤ ε for all 0 < s < s0; hence the
result. 	

Proposition 4.31 (Initial Value Theorem) Let f be continuous on [0,∞) and
suppose that f satisfies (E). Then the Laplace transform F(s) satisfies

f (0) = lim
s→∞ sF (s). (4.75)

Proof By a simple scaling, one can show that

sF (s)− f (0) =
∫ ∞

0

(
f (x/s)− f (0))e−x dx.

Given ε > 0, andM,α > 0 such that

|f (t)| ≤ Meαt (t ≥ 0), (4.76)

consider s > 2α and R > 0. Then

∣
∣
∣

∫ ∞

R

(
f (x/s)− f (0))e−x dx

∣
∣
∣ ≤ 4Me−R/2 (s > 2α). (4.77)

We now choose and fix R so large that 4Me−R/2 < ε. By continuity of f at 0,
f (x/s)− f (0)→ 0 as s →∞, so there exists s0 such that

∣
∣
∣

∫ R

0

(
f (x/s)− f (0))e−x dx

∣
∣
∣ ≤ ε (4.78)

for all s > s0.
From the preceding estimates, we deduce that for all s > max{s0, 2α},

|sF (s)− f (0)| ≤
∣
∣
∣

∫ ∞

0

(
f (x/s)− f (0))e−x dx

∣
∣
∣ ≤ 2ε. (4.79)

	

Example 4.32 In the context of Proposition 4.27, one can check that f (0) =
lims→∞ sF (s) and limt→∞ f (t) = 0 = lims→0 sF (s) as in the initial and final
value theorems.

Remark 4.33

(i) If f : [0,∞) → C is continuous and limt→∞ f (t) = L exists, then f is
bounded so that there existsM > 0 such that |f (t)| ≤ M for all t ≥ 0. In this
situation, f satisfies the hypotheses of both the initial value theorem and the
final value theorem.
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(ii) The hypotheses of the theorems are nevertheless different. The function sin t is
continuous and bounded on [0,∞), but does not have a limit as t → ∞. The
function sin(1/t) is bounded and continuous on (0,∞), but does not have a
limit as t → 0+.

(iii) In the final value theorem, we assume that limt→∞ f (t) exists, and identify
this limit in terms of sF (s) as s →∞; in the initial value theorem, we assume
that f (0) = limt→0+ f (t) exists, and express this limit in terms of sF (s) as
s → 0. The results do not say that limits for sF (s) imply existence of limits
for f (t).

(iv) The initial value theorem can be extended to a more subtle versions known as
Watson’s lemma; see [53].

4.9 Laplace Transforms of Periodic Functions

In many applications, especially to signal processing, one works with periodic
functions, which have Laplace transforms with a special form. We consider a basic
result and two significant examples, namely sine waves and square waves.

Definition 4.34 (Periodic Function)

(i) A piecewise continuous and nonconstant function f : R → C is said to be
periodic with period p > 0 if f (t + p) = f (t) for all t ∈ R, and no such
identity holds when p is replaced by 0 < q < p.

(ii) A complex function F(s) is said to be meromorphic if F is holomorphic apart
from some poles. All rational functions are meromorphic.

Proposition 4.35 Let f be periodic. Then f is bounded and has a Laplace
transform which is a meromorphic function that satisfies

Lf (s) =
∫ p

0 e
−usf (u)du

1− e−ps . (4.80)

Proof Since f is piecewise continuous, it is bounded on [0, p] so is evidently
bounded on R as the graph repeats itself when we translate it to the right through
steps of p. Then f when restricted to (0,∞), has a Laplace transform, which we
compute by splitting the range of integration into intervals [np, (n+1)p), on which
we change variables to t = np + u. We have

Lf (s) =
∫ ∞

0
e−stf (t)dt

=
∞∑

n=0

∫ (n+1)p

np

e−stf (t)dt

=
∞∑

n=1

e−nps
∫ p

0
e−suf (np + u)du,
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where f (np + u) = f (u) by periodicity, so all the integral are equal and we can
sum the geometric series to obtain

Lf (s) =
∫ p

0 e
−suf (u)du

1− e−ps

where the numerator is an entire function of s, and the denominator is an entire
function of s with zeros at esp = 1; that is s = 2πni/p where n ∈ Z. Therefore the
Laplace transform is a meromorphic function with possible poles on the imaginary
axis, equally spaced with gaps 2π/p between them. However, the possible poles
may be canceled by zeros on the numerator. 	

Example 4.36 (Sine Waves) The function of periodic functions include sin(2πt/p)
is periodic with period p > 0, and we have

L(sin(2πt/p))(s) = 2π/p

(s − 2πi/p)(s + 2πi/p)
(4.81)

which has only two poles, at ±2πi/p, so in this case all but two of the possible
poles are canceled out.

Example 4.37 (Square Waves) Consider the initial value problem for k > 0

d2y

dt2
+ k2y(t) = u(t)

y(0) = y ′(0) = 0

for a bounded and piecewise continuous input u. Then the solution is

y(t) =
∫ t

0

sin k(t − τ )
k

u(τ )dτ (t > 0). (4.82)

One can verify that this works by differentiating twice. To derive the formula, we
take Laplace transforms, and obtain

s2Y (s)+ k2Y (s) = U(s), (4.83)

so

Y (s) = 1

k

k

s2 + k2U(s), (4.84)

where k/(s2 + k2) is the Laplace transform of sin kt , so we obtain the solution as
the convolution of (sin kt)/k with u(t).
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In particular, we can take the square wave input

u(t) =1 (t ∈ [0, 1) ∪ [2, 3) ∪ [4, 5) ∪ . . . )
− 1 (t ∈ [1, 2) ∪ [3, 4) ∪ [5, 6) ∪ . . .

which is known as the square wave on account of its graph, which resembles the top
of the curtain wall of a medieval castle. One can write

u(t) =
∞∑

k=0

(
H(t − 2k)− 2H(t − 1− 2k)+H(t − 2− 2k)

)
(t > 0) (4.85)

which is a finite sum for each t > 0 since H(t − n) = 0 for all n > t .
The Laplace transform is

U(s) =
∞∑

n=0

∫ 2n+1

2n
e−st dt −

∞∑

n=1

∫ 2n

2n−1
e−stdt

= 1

s

∞∑

n=0

(e−2ns − e−(2n+1)s)− 1

s

∞∑

n=1

(e−(2n−1)s − e−2ns)

= 1− 2e−s + e−2s

s(1− e−2s)

= 1

s
tanh

s

2
,

where we used geometric series to make the summation. This calculation is easily
justified by uniform convergence since the partial sums of the series for u(t) are
uniformly bounded. Hence sU(s) = tanh(s/2), and since u(t) is right-continuous
at t = 0+, we can use the initial value theorem to confirm that u(0+) =
lims→∞ sU(s) = 1. Whereas sU(s) → 0 as s → 0+, the square wave does not
have a limit as t →∞, and we cannot apply the final value theorem.

For large t > 0, we choose N to be the largest integer such that 2N + 2 ≤ t , and
we write the solution as

y(t) =
∫ 2N+2

0

sin k(t − τ )
k

u(τ )dτ +
∫ t

2N+2

sin k(t − τ )
k

u(τ )dτ (4.86)

where the final integral is bounded independent of t , and the other integral is
evaluated by splitting [0, 2N+2] into subintervals of length 2. A typical subinterval
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contributes

∫ 2n+2

2n

sin k(t − τ )
k

u(τ )dτ =
∫ 2n+1

2n

sin k(t − τ )
k

dτ −
∫ 2n+2

2n+1

sin k(t − τ )
k

dτ

= 1

k2

(
2 cos k(2n+ 1− t)− cos k(2n− t)

− cos k(2n+ 2− t)
)

= 1

k2

(
− 2 sin(k/2) sin k(2n+ 1/2− t)

+ 2 sin(k/2) sin k(2n+ 3/2− t)
)

= 4

k2 sin2(k/2) cos k(2n+ 1− t).

• When k �= (2m+1)π form = 0, 1, . . . , we have cos(k/2) �= 0, and we continue
with

∫ 2n+2

2n

sin k(t − τ )
k

u(τ )dτ = 2
sin2(k/2)

k2 sin k
2 sin k cos k(2n+ 1− t)

= 1

k2
tan(k/2)

(
sin k(2n+ 2− t)− sin k(2n− t)),

and we deduce that

∫ 2N+2

0

sin k(t − τ )
k

u(τ )dτ =
N∑

n=0

∫ 2n+2

2n

sin k(t − τ )
k

u(τ )dτ

=
N∑

n=0

1

k2
tan(k/2)

(
sin k(2n+ 2− t)

− sin k(2n− t))

= 1

k2 tan(k/2)
(

sin k(2N + 2− t)+ sin kt
)
,

which is bounded independent of t , so the solution y(t) is bounded.
• When k = (2m+ 1)π for some m = 0, 1, 2, . . . , we have cos(k/2) = 0, and

∫ 2n+2

2n

sin k(t − τ )
k

u(τ )dτ = 4

k2

(
cos(2m+ 1)(2n+ 1)π cos(2m+ 1)tπ

+ sin(2m+ 1)(2n+ 1)π sin(2m+ 1)tπ
)

= − 4

k2 cos(2m+ 1)tπ,
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and we deduce that

∫ 2N+2

0

sin k(t − τ )
k

u(τ )dτ =
N∑

n=0

− 4

k2 cos(2m+ 1)tπ

= −4(N + 1)

k2
cos(2m+ 1)tπ,

so y(t) oscillates unboundedly as t → ∞, and we have a resonance effect for
such k.

Remark 4.38 Given a piecewise continuous function f : [0, p] → C, there is a
natural extension of f to a periodic function f : R→ C. Given t ∈ R, there exist
a unique n ∈ Z and u ∈ [0, p) such that t = np + u. For u ∈ (0, p), we define
f (t) = f (u). For u = 0, we can define either:

(i) f (np) = limv→0+ f (v), if one wants a cadlag function (continuous from the
right with limits from the left); or

(ii) f (np) = limv→0+(1/2)(f (v) + f (p − v)), which is useful in the context of
Fourier series.

4.10 Fourier Cosine Transform

The Fourier transform is fundamentally important in signal processing and theory
of linear differential equations. In this section we give some fundamental results,
including an inversion theorem. The Laplace transform and Fourier transform are
different, but they are related; in particular, we obtain the uniqueness theorem
for Laplace transforms via the Fourier inversion formula. Throughout this section,
we suppose that f : [0,∞) → C is a piecewise continuous function such that∫∞

0 |f (t)|dt converges, so that f is integrable. We regard t > 0 as time and
introduce ω ∈ R as the angular frequency. The function cos(ωt) is a periodic
function of t with period 2π/ω for ω > 0. Models described in terms of ω referred
to as frequency domain models. The Fourier transform takes us from time domain
models to frequency domain models.

Definition 4.39 We define the Fourier cosine transform of f by

φ(ω) =
∫ ∞

0
cos(ωt)f (t) dt (ω ∈ R). (4.87)

Proposition 4.40 The Fourier cosine transform is a continuous and bounded
function.
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Proof By the triangle inequality, we have a bound

|φ(ω)| ≤
∫ ∞

0
| cos(ωt)||f (t)|dt ≤

∫ ∞

0
|f (t)|dt (ω ∈ R), (4.88)

so the integral is absolutely convergent and uniformly bounded in ω.
By continuity of cosine, the partial integrals

φn(ω) =
∫ n

0
cos(ωt)f (t)dt (ω ∈ R) (4.89)

are all continuous and

|φ(ω)− φn(ω)| ≤
∫ ∞

n

| cos(ωt)||f (t)|dt ≤
∫ ∞

n

|f (t)|dt (ω ∈ R) (4.90)

so φn → φ uniformly on [0,∞) as n→∞. Hence φ is also continuous. 	

Remark 4.41

(i) Suppose that f has Laplace transform F and cosine transform φ. Then from
cos(ωt) = 2−1(eiωt + e−iωt ), we deduce that

φ(ω) = 2−1(F(iω)+ F(−iω)) (ω ∈ R). (4.91)

(ii) Suppose that f is integrable and real-valued on (0,∞), so has Laplace
transform is F(s); then with s = iω and ω ∈ R, we have

�F(s) =
∫ ∞

0
f (t) cos(ωt) dt = φ(ω), (4.92)

namely the Fourier cosine transform.

Hence we can convert Laplace transform formulas into Fourier cosine formulas.

Example 4.42

(i) By integrating twice by parts, one can show that f (t) = e−t has Fourier cosine
transform φ(ω) = 1/(1+ ω2).

(ii) Let I(0,a) be the indicator function of (0, a), so I(0,a)(t) = 1 for t ∈ (0, a) and
I(0,a)(t) = 0 for t ∈ R\(0, a). Then the Fourier cosine transform is sin(aω)/ω.
Note that sin(aω)/ω→ a as ω→ 0, so we have continuity.

Definition 4.43 The unnormalized sinc function is

sinc(t) = sin t

t
(t ∈ R). (4.93)

This is sometimes called the cardinal sine function.
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Theorem 4.44 (Integrated Inversion Formula)

∫ x

0
f (t) dt = lim

R→∞
2

π

∫ R

0

sin(xω)

ω
φ(ω)dω. (4.94)

Proof By Lemma 4.24, we have

lim
R→∞

∫ R

0

sin(uω)

ω
dω = π/2 (u > 0)

= −π/2 (u < 0).

Then we have

∫ R

0

sin(xω)

ω
φ(ω)dω =

∫ R

0

sin(xω)

ω

∫ ∞

0
cos(ωt)f (t)dtdω

=
∫ ∞

0

( ∫ R

0

sin(xω) cos(ωt)

ω
dω

)
f (t)dt

=
∫ ∞

0

( ∫ R

0

sin((x − t)ω)+ sin((x + t)ω)
2ω

dω
)
f (t)dt

where we have changed the order of integration and used a trigonometric addition
rule. The inside integral has limit

∫ R

0

sin((x − t)ω)+ sin((x + t)ω)
2ω

dω→ π

2

sgn(x − t)+ sgn(x + t)
2

= π
2
I(−x,x)(t)

as R→∞. From integration theory, we deduce that

lim
R→∞

∫ R

0

sin(xω)

ω
φ(ω)dω = π

2

∫ ∞

0
I(−x,x)(t)f (t)dt = π2

∫ x

0
f (t)dt.

(4.95)
	


Corollary 4.45 (Laplace Transform Uniqueness) Suppose that f has Laplace
transform F , where F(s) = 0 for all s ∈ (s0,∞) for some s0 > 0. Then f (t) = 0
at all points of continuity of f .

Proof By Propositions 4.6 and 4.40, F is holomorphic on {s : �s > 0} and
continuous on the closed left half-plane {s : �s ≥ 0}. By the principle of isolated
zeros, we deduce that F(s) = 0 on {s : �s ≥ 0}. In particular, φ(ω) =
2−1(F (iω) + F(−iω)) = 0 when s = iω is on the imaginary axis, so from the
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integrated inversion formula (4.94), we have

∫ x

0
f (t)dt = 0 (x ≥ 0). (4.96)

By the Fundamental Theorem of Calculus, we have f (t) = 0 at all points t at which
f is continuous. See Exercise 4.23 for an inversion formula.

This proves the Laplace uniqueness Theorem 4.11 on Sect. 4.4, and in Corol-
lary 9.5, we prove a stronger version of this result due to Lerch. 	


4.11 Impulse Response

Proposition 4.46 For a stable system (A,B,C,D) as in Sect. 5.6 let φ(t) =
Dδ0(t)+ C exp(tA)B. Then

L(φ)(s) = T (s). (4.97)

Proof We have

∫ ∞

0
e−stφ(t)dt = D + C

∫ ∞

0
e−st exp(tA)dtB

= D + C(sI − A)−1B = T (s),

by the Proposition 3.10. 	

This φ frequently appears in the literature, without having a ubiquitous name.

One can call φ a scattering function, by analogy with similar functions which appear
in physics; alternatively the impulse response function as it is the signal that arises
from an input of δ0.

We consider some standard inputs u for the SISO system (A,B,C, 0), where the
initial condition of the state is X(0) = 0. Let φ(t) = C exp(tA)B.

(1) Let u1(t) = H(t), so

y1(t) =
∫ t

0
φ(t − v)dv =

∫ t

0
φ(v)dv. (4.98)

(2) Let u2(t) = δ0(dt), which is the unit impulse. Then y2(t) = φ(t), which is the
derivative of the output in case (1).
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(3) Let u3(t) = eiνt for real angular frequency ν. In this case, it is more helpful to
consider the Laplace transforms Y3 of the output y3, T (s) of φ and U3 of u3, so
that

Y3(s) = T (s)U3(s) = C(sI − A)−1B
1

s − iν . (4.99)

Evidently, Y3(s) has a possible pole at s = iν, as we discuss in the next chapter.

Example 4.47 Suppose that we use an (A,B,C,D) model for a pension fund, in
which the employee contributes an input u(t) from the start of employment at time
t0 until retirement at time t = 0, and then draws a pension y(t) for t > 0. After
retirement the contributions cease, so U(t) = 0 so amount of money in the pension
fund is the state variable X(t), which satisfies

X(t) = exp((t − t0)A)X(t0)+
∫ min{t,0}

t0

exp((t − τ )A)BU(τ)dτ, (4.100)

and the output, namely the pension is

y(t) = CX(t) = C exp((t − t0)A)X(t0)+
∫ min{0,t}

t0

C exp((t − τ )A)BU(τ)dτ.
(4.101)

If we assume that t0 is in the remote past, and A is stable, then exp((t − t0)A)→ 0
as t0 →−∞, so we are therefore led to consider

y(t) =
∫ ∞

0
C exp((t + v)A)BU(−v)dv (4.102)

where we have substituted v = −τ . With φ(t) = C exp(tA)B and f (v) = U(−v),
we have

y(t) =
∫ ∞

0
φ(t + v)f (v)dv. (4.103)

In this formula, t + v is the total time elapsed between payment of a pension
contribution and a receipt of the pension.

4.12 Transmitting Signals

(i) Morse. Suppose that we have a radio transmitter that is able to transmit radio
waves at angular frequency ωc. We use this to send out short pulses called dots
of duration d seconds and longer pulses called dashes of duration D seconds.
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The letters of the alphabet can be represented by specific combinations of dots
and dashes, in Morse code. A signal consists of dots and dashes emitted at
times tj for t1 < · · · < tN , so the signal is

a

n∑

j=1

I[tj ,tj+dj ](t) sinωct (4.104)

for some a > 0 where dj ∈ {d,D}. The signal is obtained from the
carrier sinωct by multiplying by an on-off switch, known as Morse key. The
receiver records the transmission and communicates this by a loudspeaker to a
human receiver, who identifies the pattern of dots and dashes in the signal as
letters, and thus reconstructs the message text. This system was used in radio
communication in the first half of the 20th century, particularly in maritime
and military contexts. The advantage is that only very simple transmitters and
receivers are required, and the message can be interpreted when the signal is
rather faint. The disadvantage is that one can only communicate text, and the
rate of communication is slow.

(ii) Amplitude modulation (AM). Suppose that we wish to communicate sound
waves at angular frequency ωm , such as the middle C note of a piano has 264
Hz so ωm = 2π(264) and the wavelength is 1.25m. We transmit a carrier signal
sinωc as above, but we modulate the amplitude of the signal at the angular
frequency ω, so that the combined signal is

(A+ a sinωmt) sinωct. (4.105)

For instance, Radio 4 uses long wave 1514m at frequency 198kHz, so the
angular frequency of the carrier wave is much larger than the angular frequency
of the signal. The input into the transmitter derives from electrical signals
from microphones, and the receiver reverses the process by broadcasting the
received signal via a loudspeaker. This system is effective for transmitting the
spoken word, and requires relatively simple equipment.

(iii) Frequency modulation (FM). Let x(t) be a signal with polar decomposition
x(t) = A(t)eiθ(t); then we define the instantaneous angular frequency to
be dθ

dt
. Suppose in particular that we have a carrier wave eiωct which we

modulate by adding a phase φ(t) so that θ(t) = ωct +φ(t) with instantaneous
angular frequency dθ

dt
= ωc + dφ

dt
. Given a bounded and continuous function

m : [0,∞)→ R, we can choose φ(t) = ∫ t
0 m(u)du so that θ(t) = ωct + φ(t)

has instantaneous angular frequency

dθ

dt
= ωc +m(t); (4.106)

the carrier frequency ωc is thus modulated by the signal m(t). If we choose ωc
so that |m(t)| < ωc, then θ is a strictly increasing and continuously differen-
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tiable function. This is the basic principle underlying frequency modulation,
which is used for radio transmission, especially for broadcasting music with
high fidelity. Radio 3 uses very high frequency transmission of 90 MHz so the
wavelength of the carrier signal is about 3.33m. For comparison, the highest
note on a piano has frequency of about 4185Hz, so the frequency of the carrier
signal is much larger than the modulating frequency.

4.13 Exercises

Exercise 4.1

(i) Calculate the Laplace transforms of cos 2ωt from the definition, and
(ii) deduce the Laplace transform of sin2 ωt where ω > 0 is a constant.

Exercise 4.2 Solve the initial value problem

dy

dt
− 7y = sin 2t,

y(0) = 0;

by taking Laplace transforms. Use partial fractions at the final step of the calcula-
tion.

Exercise 4.3 Solve the integral equation

y(t) = e−2t +
∫ t

0
eu−t y(u) du,

where y has property (E), by using Laplace transforms.

Exercise 4.4

(i) Show that

δb ∗ f (t) = f (t − b)H(t − b) (t, b > 0).

(ii) Let h(t) = H(t − b) for some b > 0. Show that

h ∗ f (t) = H(t − b)
∫ t−b

0
f (u)du.
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Exercise 4.5 Solve the differential equation

d3y

dt3
+ 3

d2y

dt2
+ 6

dy

dt
+ 4y = 21

d2u

dt2
+ 39

du

dt
− 12u

d2y

dt2
(0) = dy

dt
(0) = y(0) = 0 = du

dt
(0) = u(0)

by Laplace transforms.

Exercise 4.6 (Poles at −1) Let R be the set of functions of the form

f (s) =
n∑

j=1

aj

(1+ s)j

where n ≥ 0 and aj ∈ C.

(i) Show that f (s) is differentiable, and df/ds ∈ R.
(ii) Show that, for all f (s), g(s) ∈ R, the sum f (s) + g(s) and the product

f (s)g(s) also belong to R.
(iii) Show that f (s) is the Laplace transform of

y(t) =
n∑

j=1

aj t
j−1e−t

(j − 1)! (t > 0).

Exercise 4.7 Let y(t) = (1/2)δ0(t) +∑∞
j=1(−1)j δj (t) be an alternating sum of

Dirac point masses on the nonnegative integers.

(i) Calculate the Laplace transform Y (s) of y.
(ii) Show that Y (s) has zeros at even integer multiples of πi, and poles at odd

integer multiples of πi.

Exercise 4.8 Compute the Laplace transform F(s) of

f (x) =
n∑

j=1

(aj cos(bjx)+ cj sin(djx))

and consider the values lims→∞ sF (s) and lims→0+ sF (s) in relation to f .

Exercise 4.9 Show that
∫ x

0
e−t dt = 2

π

∫ ∞

0

sin(ωx)

ω

dω

1+ ω2 (x > 0)
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and deduce that

e−x = 2

π

∫ ∞

0

cos(ωx)

1+ ω2 dω (x > 0).

By taking x → 0+, confirm that the constants are correct.

Exercise 4.10 (Carleman’s Integral) See [47]. Let y(t) be a bounded, continuous
and integrable function that has Laplace transform Y (u). By taking the Laplace
transform of Y , derive the formula (the Laplace transform of the Laplace transform)

L2(y)(s) =
∫ ∞

0

1

s + t y(t)dt.

The right-hand side was studied by Carleman, and in operator theory by Power [47]
and others. It leads to a fundamentally important example of a Hankel operator. In
books of standard integrals, it is sometimes known as the Stieltjes transform of y;
see Titchmarsh [57] page 317.

For λ such that �λ > 0, let

�f (x) =
∫ ∞

0
e−λ(x+y)f (y)dy (f ∈ L2(0,∞)).

Then the range of � is {ce−λx; c ∈ C}, so � has rank one.

Exercise 4.11 Suppose that g is piecewise continuous on (0,∞) of type (E).
Suppose also that the Laplace transform G(s) of g satisfies G(s) = 0 for all
s ∈ (s0,∞) for some s0 > 0.

(i) Show that there exists κ > 0 such that f (t) = e−κtg(t) is piecewise
continuous and

∫∞
0 |f (t)|dt converges.

(ii) Show that f has Laplace transformF(s) = G(s+κ), and deduce thatF(s) = 0
on {s : �s ≥ 0}.

(iii) Using Corollary 4.45, deduce that g(t) = 0 at all points of continuity of h.

Exercise 4.12 (The Series and Laplace Transform of J0) See [53]. Let Bessel’s
function of the first kind of order zero be defined by

J0(t) = 1

2π

∫ 2π

0
cos(t cos θ)dθ.

(i) Show that J0(0) = 1 and J0 satisfies Bessel’s equation

t2
d2J0

dt2
+ t dJ0

dt
+ t2J0(t) = 0.
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(ii) By expanding the outer cosine function as a series, obtain the power series
expansion

J0(t) =
∞∑

n=0

(−1)nt2n

22n(n!)2 ,

and verify that it converges for all t ∈ C.
(iii) Show that the Laplace transform satisfies

L(J0)(s) =
∫ 2π

0

s

s2 + cos2 θ

dθ

2π
,

and by calculus of residues or otherwise, deduce that

L(J0)(s) = 1√
1+ s2

.

(iv) Obtain this Laplace transform from the differential equation and the initial
value theorem.

(v) Expand the Laplace transform as a power series in 1/s for |s| > 1 by the
binomial theorem to obtain

1√
1+ s2

=
∞∑

n=0

(−1)n(2n)!
22n(n!)2s2n+1 ,

and compare with the series that you obtain by taking the Laplace transform of
the power series in (ii) term by term. This step is justified by Exercise 4.13.

Exercise 4.13 (Bessel Functions) Suppose that
∑∞
n=0 anz

n is a complex power
series with radius of convergence r > 0, so the series converges for all z ∈ C

such that |z| < r .
(i) Show that f (t) = ∑∞

n=0 ant
n/n! converges for all t ∈ C, and that f (t) for

t > 0 determines a function of type (E) with Laplace transform

F(s) =
∫ ∞

0
f (t)e−st dt =

∞∑

n=0

ans
−n−1 (�s > 1/r). (4.107)

(ii) Show also that
∑∞
n=0 ans

−n−1 converges uniformly on {s ∈ C : |s| > σ } for
all σ > 1/r.
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Fig. 4.2 Bromwich contour for Laplace inversion

(iii) Let �R(σ) be the Bromwich semicircular contour of Fig. 4.2 where R > σ , so
�R(σ) lies outside of the circle C(0, 1/r). Show that

∫

�R(σ)

∞∑

n=0

ans
−n−1ets

ds

2πi
=

∞∑

n=0

ant
n

n! (t ∈ C). (4.108)

(iv) Show that for t > 0,

lim
R→∞

∫ σ+iR

σ−iR

∞∑

n=0

ans
−n−1ets

ds

2πi
=

∞∑

n=0

ant
n

n! (t > 0). (4.109)

so that there is an inverse Laplace transform formula

f (t) = lim
R→∞

∫ σ+iR

σ−iR
F (s)ets

ds

2πi
(t > 0). (4.110)

This exercise is related to Borel summability as in [56] Exercise 4.21 and
applies to examples of f (t) such as Bessel’s function J0(t) in Exercise 4.12.

(v) In the case of the Bessel function of order zero, it shows that

J0(t) = lim
R→∞

∫ 1+iR

1−iR
est√

1+ s2

ds

2πi
.

Here the function
√

1+ s2 is holomorphic on C \ [−i, i] and takes opposite
signs on either side of the cut [−i, i]; see (6.120). To reconcile this formula



134 4 Laplace Transforms

Fig. 4.3 A dog-bone contour

with the definition as given in Exercise 4.12, show that

lim
R→∞

∫ 1+iR

1−iR
est√

1+ s2

ds

2πi
=

∫

B

est√
1+ s2

ds

2πi

where B is the dog-bone contour as in Fig. 4.3 that goes from −i + δ to i + δ,
goes round i on an arc of a circle, then goes down from i − δ to −i − δ, then
goes round −i on a semicircular arc back to −i + δ. Evaluate this integral
by letting δ → 0+ and substituting s = i cos θ for −π ≤ θ ≤ 0, thereby
recovering J0(t).

Exercise 4.14 Suppose that (A,B,C, 0) is a stable linear system whereA is similar
to a diagonal matrix with eigenvalues λ1, . . . , λn.

(i) Show that φ(t) = C exp(tA)B satisfies

φ(t) =
n∑

j=1

aj e
λj t (t > 0)

for some aj ∈ C.
(ii) Let f be a bounded and continuous function and let

y(t) =
∫ ∞

0
φ(t + v)f (v)dv.
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Show that

y(t) =
n∑

j=1

bj e
λj t (t > 0)

for some bj ∈ C.

Exercise 4.15 Let f, g : [0,∞) → R be continuously differentiable functions of
class (E) such that f (0) = g(0). An approximate form of the telegraph equation
gives rise to the initial value problem

∂2u

∂x∂y
+ u = 0, (x, y > 0),

u(x, 0) = f (x), (x > 0)

u(0, y) = g(y), (y > 0). (4.111)

(i) By integrating by parts and changing order of integration, show that

(1+ pq)
∫ ∞

0

∫ ∞

0
e−px−qyu(x, y)dxdy = f (0)+

∫ ∞

0
pe−pxf (x)dx − f (0)

+
∫ ∞

0
qe−qyg(y)dy − g(0)

(4.112)

(ii) Using the power series in Exercise 4.12 or otherwise, show that

∫ ∞

0

∫ ∞

0
e−px−qyJ0

(
2
√
xy

)
dxdy = 1

1+ pq (p, q > 0).

(iii) Find the Laplace transform of

∫ x

0

df

dt
J0

(
2
√
y(x − t))dt,

and deduce that
∫ ∞

0

∫ ∞

0
e−px−qy

∫ x

0

df

dt
J0

(
2
√
y(x − t))dtdxdy

= −f (0)
1+ pq +

p

1+ pq
∫ ∞

0
e−pxf (x)dx.
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(iv) Deduce that

u(x, y) = f (0)J0
(
2
√
xy

)+
∫ x

0

df

dt
J0

(
2
√
y(x − t))dt +

∫ y

0

dg

dt
J0

(
2
√
x(y − t))dt

gives a solution of the initial value problem.
(v) Use the change of variables x + y = ξ and x − y = η to solve the inital value

problem

∂2U

∂ξ2 −
∂2U

∂η2 + U = 0, (ξ ± η > 0),

U(ξ, ξ) = f (ξ), (ξ = η)
U(ξ,−ξ) = g(ξ), (ξ = −η). (4.113)

Exercise 4.16

(i) Given the Laplace integral formula

∫ ∞

0
exp

(
− av2 − b

v2

)
dv = 1

2

√
π

a
e−2

√
ab (a, b > 0),

deduce that for κ, x > 0

∫ ∞

0

x exp(−x2/(4κt))√
4πκt3

e−stdt = exp
(−x√s/κ).

(ii) Let u(x, t) be a solution of the telegraph equation

∂u

∂t
= κ ∂

2u

∂x2 , (x, t > 0),

u(0, t) = f (t), (t > 0)

u(x, t)→ 0, (x →∞, t > 0). (4.114)

Take the Laplace transform U(x, s) = ∫∞
0 e−stu(x, t)dt in the t variable and

show that it satisfies the ordinary differential equation in the x variable

κ
∂2U(x, s)

∂x2 = sU(x, s)

where U(x, s)→ 0 as x →∞. By solving this, show that

∫ ∞

0
e−stu(x, t)dt = exp

(−x√s/κ)
∫ ∞

0
e−sτ f (τ )dτ.
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(iii) Deduce that

u(x, t) =
∫ t

0

x exp(−x2/(4κτ))√
4πκτ 3

f (t − τ )dτ.

Exercise 4.17 (Tent Function) For a > 0, let f (t) be the tent function

f (t) = a − t (0 < t < a);
a + t (−a < t ≤ 0);
0 else.

Show that the Fourier transform of f is

∫ ∞

−∞
e−ixtf (t)dt = 4 sin2(ax/2)

x2 ,

and that

∫ ∞

−∞
4 sin2(ax/2)

x2
dx = 2πa.

Exercise 4.18 Show that sinc is log-concave, in the sense that

d2

dt2
log sinc (t) ≤ 0 (−π < t < π).

Exercise 4.19 (Bounded Convolution)

(i) Say that f : (0,∞) → C belongs to L1(0,∞) if f is integrable and∫∞
0 |f (x)|dx is finite. Say that u : (0,∞) → C is bounded if there exists
M such that |u(t)| ≤ M for all t > 0. Show that if f ∈ L1(0,∞) and u is
bounded and continuous, then f ∗ u is bounded.

(ii) In the context of the differential equation (4.68) suppose that the input u is
bounded for t ∈ [0,∞). Show that the output y is also bounded.

Exercise 4.20 (Saw Tooth) The saw-tooth wave is periodic with period 2 and
u(t) = t − 1 for 0 < t < 2. Show that the Laplace transform of u is

U(s) = 1

s2 −
coth s

s
.
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Using the logarithmic series or otherwise, show that

t − 1 =
∞∑

n=−∞;n�=0

ieiπnt

πn
(0 < t < 2).

Exercise 4.21 Suppose that f (z) is entire and there exist β,M > 0 such that
|f (z)| ≤Meβ|z| for all z ∈ C. By considering

dnf

dzn
(0) = n!

2πi

∫

C(0,n)

f (z)

zn+1
dz

show that

∣
∣
∣
dnf

dzn
(0)

∣
∣
∣ ≤ n!Me

nβ

nn
(n = 1, 2, . . . )

so the series g(w) = ∑∞
n=0

dnf
dzn
(0)wn has radius of convergence r where r ≥

e1−β . Calculate the Laplace transform of f (t) = ∑∞
n=0

dnf
dzn
(0)tn/n! for t > 0 and

compare with g.

Exercise 4.22 (Error Function)

(i) The error function is erf (t) = 2
∫ t

0 e
−x2
dx/
√
π . Express erf(t) as a power

series, show that erf(1/s) is holomorphic near∞ and find the inverse Laplace
transform g(t) of erf(1/s).

(ii) Find the Laplace transform of g(
√
t), and compare this with (1/

√
s) sin(1/

√
s).

Exercise 4.23 (Fourier cosine inversion formula) Let f : (0,∞) → C be a
continuous function such that

∫∞
0 |f (t)|dt converges. Let φ be the Fourier cosine

transform of f , and suppose that
∫∞

0 |φ(ω)| dω converges. Show that

f (t) = (2/π)
∫ ∞

0
cos(ωt) φ(ω) dω (t > 0).



Chapter 5
Transfer Functions, Frequency Response,
Realization and Stability

This chapter considers the Laplace transforms of linear systems, particularly SISOs
that have rational transfer functions. The aim is to reinterpret the properties of
solutions y(t) in terms of the transfer function T (s). The centrally important idea
is stability, and we focus attention on BIBO stability, which means that bounded
inputs always lead to bounded outputs. This chapter contains the crucial theorem
that BIBO stability of a linear system (A,B,C,D) is equivalent to stability of its
transfer function as a rational function. Results of complex analysis are crucial to the
theory, and we begin by considering some contours and winding numbers. Nyquist
and Bode observed that much of the essential information about a linear system
(A,B,C,D) is captured by the frequency response function T (iω), which can be
plotted in a diagram known as a Nyquist plot. With computers it is straightforward
to plot Nyquist diagrams and when suitably interpreted they encapsulate much
information about the linear system. We consider these plots geometrically and
relate them to properties of the transfer function such as gain and phase. The plots
lead to criteria for various linear systems to be BIBO stable. Using these tools
from geometric function theory, we are able to solve stability problems as posed
by Maxwell.

5.1 Winding Numbers

Let γ : [a, b] → C be a continuously differentiable function. Then we say that γ is
an arc with initial point γ (a) and final point γ (b), and that dγ /dt gives the tangent
to γ at γ (t). A curve γ is a continuous function that is made up of consecutive arcs
such that the final point of one arc is the initial point of the next arc. If γ (a) = γ (b)
then we call γ a contour.

Definition 5.1 (Winding Number) Let γ be a contour. If z = γ (t) for some t ∈
[a, b], then we say that z lies on γ , or that γ passes through z. Otherwise, for an arc
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γ we define

n(γ, z) = 1

2πi

∫ b

a

dγ
dt
dt

γ (t)− z =
1

2πi

∫

γ

ds

s − z (5.1)

to be the winding number of γ about z. The definition extends to contours made up
of several arcs by splitting the integral into integrals over arcs.

One can show that n(γ, z) is an integer, and that for all z not on γ there exists
δ > 0 such that n(γ, z) = n(γ,w) for all w ∈ C such that |z−w| < δ.
(i) In particular, if n(γ, z) = 1, then we say that γ winds round z once in the

positive sense.
(ii) By Cauchy’s theorem n(γ, z) = 0 for all z such that |z| is sufficiently large. If

{z ∈ C : n(γ, z) = 0} consists of a connected open set, then its elements are
said to lie outside of γ .

Example 5.2 For r > 0 and a ∈ C, the circle γ = C(a, r) with centre a and radius
r is given by s = a + reiθ for 0 ≤ θ ≤ 2π . Then n(γ, z) = 1 for |z − a| < r ,
namely the points in the open disc of centre a and radius r; whereas n(γ, z) = 0 for
|z− a| > r , namely the points outside the closed disc of centre a and radius r .

Suppose that f is a rational function such that the poles of f are not on γ . Then
� = f ◦ γ : [a, b] → C is an arc. If γ is a contour, then � is also a contour. For
z ∈ C, we consider whether � winds round or passes through z, and introduce

n(f ◦ γ, z) = 1

2πi

∫ b

a

f (γ (t))(dγ /dt)dt

f (γ (t))− z = 1

2πi

∫

γ

(df/ds)ds

f (s)− z . (5.2)

In other words, we use n(f ◦γ, z) to determine whether f (s) winds round or passes
through z as s describes γ .

In complex analysis it is usual to use continuous curves that are made up of
consecutive arcs. The previous observations apply likewise to this case (Fig. 5.1).

Definition 5.3 (Semicircular Contours) Let R > 0. In complex analysis one
considers the semicircular contour in the left half-plane� = SR⊕[Ri,−Ri], which
is given by the semicircular arc SR : z(θ) = Reiθ for −π/2 ≤ θ ≤ π/2 with centre
0 from −iR to iR in the left half-plane, followed by the line segment [iR,−iR]
z(ω) = −iω for−R ≤ ω ≤ R from iR down the imaginary axis to −iR. Evidently
� is continuous, and starts and finishes at−iR, hence defines a contour. We say that
� is described in the positive sense, namely anti-clockwise.

In some engineering books, a different convention is followed, and one considers
the reverse of �, namely (−�) = [−Ri,Ri]⊕(−SR). Here we take the line segment
[−Ri,Ri] z(ω) = iω for−R ≤ ω ≤ R from−iR up the imaginary axis to iR, then
the semicircular arc (−SR) z(θ) = Re−iθ for −π/2 ≤ θ ≤ π/2 with centre 0 from
iR to −iR in the left half-plane. The contour (−�) is taken in the negative sense,
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Fig. 5.1 Semicircular contours in left and left half-planes

namely clockwise. Hence we need to interpret the formulas of complex analysis
carefully, reversing the signs as necessary.

Now consider a proper rational function T (s); note that T (s) has no poles on the
imaginary axis. By choosing R > 0 sufficiently large, we can ensure that there are
no poles on SR . Since T (s) is proper, there exists c ∈ C such that T (s) → c as
|s| → ∞, so in particular, T (s) → c as R → ∞ for all s on SR . Pictorially, the
image {T (s) : s ∈ SR} reduces to a curve joining the points T (iR) to T (−iR)where
T (iR) → c and T (−iR)→ c. For this reason, one often replaces the full contour
[−Ri,Ri] ⊕ (−SR) by the line segment [−Ri,Ri], and fills in the gap between
T (iR) to T (−iR). In this context, we can regard [−Ri,Ri] for large R > 0 as a
contour that goes round points in the open left half-plane once in the negative sense.
For s on [−iR, iR], we use the natural parametrization s = iω where −R ≤ ω ≤
R is the range of natural frequencies, and consider T (iω), the frequency response
function.

If T (s) is also stable, there are no poles inside or on (−�) for sufficiently large
R > 0; the poles of T (s) are either in LHP outside (−�), or in the open RHP inside
(−�).
Proposition 5.4 Let f (s) be a rational function that has no zeros or poles on the
imaginary axis, and let

ZR = �{zeros off (s) in RHP}
ZL = �{zeros off (s) in LHP}
PR = �{poles of f (s) in RHP}
PL = �{poles of f (s) in LHP}. (5.3)
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Then ZL + ZR equals the degree of the numerator, PL + PR equals the degree of
the denominator, and for all sufficiently large r > 0

1

2πi

∫

C(0,r)

df/ds

f (s)
ds = ZR + ZL − PR − PL (5.4)

and

lim
r→∞

1

π

∫ r

−r
(df/ds)(iω)

f (iω)
dω = ZL − ZR + PR − PL. (5.5)

Proof We use the contours of Fig. 5.1. We choose r > 0 so large that all the
zeros and poles lie inside C(0, r). Then we introduce the semicircular contour
Sr ⊕ [ir,−ir] and apply Cauchy’s Residue Theorem to obtain

∫

Sr

+
∫

[ir,−ir]
df/ds

f (s)
ds = 2πi(ZR − PR). (5.6)

Likewise, when we take the semicircular contour [−ir, ir] ⊕ Tr which is taken
anti-clockwise the left half-plane, we obtain

∫

Tr

+
∫

[−ir,ir]
df/ds

f (s)
ds = 2πi(ZL − PL). (5.7)

The sum of these gives
∫

C(0,r)

df/ds

f (s)
ds =

∫

Sr

df/ds

f (s)
ds +

∫

Tr

df/ds

f (s)
ds = 2πi(ZR + ZL − PR − PL),

(5.8)

since the contribution from [−ir, ir] cancels the contribution from [ir,−ir]. Also
∫

Sr

df/ds

f (s)
ds −

∫

Tr

df/ds

f (s)
ds = O

(1

r

)
(5.9)

as r →∞. The reason is that

df/ds

f (s)
= ZR + ZL − PL − PR

s
+O

( 1

s2

)
(5.10)

and we can compute these with the substitution s = reiθ . Then by taking (5.7)-
(5.6)+(5.9), we obtain

2
∫

[−ir,ir]
df/ds

f (s)
ds = 2πi(ZL − ZR + PR − PL)+O

(1

r

)
, (5.11)

and finally we take s = iω to parametrize the integral.
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Note that the first of the integrals gives the degree of the numerator minus the
degree of the denominator, while the second integral gives us extra information.
When a function has poles on the imaginary axis, we need to modify the contours,
as in Dirichlet’s integral. 	

Proposition 5.5 (Argument Principle) Let f be a rational function with no zeros
or poles on a simple contour γ . Let P be the number of poles inside γ , counted
according to multiplicity, and Z be the number of zeros of f , counted according to
multiplicity. Then

1

2πi

∫

γ

df/ds

f (s)
ds = Z − P. (5.12)

5.2 Realization

We now apply the results of the previous section to transfer functions.

Definition 5.6 (Transfer Function) Consider a linear system Y = LU where L is
a linear operator, and such that all the entries of the (k × 1) input U and (m × 1)
output Y satisfy (E) of Sect. 4.1, and let the initial conditions be zero. Suppose that
T (s) is a (m× k) matrix of functions such that

Ŷ (s) = T (s)Û(s) (s > β). (5.13)

Then T (s) is called the transfer function of the linear system.

Consider a SISO linear system Y = LU where L is a linear operator, and such
that all the inputU and output Y satisfy (E). Let Ŷ and Û be the Laplace transforms
of Y and U . Suppose that T (s) is a complex function such that Ŷ (s) = T (s)Û(s)
for s > β so T (s) is the transfer function of the linear system. Conversely, we have
a realization theorem.

Theorem 5.7 (Realizing a SISO by a Rational Function) Let T be a complex
rational function. Then there exists a SISO linear system �, possibly with feedback,
composed of taps, amplifiers, summing junctions, integrators, and differentiators,
such that the transfer function of � is T .

Proof Let the transfer function be T (s) = p(s)/q(s) where p(s) =∑n
j=0 aj s

j and

q(s) =∑m
k=0 bks

k are polynomials with bm = 1. Consider the differential equation

y =
n∑

j=0

aj
dju

dtj
(5.14)
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which has Laplace transform

Y (s) = p(s)U(s). (5.15)

Also, we can realize the proper rational function 1/q(s) as the transfer function of
a SISO system, as in Proposition 2.51. By combining these in series, we realize a
system with transfer function T (s) = p(s)/q(s). 	

Corollary 5.8 Let T be a matrix of complex rational functions. Then there exists a
MIMO linear system�, possibly with feedback, composed of taps, matrix amplifiers,
summing junctions, differentiators and integrators such that the transfer function of
� is T .

5.3 Frequency Response

Suppose that we have a SISO with Laplace transform Ŷ (s) = T (s)Û(s).We change
variable to s = iω so Ŷ (iω) = T (iω)Û(iω). (Consider input eiωt , with iω on
imaginary axis in s plane.)

Definition 5.9

(i) Let T (s) be a (proper) rational function. Then the frequency response function
is T (iω) where ω ∈ (−∞,∞).

(ii) The Nyquist plot of T is the curve {T (iω) : −∞ ≤ ω ≤ ∞}.
Note that ω �→ eiaω for a > 0 is periodic with period 2π/a. We interpret

ω as an angular frequency. Nyquist introduced a plot of the frequency response
function T (iω) = �(ω)eiφ(ω). The Nyquist plot is easy to produce on computer,
and one can glean a great deal of useful information about the linear system from
the shape of Nyquist plot. Here we focus attention on Nyquist’s criterion for stability
Theorem 5.30, which is the starting point for the other application. In examples it is
helpful to produce Nyquist plots of all the frequency response functions in use.

Remark 5.10 (Geometrical Interpretation of Phase and Gain) In the Nyquist plot,
the gain and phase can be found from the polar form of points on the Nyquist
contour:

• �(ω) = |T (iω)| is the gain, namely the distance of T (iω) to 0;
• φ(ω) = argT (iω) is the phase, namely the angle between T (iω) and the positive

real axis.

In complex analysis, a contour is a continuous curve γ : [a, b] → C such that
γ (a) = γ (b), and γ is piecewise continuously differentiable. The following phases
are noteworthy
φ(ω) = 0, 2π when the Nyquist contour crosses the positive real axis (0,∞);
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φ(ω) = π/2 when the Nyquist contour crosses the positive imaginary axis
(0, i∞);
φ(ω) = π,−π when the Nyquist contour crosses the negative real axis (−∞, 0);
φ(ω) = −π/2, 3π/2 when the Nyquist contour crosses the negative imaginary

axis (−i∞, 0).

5.4 Nyquist’s Locus

(A, B, C, D) T (s)

zeros of T (s) poles of T (s)

Nyquist diagram Bode plot

ss2tf

zero
pole

nyquist
bode

Diagram to show the information that may be derived from T (s), graphically
(Fig. 5.2).

Proposition 5.11 (Nyquist’s Locus) Let R be a proper rational function with all
its poles in LHP . Then R(iω) for −∞ ≤ ω ≤ ∞ gives a contour in C that starts
and ends at some c ∈ C where R(s)→ c as s →∞.

Proof Write R(s) = c + p(s)/q(s) where degree of p(s) is strictly less than the
degree of q(s), whereR(s)→ c as s →∞. There are finitely many poles, at λ such
that q(λ) = 0, and there exists δ > 0 such that �λ < −δ for all poles λ. Hence for
−∞ < ω < ∞, the function R(iω) is continuously differentiable and R(iω)→ c

as ω → ±∞. We can write ω = tan t where t ∈ (−π/2, π/2), and R(i tan t)→ c

as t → (−π/2)+ and t → π/2−, so γ (t) = R(i tan t) is a contour in the sense
of complex analysis. Since R is proper with no poles on the imaginary axis, there
exists M such that | dR

ds
(iω)| ≤ M/(1 + ω2) for all real ω , hence

∫∞
−∞ | dRds (iω)|dω

converges and the length of the contour is finite. The contour starts and ends at c,
since p(s)/q(s)→ 0 as s = iω→±i∞. 	
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Fig. 5.2 Nyquist plot for the transfer function (s2 − 20s + 7)/(s3 + 2s2 + (70/4)s + 15). Note
that a Nyquist plot can cross itself repeatedly, and the arrows indicate the direction of travel as iω
runs up the imaginary axis in the s plane

5.5 Gain and Phase

The polar decomposition of the frequency response function gives the gain and
phase (Fig. 5.3).

• gain measures the factor by which the device multiplies the amplitude of a signal.
• phase describes the relative position of peaks in the input and output.

Definition 5.12 (Gain and Phase) Define the frequency response to be T (iω),
and make a polar decomposition T (iω) = �(ω)eiφ(ω). Then define the gain (or
amplitude gain) of the system to be �(ω) = |T (iω)| at angular frequency ω ∈ R;
define the phase (shift) to be φ(ω) = argT (iω). Equivalently,

log T (iω) = log�(ω)+ iφ(ω).

The phase (or phase shift) φ(ω) is the change in phase of the signal. When
φ(ω) > 0, one talks of a phase gain, so the output is running ahead of the input.
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Fig. 5.3 Nyquist plot for the transfer function 1/(s2 + s + 6)

When φ(ω) < 0, there is a phase lag. In engineering, the frequency response is
relatively easy to measure. The Bode plot consists of the graphs of log�(ω) and
φ(ω) against ω, usually plotted on the same diagram; there are various options as
to whether one uses natural logarithms, logarithms to base 10 for log�(ω), and
whether φ is in radians or degrees. MATLAB can give the logarithmic gain as
expressed in decibels (dB), as in 20 log10 �(ω). For instance, �(ω) = 100 gives
40dB, while �(ω) = 0.1 gives −20dB. The factor of 20 = 2 × 10 involves 10 to
convert bels to decibels, while the 2 accounts for �2, which is gain in the power of
the transmitted signal. The bel is an inconveniently large unit, so decibels are more
popular.

(A, B, C, D) T (s) = D + C(sI − A) − 1B

det(sI − A) poles of T (s)

T (iω) =

log

Bode diagram

phase
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Fig. 5.4 Bode plot and phase for the transfer function 1/(s2 + s + 6)

Data derived from a MIMO (A,B,C,D) (Fig. 5.4)

Example 5.13 If the transfer function has poles on the imaginary axis, then the
frequency response function and phase need to be interpreted carefully. In this
example we write š = −s̄, so š is the reflection of s in the imaginary axis �s = 0;
in particular, s = š if and only if �s = 0. Suppose that (A,B,C,D) is a SISO with
D real, A′ = −A and C = iB ′. Then T (š) = T (s), so T (s) is real for all �s = 0;
to see this, write

T (s) = D + iB ′(sI − A)−1B (5.16)

so

T (s) = D′ − iB ′(s̄I − A′)−1B = D + iB(šI − A)−1B = T (š). (5.17)

In particular, for

A =
[
i 0
0 −i

]

, B =
[

1
1

]

, C = [
i i

]
,D = 1 (5.18)

we have transfer function

T (s) = 1+ 2is

s2 + 1
(5.19)
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with poles at s = ±i on the imaginary axis, so the frequency response function is

T (iω) = ω
2 + 2ω − 1

ω2 − 1
= (ω + 1+√2)(ω + 1−√2)

(ω + 1)(ω − 1)
, (5.20)

so T (iω) is real for ω ∈ R \ {±1} and has sign

T (iω) > 0 (ω ∈ (−∞,−1−√2) ∪ (−1,
√

2− 1) ∪ (1,∞)), (5.21)

T (iω) < 0 (ω ∈ (−1−√2,−1) ∪ (√2− 1, 1)), (5.22)

so the phase changes abruptly between 0 and π at the endpoints of these intervals.

Example 5.14

(i) For a > 0 and θ, b ∈ R, we introduce α = a + ib and the transfer function

T (s) = eiθ s − α
s + ᾱ (5.23)

which has a simple zero at α ∈ RHP and a simple pole at −ᾱ ∈ LHP. On the
imaginary axis, we write s = iω where ω = b + a cot(φ/2) so the frequency
response function is

T (iω) = eiθ iω − ib − a
iω − ib + a = e

iθ i cot(φ/2)− 1

i cot(φ/2)+ 1
= eiθ cos(φ/2)+ i sin(φ/2)

cos(φ/2)− i sin(φ/2)
= ei(θ+φ),

(5.24)

so that the gain is constant with � = |T (iω)| = 1, and the phase is θ +φ. This
calculation is a variant on the tan t/2 substitution which is commonly used in
integral calculus.

(ii) We now take aj , ck > 0 and bj , dk ∈ R and introduce αj = aj + ibj ∈ RHP
and βk = ck + idk ∈ RHP ; then let

T (s) = eiθ
n∏

j=1

s − αj
s + ᾱj

m∏

k=1

s + β̄k
s − βk , (5.25)

which has zeros at αj ∈ RHP and at −β̄k ∈ LHP , and poles at −αj ∈ LHP
and at βk ∈ RHP . As in (i), the gain of the transfer function is constant � = 1.
To find the phase φ, we introduce new variables φj and ψk depending upon ω
by

ω = bj + aj cot(φj /2), ω = dk + ck cot(ψk/2) (5.26)
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and as in (i), obtain phase

φ = θ +
n∑

j=1

φj −
m∑

k=1

ψk. (5.27)

Example 5.15 (Gain and Phase of Damped Harmonic Oscillator) For a, b > 0, u0
a constant and y(0) = dy

dt
(0) = 0, we find the gain and phase of

a
d2y

dt2
+ b dy

dt
+ y = u0 cosωt. (5.28)

Then the Laplace transform is

(as2 + bs + 1)Y (s) = u0
s

ω2 + s2 , (5.29)

so that taking s = iω in the formula

T (s) = 1

as2 + bs + 1
, (5.30)

T (iω) = 1

1− aω2 + ibω =
1− aω2 − ibω

(1− aω2)2 + b2ω2 , (5.31)

so the gain is

�(ω) = |T (iω)| = 1
√
(1− aω2)2 + b2ω2

; (5.32)

while the phase φ(ω) satisfies

tanφ = bω

ω2a − 1
, φ = tan−1 bω

ω2a − 1
(5.33)

which has sign depending on the value of ω. Note that

φ(ω) = arg(1− aω2 − ibω) (5.34)

and so T (0) = 1, hence φ(0) = 0; while T (iω) is in the third quadrant as ω→∞,
whereas T (iω) is in the second quadrant as ω→−∞; at 1− aω2 = 0, T (iω) is on
the imaginary axis so φ(±1/

√
a) = ∓π/2.
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5.6 BIBO Stability

Definition 5.16 (BIBO) Let (A,B,C,D) be a linear system

dX

dt
= AX + Bu

Y = CX +Du (5.35)

such that for all bounded inputs u(t) for t ∈ (0,∞), all outputs y are bounded for
t ∈ (0,∞). Then we say that the system is bounded-input bounded-output stable,
or BIBO stable.

Bounded Exponentials of Matrices
[ Lemma 5.17]Suppose that A has (not necessarily distinct) eigenvalues such that
�λj < 0 for all j = 1, . . . , n. Then there exists M, δ > 0 such that

‖ exp(tA)‖ ≤ Me−δt (t ≥ 0). (5.36)

[ Proof]This follows from Lemma 3.6. 	

The difference between �λ ≤ 0 in Proposition 2.33 (iii) and �λ < 0 in the
Lemma 5.17 is subtle, and historically important in the theory. Maxwell realized
that the stronger hypothesis of the Lemma 5.17, requiring strict inequality, is needed
to cover the case of multiple eigenvalues, and deal with resonance.

Remark 5.18 (Stability Cases) Consider dX/dt = AX with X(0) = X0. This has
solution X(t) = exp(tA)X0, and we distinguish the following cases.

(i) Exponentially stable: there exist M, δ > 0 such that ‖X(t)‖ ≤ Me−δt for
all t > 0 and all X0. This occurs when �λj < 0 for all eigenvalues λj . In
Theorem 5.21 we find this to be BIBO stable.

(ii) Marginally stable: X(t) is bounded for t > 0 for all X0, which occurs when
�λj < 0, or �λj = 0 and the corresponding Jordan blocks are all of size
1 × 1. Later we will resolve this marginal case as BIBO unstable. Whereas
the complementary function X(t) is bounded, a bounded input can give an
unbounded particular integral. This effect occurs via resonance, which we
discuss in the context of the harmonic oscillator.

(iii) Unstable: X(t) (t > 0) is unbounded for some X0, which occurs when either
�λj > 0 for some eigenvalue λj of A, or �λj = 0 for some λj that has a
Jordan block of size ≥ 2. This is also found to be BIBO unstable in general.

These cases will be considered with reference to a crucial example, the damped
harmonic oscillator.
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Example 5.19 (Damped Harmonic Oscillator) Matrix form of the damped har-
monic oscillator is

dX

dt
= AX + BU, (5.37)

where γ > 0 and β real in

A =
[

0 1
−γ −β

]

, B =
[

0
1

]

. (5.38)

The characteristic equation of A is

det

[
λ −1
γ λ+ β

]

= λ2 + λβ + γ = 0, (5.39)

so eigenvalues are

λ± = 2−1(−β ±
√
β2 − 4γ ), (5.40)

with corresponding eigenvectors

[
1
λ+

]

,

[
1
λ−

]

(5.41)

so when λ+ �= λ−, we introduce

S =
[

1 1
λ+ λ−

]

(5.42)

so that S is invertible and

A = S
[
λ+ 0
0 λ−

]

S−1 (5.43)

and

exp(tA) = S
[
etλ+ 0

0 etλ−

]

S−1 (5.44)

Cases of the damped harmonic oscillator
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Consider 1/(s2 + βs + γ ) with γ > 0; poles at λ± = (1/2)(−β ±
√
�) where

� = β2 − 4γ. The results are summarized in the following table.

solutions � < 0 � = 0 � > 0
β > 0 decaying oscillations critically damped exp decay
β = 0 periodic constant hyperbolic
β < 0 unbounded oscillations exponential growth exp growth

(5.45)

The damped oscillator is exponentially stable if and only if β > 0 and γ > 0. When
β = 0 and γ > 0, the oscillator is marginally stable. For β < 0, the oscillator is
unstable.

Poles of the Transfer Function of the Damped Harmonic Oscillator
Consider 1/(s2+βs+γ )with γ > 0 and β real with poles at λ± = (1/2)(−β±

√
�)

where� = β2 − 4γ. Then

poles β � < 0 � = 0 � > 0
λ+ = λ̄− λ+ = λ− distinct real roots

unstable β < 0 �λ± > 0 λ± > 0 0 < λ− < λ+
marginal β = 0 �λ± = 0 λ± = 0 λ− < 0 < λ+

stable β > 0 �λ± < 0 λ± < 0 λ− < λ+ < 0

(5.46)

For a damped harmonic oscillator, we have β, γ > 0, so only the last row matters.
The last row gives the stable cases.

5.7 Undamped Harmonic Oscillator: Marginal Stability and
Resonance

Example 5.20 The undamped harmonic oscillator

d2x

dt2
+ ν2x = U0 cosωt (5.47)

with U0 real and ω, ν > 0 is marginally stable, but not BIBO stable.
We introduce

X =
[
x

v

]

, A =
[

0 1
−ν2 0

]

, B =
[

0
1

]

, (5.48)

d

dt
X = AX + BU0 cosωt. (5.49)

Note that A has eigenvalues±iν on the imaginary axis.
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Marginal Stability
The general solution is given by the complementary function plus a particular
integral. The complementary function arises when the input is zero. For U = 0
the system oscillates at its natural angular frequency ν and the general solution of
d
dt
X = AX is

X = c1

[
cos νt
−ν sin νt

]

+ c2

[
sin νt
ν cos νt

]

, (5.50)

for constants c1, c2. In particular, all these solutions are bounded, so we have
marginal stability.

• For U0 �= 0 and ω �= ν, the input has angular frequency different from the
natural angular frequency, and the solution is the complementary function plus a
particular integral

X = c1

[
cos νt
−ν sin νt

]

+ c2

[
sin νt
ν cos νt

]

+ U0

ν2 − ω2

[
cosωt
−ω sinωt

]

; (5.51)

here the complementary function oscillates at natural angular frequency ν;
whereas the particular integral oscillates at the input angular frequency ω. These
solutions are all bounded. One can obtain these particular integrals by W3.2, or
by guesswork.
Resonance

• Let U0 �= 0 and ν = ω, so that the input angular frequency equals the natural
angular frequency. Then the general solution is

X = c1

[
cos νt
− sin νt

]

+ c2

[
sin νt
ν cos νt

]

+ U0

2ν

[
t sin νt

sin νt + tν cos νt

]

(5.52)

where the solution oscillates unboundedly; this effect is called resonance. The
input is bounded whereas the output is unbounded, so the system is not BIBO
stable. A system is prone to resonance when the transfer function has a pole on
the imaginary axis. The term marginal stability is used to describe the situation
in which the complementary function is bounded, whereas the particular integral
is unbounded for suitably chosen bounded inputs; this means that the system is
not BIBO stable.

Resonance is desirable or undesirable depending upon the application. The
process of tuning involves inputting a signal with a single oscillating frequency
such as a sine wave, and then identifying the frequency that produces a large output.
Musical instruments are tuned so that they resonate at particular frequencies in the
process of tuning. However, in automotive engineering, one avoids having structural
components that resonate at the frequency of the engine’s rotation, as this would
produce noisy vibrations. In the example of square waves in Sect. 4.9, we identified
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a system that could be adjusted to have several resonant frequencies, which in the
context of music are known as harmonics.

5.8 BIBO Stability in Terms of Eigenvalues of A

Theorem 5.21 Suppose that all eigenvalues λj ofA satisfy �λj < 0, and that U is
bounded on (0,∞). Then all solutions to

dX

dt
= AX + BU

Y = CX +DU (5.53)

are bounded on (0,∞). Hence (A,B,C,D) is BIBO stable.

Proof By the Theorem 2.40, the general solution to the differential equation is

X(t) = exp(tA)X0 +
∫ t

0
exp((t − s)A)BU(s) ds (5.54)

where by hypotheses there exists K > 0 such that

‖B‖‖U(s)‖ ≤ K (s > 0) (5.55)

and by the Lemma 5.17

‖ exp(tA)‖ ≤ Me−tδ (t > 0), (5.56)

so

‖X(t)‖ ≤ Me−tδ‖X0‖ +
∫ t

0
‖ exp((t − s)A)‖‖B‖‖U(s)‖ds (5.57)

Hence

‖X(t)‖ ≤ M‖X0‖ +KM
∫ t

0
e−δ(t−s) ds

= M‖X0‖ + KM
δ

[
− e−δ(t−s)

]t

0

= M‖X0‖ + KM
δ

(
1− e−δt)

≤ M‖X0‖ + KM
δ

(t > 0).
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Hence X(t) is bounded, so the output is also bounded, since

Y (t) = CX(t)+Du(t) (5.58)

is the sum of two bounded functions. 	

Transfer functions and stability criteria: Next we combine ideas about transfer

functions with the notion of stability, so as to obtain criteria for stability of a
system solely in terms of properties of transfer functions. The idea is to describe
the properties of solutions of the differential equation, without having to solve the
differential equations explicitly. Thus we go from differential equations to algebra
via the Laplace transform. Instead of working with functions of time t in the state
space or time domain, we work with functions of s in s-space, where s is a complex
variable.

When building devices out of components, the main operations on the transfer
functions are:

• amplification λf (s)
• addition f (s)+ g(s)
• multiplication f (s)g(s).

We investigate these complex functions, starting with polynomials, and progressing
to rational functions. In the rest of this chapter we use geometrical tools, and in the
following chapter we introduce more sophisticated methods from algebra.

5.9 Maxwell’s Stability Problem

Definition 5.22 (Stable Polynomials) A polynomial h(s) is said to be stable if all
of its zeros are in the open left half-plane LHP = {s ∈ C : �s < 0}.
Problem (Maxwell’s Problem) Find necessary and sufficient conditions on the
coefficients of a monic complex polynomial for the polynomial to be stable.

Finding the zeros exactly can be very difficult, especially when the polynomial
has large degree and there are multiple zeros near to the imaginary axis. Practical
modern method: given a monic complex polynomial p(s), there exists a complex
matrix A such that det(sI − A) = p(s). Then one can find the eigenvalues of A
numerically. If all the eigenvalues are comfortably in the open left half-plane, then
p(s) is stable.

Proposition 5.23 (Necessary Condition for Stability) Suppose that h(s) is a
monic real polynomial that is stable. Then all the coefficients of h(s) are positive.

Proof Here h(s) has real coefficients, so h(λ) = 0 if and only if h(λ̄) = 0. Hence
the roots of h(s) are either real μj < 0; or pairs of conjugate complex roots λk and
λ̄k with �λk < 0, which combine to give real quadratic factors (s − λk)(s − λ̄k) =
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s2 − 2s�λk + |λk|2. Hence h(s) factorizes as

h(s) =
n∏

j=1

(s − μj )
m∏

k=1

(s2 − 2s�λk + |λk|2), (5.59)

where −μj > 0,−2�λk > 0 and |λk|2 > 0; hence all the coefficients that we
obtain on multiplying out are positive. 	

This necessary condition for stability is easy to check, but it not sufficient. For
example

s5 − 1

s − 1
= s4+s3+s2+s+1 =

(
s2+ 1+√5

2
s+1

)(
s2+ 1−√5

2
s+1

)
(5.60)

has roots at the complex fifth roots of unit, namely two roots in LHP and two roots in
RHP, hence is unstable. In Proposition 6.7 we characterize stable real cubics. Routh
and Hurwitz [30] extended this to a sufficient condition for general real polynomials,
as we present in Theorem 6.12.

5.10 Stable Rational Transfer Functions

Definition 5.24 (Stable Rational Functions) Let LHP = {s ∈ C : �s < 0} be
the open left half-plane. A complex rational function f (s) is said to be stable if

(i) f (s) is proper, and
(ii) all the poles of f (s) are in the open left half-plane.

The space of stable rational functions is denoted S.

Equivalently, f (s) = g(s)/h(s) is stable if

(i) degree(g(s)) ≤ degree(h(s)), so f (s) is proper, and
(ii) all the zeros of h(s) have �s < 0, so h(s) is stable.

(So a polynomial h(s) is stable, if and only if 1/h(s) is a stable rational function.)
For a linear system such as (A,B,C,D), we have two notions of stability, one

is BIBO stability, relating to the solutions of the associated differential equation;
the other is stability of the transfer function as a rational function. The following
result resolves these two interpretations. The merit of the result is that one can often
determine whether transfer functions are stable by basic algebra.

Theorem 5.25 (Stability for Systems and Transfer Functions) Let � =
(A,B,C,D) be a linear system with rational transfer function T . Then � is
BIBO stable if and only if T is stable.
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Proof T not stable implies � not BIBO stable: Suppose that the system is BIBO,
and that T is not stable. Recall Ŷ (s) = T (s)Û(s). Then we can choose a bounded
input U = 1 such that Û(s) = 1/s. But � is BIBO stable, so Y is bounded, so
|Y (t)| ≤M for someM and all t > 0, so

|Ŷ (s)| =
∣
∣
∣

∫ ∞

0
e−stY (t) dt

∣
∣
∣

≤
∣
∣
∣

∫ ∞

0
e−t�sM dt

∣
∣
∣ ≤ M

�s .

Hence Ŷ (s) is holomorphic on {s : �s > 0} and Ŷ (s)→ 0 as s →∞ along (0,∞).
So T (s) = sŶ (s) must be proper rational.

Suppose that T has a pole at λ. If �λ > 0, then T (s)Û(s) = T (s)/s also has a
pole at λ. But Ŷ (s) cannot have a pole at s = λ by Prop.

Now suppose that �λ = 0, so λ = iν for some real ν. The idea is to cause
resonance, so we let U(t) = cos νt, which is bounded, and

Û(s) = s

s2 + ν2 =
1/2

s − iν +
1/2

s + iν (5.61)

has a pole at iν, and hence Ŷ (s) = T (s)Û(s) has a double (or triple, ...) pole at iν.
Now consider s with �s > 0 and s → iν. Now T (s)Û(s) diverges like 1/(s −

iν)2 or 1/(s − iν)3 etc.; whereas Ŷ (s) can only diverge like M/�s at worst. This
contradicts the identity Ŷ (s) = T (s)Û(s).

We deduce that Y has at most a simple pole on the imaginary axis, so T has no
poles in the imaginary axis. Hence T (s) has all its poles in LHP. Hence T is stable.
T stable implies BIBO stable:

Conversely, suppose that T is stable. Then by Proposition 2.51, there exists a
SISO (A,B,C,D) such that the transfer function is T and the eigenvalues λ of A
are the poles of T , hence satisfy �λ < 0. Then by Theorem 5.21, (A,B,C,D) is
BIBO stable. 	


We state two results which summarize results from elsewhere in the book.

Theorem 5.26 (Realization)

(i) Every monic complex polynomial is the characteristic polynomial of some
complex matrix.

(ii) Every proper complex rational function is the transfer function T (s) of some
SISO system (A,B,C,D).

(iii) Every stable complex rational function is the transfer function of some BIBO
stable system (A,B,C,D).

Realization suggests building a gadget with desired properties.
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Proposition 5.27 (Stable Matrices) For a n × n complex matrix A, the following
conditions are equivalent.

(i) All the eigenvalues of A are in the open left half-plane.
(ii) There exists a positive definite n × n complex matrix K such that −AK −

KA′ = I .
(iii) The characteristic polynomial of A is stable.
(iv) For all (B,C,D) complex matrices of shape (n× 1, 1×n, 1× 1), the transfer

function of (A,B,C,D)

T (s) = D + C(sI − A)−1B (5.62)

is a stable rational function.
(v) All solutions of d

dt
X = AX decay exponentially to 0 as t →∞.

(vi) For all (B,C,D) complex matrices of shape (n × 1, 1× n, 1× 1), the linear
system (A,B,C,D) is BIBO stable.

Example 5.28 (Three Rational Filters) In signal processing, the term filter is often
used for a type of transfer function. Rational filters are easy to construct and analyze,
and the following three examples have specific properties for their phase and gain.

(i) For x > 0 and y ∈ R, let z = x + iy ∈ RHP , and −z̄ = −x + iy ∈ LHP be
its reflection in the imaginary axis. Then

B(s) = s − z
s + z̄ (5.63)

is a stable rational function with a zero at z ∈ RHP and a pole at −z̄ ∈ LHP .
With s = iω on the imaginary axis, we have the frequency response function

B(iω) = iω − iy − x
iω − iy + x =

(ω − y)2 − x2 + 2ix(ω− y)
(ω − y)2 + x2 (5.64)

so B(iω) has constant gain � = 1 and phase φ(ω) where

tanφ(ω) = 2x(ω− y)
(ω − y)2 − x2 ; (5.65)

hence

φ(ω)→ 0 (ω→ −∞); φ(ω)→−π/2 (ω→ (y − x)−) φ(y) = π;
(5.66)

φ(ω)→ π/2 (ω→ (y + x)+); φ(ω)→ 0 (ω→∞); (5.67)

so B(iω) loops once round 0 in the clockwise (negative) sense. The Nyquist
contour of B is the circle of centre 0 and radius 1, taken clockwise and starting
and ending at 1.
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(ii) Let

Pz(s) = −1

s − z +
1

s + z̄ (5.68)

so Pz(s) is proper with Pz(s) = O(1/s2) as s → ∞ with poles at z ∈ RHP
and −z̄ ∈ LHP , so Pz(s) is not stable. Then the corresponding frequency
response function is

Pz(iω) = 2x

(ω − y)2 + ax2 > 0 (5.69)

so phase φ(ω) = 0. Since Pz(iω) → 0 as ω → ±∞, this filter reduces high
frequency signals. By choosing x > 0 small, we can make Pz(iω) be sharply
peaked near to ω = y, where Pz(iy) = 2/x is the maximum of Pz(iω). For
f (s) holomorphic and bounded on {s : �s > −δ} for some δ > 0, we have an
absolutely convergent integral

∫ i∞

−i∞
f (s)

( −1

s − z +
1

s + z̄
) ds

2πi
= f (z) (5.70)

by Cauchy’s integral formula; see Sect. 5.1 for discussion of the relevant
semicircular contour. This is known as Poisson’s integral formula for RHP .

If f (z) is a stable rational transfer function, then f is determined by its
frequency response function via this absolutely convergent integral.

(iii) Let

Qz(s) = 1

s − z +
1

s + z̄ (5.71)

so Qz(s) is proper with Q(s) = O(1/s) as with poles at z ∈ RHP and
−z̄ ∈ LHP , so Qz(s) is not stable. Then the corresponding frequency
response function is

Qz(iω) = −2i(ω− y)
(ω − y)2 + x2 (5.72)

is purely imaginary, so phase φ(ω) = π/2 for ω < y and φ(ω) = −π/2 for
ω > y; thus the phase is discontinuous with a jump at y of size π . We also
have

∫ i∞

−i∞
e−t s

( 1

s − z +
1

s + z̄
) ds

2πi
= −e−tz (t > 0)

= et z̄ (t < 0) (5.73)
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by Cauchy’s integral formula. Suppose that f is holomorphic and bounded on
{s : �s > −δ} for some δ > 0. Then by Cauchy’s Theorem we have

∫ i∞

−i∞
f (s)Qz(s)

ds

2πi
→ lim

ε→0+

∫ y−ε

−∞
+

∫ ∞

y+ε
f (iω)

ω − y
dω

iπ
(z→ iy).

(5.74)

The right hand side is i times the Hilbert transform of f (iy); see (4.62).

Proposition 5.29 (Factorization of Stable Rational Functions) Let T ∈ S. Then
T (s) = S(s)B(s) for:

(i) S ∈ S that has no zeros in RHP and |T (iy)| = |S(iy)| for all y ∈ R;
(ii) B ∈ S such that |B(iy)| = 1 for all y ∈ R; and the factors are uniquely

determined up to multiplication by a unimodular complex constant factor.

Proof Let the zeros of T in the open RHP be b1, . . . , bm; let the other zeros of T
be c1, . . . , cn; let the poles of T be a1, . . . , ap, all listed according to multiplicity.
Since T is stable, we have p ≥ m+ n, and �aj < 0 for all j . We introduce

B(z) =
m∏

j=1

z− bj
z+ b̄j

(5.75)

which has zeros at b1, . . . , bm ∈ RHP and poles at−b̄1, · · ·−b̄m ∈ LHP , henceB
is stable. Observe that−b̄j is the reflection of bj in the imaginary axis, so |iy−bj | =
|iy + b̄j | for all y ∈ R, so |B(iy)| = 1 for all y ∈ R.

Now let

S(z) = λ
∏m
j=1(z+ b̄j )

∏n
k=1(z− ck)

∏p

�=1(z− a�)
, (5.76)

where λ �= 0 is to be chosen. Then S has poles at a1, . . . , ap ∈ LHP , zeros at
−b̄1, · · · − b̄m ∈ LHP and zeros at c1, . . . , cn where �cj ≤ 0; hence S is stable.
Also by cancellation, S(s)B(s)/T (s) is a rational function with no zeros or poles,
hence by Liouville’s theorem is a constant, and by adjusting λ we can ensure that
T (s) = S(s)B(s). Hence |T (iy)| = |B(iy)||S(iy)| = |S(iy)| for all y ∈ R. A
similar argument establishes uniqueness.

The factor B(s) is called a finite Blaschke product, the inner factor of T or an all
pass filter. The S(s) is called an outer factor or minimum phase factor. In Chap. 8,
we show how to introduce all pass filters by means of linear systems specified by
matrices. 	
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5.11 Nyquist’s Criterion for Stability of T

Consider the feedback loop with constant feedback −1, so the transfer function is
T = R/(1 + R).

+ R .

− 1

u

y

− y

y

Theorem 5.30 (Nyquist’s Criterion) LetR be the transfer function of a plant such
that R is stable. Suppose that the contour R(iω) (−∞ ≤ ω ≤ ∞) does not pass
through or wind around −1. Then T = R/(1 + R) is also stable, so the feedback
system with constant feedback−1 is also stable.

Proof First we give a proof that depends upon the Argument Principle, then in the
next section we give a more detailed proof that uses contour integration. We let
c = lims→∞ R(s) where c �= −1 by assumption. Hence we can write R(s) =
c + p(s)/q(s) where p(s) and q(s) are polynomials, and the degree of p(s) is less
than the degree of q(s). Then

T (s) = R(s)

1+ R(s) =
c + p(s)/q(s)

c + 1+ p(s)/q(s) =
cq(s)+ p(s)

(1+ c)q(s)+ p(s) (5.77)

and the degree of (1+c)q(s)+p(s) equals the degree of q(s), hence T (s) is proper.
Note that poles of R give finite values of T . So the possible poles of T (s) are the
zeros of 1+ R(s), and these are not canceled by the zeros of R(s). Let

• N be the number of times that the Nyquist contour of R winds around −1,
clockwise;

• Z be the number of zeros of R(s)+ 1 in the left half-plane;
• P be the number of poles of R(s)+ 1 in the left half-plane;

Then, by the Argument Principle of complex analysis applied to a semicircular
contour in the left half-plane,

N = Z − P.

Here N = P = 0 by hypothesis, so Z = 0. Hence T has no poles in the left half-
plane, hence T is stable. 	
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5.12 Nyquist’s Criterion Proof

Proposition 5.31 (Nyquist’s Criterion) Let R(s) = p(s)/q(s) where p(s) and
q(s) are complex polynomials with degree of p(s) less than the degree of q(s), and
suppose that q(s) has all its zeros in LHP. Suppose that the Nyquist contour R(ıω)
for −∞ ≤ ω ≤ ∞ does not pass through or wind around −1. Then R/(1+R) is a
strictly proper and stable rational function.

Proof

(i) First, we show that there existsM1 such that

|R(s)| ≤ M1

1+ |s| (5.78)

and that there existsM2 > 0 such that

∣
∣
∣
dR

ds

∣
∣
∣ ≤ M2

1+ |s|2 (5.79)

for all s ∈ RHP . Since the degree of q(s) is greater than the degree of p(s),
we have

sR(s) = sp(s)
q(s)

→ c (|s| → ∞); (5.80)

for some c ∈ C. Also, q(s) has only finitely many zeros, so we can choose r0
to be the largest modulus of any zero of p; then we can chooseM1 such that

|R(s)| ≤ M1

1+ |s| (5.81)

for all |s| ≥ r0 + 1. By hypothesis, R is stable, so R is holomorphic and hence
bounded on {z : �z ≥ 0; |z| ≤ r0 + 1}. So by changing M1 if necessary, we
obtain the stated upper bound for all s ∈ RHP .

Likewise

dR

ds
=

dp
ds
q(s)− p(s) dq

ds

q(s)2
(5.82)

where the degree of q(s)2 exceeds the degree of dp
ds
q(s) − p(s) dq

ds
by two.

Also, q(s) has only finitely many zeros, so we can choose r0 to be the largest
modulus of any zero of q; then we can chooseM such that

∣
∣
∣
dR

ds

∣
∣
∣ =

∣
∣
∣
dp
ds
q(s)− p(s) dq

ds

q(s)2

∣
∣
∣ ≤ M

1+ |s|2 (5.83)
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for all s such that |s| > r0+1. By hypothesis,R is stable, so R′ is holomorphic
and hence bounded on {z : �z ≥ 0; |z| ≤ r0 + 1}. So by changing M if
necessary, we obtain the stated upper bound for all s ∈ RHP .

(ii) Let Sr be the semicircle in the left half-plane Sr : z = reıθ for −π/2 ≤ θ ≤
π/2. For s = reıθ on Sr and r > M1, we have

∣
∣
∣

dR
ds

1+ R(s)
∣
∣
∣ ≤ M2/(1+ r2)

1−M1/(1+ r) (5.84)

so

∣
∣
∣

∫

Sr

dR
ds
ds

1+ R(s)
∣
∣
∣ ≤ 2πM2r(1+ r)

(1+ r2)(1+ r −M1)
, (5.85)

hence

∫

Sr

dR
ds
ds

1+ R(s) → 0 (5.86)

as r →∞.
(iii) Let γr = Sr ⊕ [ır,−ır] be the contour made of joining the ends of the

semicircle Sr with part of the imaginary axis; then let �r = R(z) for z on
γr be the image of γt under R. We show that for all sufficiently large r , the
contour �r does not pass through or wind around −1. Note that the image of
the contour γr under the holomorphic map R is again a contour. The image of
the interval [ır,−ır] is {T (ıω) : −r ≤ ω ≤ r} ⊂ {T (ıω) : −∞ ≤ ω ≤ ∞},
which does not pass through−1. Also,

|R(reıθ )| ≤ M1

1+ r < 1 (5.87)

for all r > M1, so R(Sr) does not pass through −1. Indeed, �r does not pass
through or wind around−1 for all sufficiently large r .

(iv) Let

Jr = 1

2πi

∫

γr

dR
ds
ds

1+ R(s) ; (5.88)

we aim to prove that Jr = 0 for all sufficiently large r . The function 1 + R
is holomorphic on RHP, so R′/(1 + R) is holomorphic, except where 1 + R
has zeros. Suppose that 1 + R has a zero of order m at s0. Then there is a
holomorphic function g(s) such that g(s0) �= 0 and 1+R(s) = (s − s0)mg(s)
on some neighbourhood of s0, so

dR
ds

1+ R(s) =
m

s − s0 +
dg
ds

g(s)
, (5.89)
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where (dg/ds)/g(s) is holomorphic on some neighbourhood of s0, so

Res
( dR

ds

1+ R ; s0
)
= m. (5.90)

By Cauchy’s Residue Theorem,

Jr =
nr∑

j=1

Res
( dR

ds

1+ R ; sj
)
=

nr∑

j=1

mj, (5.91)

where the sum is over all the orders of all zeros sj inside γr . Hence Jr is a non
negative integer, and increases with increasing r . Now

Jr = 1

2πı

∫

Sr

dR
ds
ds

1+ R(s) +
1

2πı

∫

[ır,−ır]

dR
ds
ds

1+ R(s) , (5.92)

and by (ii) we deduce that

Jr → 1

2πı

∫

[ı∞,−ı∞]

dR
ds
ds

1+ R(s) (5.93)

as r → ∞. The final integral converges, by the estimates from (i). An
increasing function which takes integer values and is bounded must ultimately
be constant, so the left-hand side satisfies

Jr = 1

2πı

∫

[ı∞,−ı∞]

dR
ds
ds

1+ R(s) (5.94)

for all r sufficiently large. Now the value of the constant is 0, since γr does
not pass through or wind around −1. Hence Jr = 0 for all r > 0, since the
left-hand side increases with increasing r . We deduce that 1 + R has no zeros
inside γr for all r > 0, hence has no zeros in the left half-plane.

(v) Finally, we deduce that 1+R(s) has all its zeros in LHP, and hence thatR/(1+
R) is a strictly proper and stable rational function. By (iv), we deduce that 1+R
has all its zeros in LHP, and by hypothesis R has all its poles in LHP. Hence
R/(1+ R) has all poles in LHP and is strictly proper.

	

Remark 5.32 (Root Locus) The Nyquist Criterion Theorem 5.30 appears to empha-
size the controller K = −1 unduly; however, this is to simplify the statement of
the result. For a rational function G, we can let κ > 0 be a positive parameter and
consider K = −1/κ which corresponds to the transfer function κG/(1 + κG), so
that the zeros of

1+ κG(s) = 0 (5.95)
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give rise to poles of the transfer function. When viewed as functions of κ ∈ [0,∞),
the zeros give the root locus, and by Weierstrass’s preparation theorem of complex
analysis the root locus is made up of continuous curves; see [27] p 267. The root
locus plot shows in particular if any roots lie in the RHP , and hence give unstable
poles of the transfer function. MATLAB has a convenient function rlocus for
plotting the root locus.

The region C\ (−∞,−1] consists of the complex plane with part of the negative
real axis removed, and is starlike with star centre in the sense that for all ζ ∈ C \
(−∞−1] and κ ∈ [0,∞), the point κζ ∈ C\ (−∞−1]. IfG(iω) ∈ C\ (−∞−1]
for all −∞ ≤ ω ≤ ∞, then the Nyquist contour of G does not pass through or
wind around −1. Hence 1 + κG(iω) ∈ C \ (−∞, 0] for all −∞ ≤ ω ≤ ∞,
so the Nyquist contour of 1 + κG does not pass through or wind around −1, and
1 + κG(iω) is nonzero for all −∞ ≤ ω ≤ ∞. This helps to describe the effect of
scaling some transfer functions. There are commands in MATLAB that describe the
ways in which a Nyquist contour can cross the axis.

If the Nyquist contour crosses (−1, 0) (but possibly not (−∞,−1]), then the gain
margin is the smallest κ > 1 such that 1 + κG(iω) = 0 for some −∞ ≤ ω ≤ ∞.
The gain margin measures how much we need to scale up the Nyquist diagram of
G for marginal instability.

If the Nyquist contour of G crosses the unit circle C(0, 1) but does pass through
−1, then the phase margin is the smallest |φ| such that eiφG(iω)+ 1 = 0 for some
−∞ ≤ ω ≤ ∞. This measures how much we need to rotate the Nyquist diagram of
G, or lag the phase, for marginal instability.

5.13 M and N Circles

We introduce a geometrical device which will enable us to visualize both R and T
by a single Nyquist plot. We consider the Argand diagram, namely the Euclidean
plane with complex coordinates. Let ϕ be the Möbius transformation

ϕ(z) = az+ b
cz+ d ; (5.96)

by general theory ϕ maps circles and straight lines to circles and straight lines. For
example, the map z �→ z/(1 + z) takes the imaginary axis to the circle {s ∈ C :
|s − 1/2| = 1/2}. In particular, we consider the relations

T = R

R + 1
, R = T

1− T . (5.97)

In the T plane, an M circle is determined by |T | = M , and the M circles give a
concentric family of circles with radius M and centre 0 such that every point in
C \ {0} lies on precisely one M circle. In the T plane, an N circle is the straight
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Fig. 5.5 M circles and N lines

line through 0 with gradient N where −∞ < N ≤ ∞, and we take N = tan φ for
−π/2 < φ ≤ π/2. Every point in C \ {0} lies on precisely one N circle. The M
circles and N circles intersect at right angles (Fig. 5.5).

We map these back to the R plane, retaining the names M and N circles. Then
R = u+ iv is on anM circle if

M2 = |T |2 =
∣
∣
∣
u+ iv

u+ 1+ iv
∣
∣
∣
2

(5.98)

or

(M − 1)u2 + 2M2u+ (M2 − 1)v2 +M2 = 0 (5.99)

so

(
u+ M2

M2 − 1

)2 + v2 = M2

(M2 − 1)2
, (5.100)

so that an M circle in the R plane has centre −M2/(M2 − 1) + i0 and radius
M/|M2 − 1| (Fig. 5.6).

Let N = tan φ and consider R = u+ iv on an N circle; then

eiφ(u+ 1+ iv) = u+ iv (5.101)

so

φ = tan−1(v/u) − tan−1(v/(u+ 1)), (5.102)
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Fig. 5.6 M circles with M=1/4,1/2,2,4,8; N circles with N=1/4,1/2,1,2,4

and by the tangent addition formula

N = tan φ = v/u− v/(u+ 1)

1+ v2/(u(u+ 1))
= v

u2 + u+ v2 , (5.103)

so

(
u+ 1

2

)2 +
(
v − 1

2N

)2 = N
2 + 1

4N2
, (5.104)

so anN circle in the R plane has centre−1/2+ i/(2N) and radius
√
N2 + 1/(2N).

Since Möbius transformations are conformal and bijective, the M and N circles
intersect at right angles, and every nonzero point in the R plane lies on exactly one
M circle and one N circle.

The R plane is plotted with a background ofM andN circles, with the following
interpretation: in polar coordinates, a typical point is R = �eiθ where � is the gain
and θ is the phase; alsoR lies on anM circle and anN circle, where T = R/(1+R)
has polar decomposition T = Meiφ where tan φ = N (Fig. 5.7).

Example 5.33 The linear system is given by

A = [
1, 2; 3, 4

]
, B = [

0; 1
]
, C = [

3, 5
]
,D = 1.
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Fig. 5.7 Nyquist plot with grid of M and N circles with transfer function (s2 − 1)/(s2 − 5s − 2).
The scale on the background plot refers to the gain in units of decibels

To produce the Nyquist plot in MATLAB, one can use the commands

>> [b, a] = ss2tf (A,B,C,D)

to find the transfer function as a quotient of polynomials, Here the transfer
function is

R(s) = s2 − 1

s2 − 5s − 2
. (5.105)

then to obtain the Nyquist plot, enter

>> R = tf ([1, 0,−1], [1,−5,−2])

>> nyquist (R)

Then include the grid by

>> grid on
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5.14 Exercises

Exercise 5.1 Calculate the transfer function T associated with the linear differen-
tial equation

d2y

dt2
+ 6

dy

dt
+ y = −3

du

dt
+ u. (5.106)

with y(0) = (dy/dt)(0) = 0 = u(0); here y is the output and u is the input.
(ii) Find the gain � and phase φ of the frequency response function T (iω).

Exercise 5.2

(i) Let A be a n × n complex matrix with eigenvalues λ1, . . . , λn. Find the
eigenvalues of A− kI for any k ∈ C.

(ii) Deduce that given any MIMO (A,B,C,D) there exists k ∈ C such that (A −
kI, B,C,D) is BIBO stable.

Exercise 5.3 (Nyquist and Bode Plots) Recall s = iω and let

T (s) = 8s + 8ı + 4

(s + 1)(s + 2+ ı) . (5.107)

Take care with complex numbers when carrying out the following plots.

(i) Plot the Nyquist locus of T ; that is, plot {T (iω) : −∞ ≤ ω ≤ ∞}.
(ii) Let �(ω) be the gain and let φ(ω) be the phase of T . The Bode plot consists of

the graphs of log�(ω) and φ(ω) against ω. Produce the Bode plot for −100 <
ω < 100.

Exercise 5.4 (More Bode Plots)

(i) Let T (s) = p(s)/q(s), where p(s) and q(s) are polynomials with real
coefficients; then T (s) is said to be a real rational function. Show that the gain
� and phase φ of T satisfy

�(ω) = �(−ω), φ(−ω) = −φ(ω) (ω ∈ R). (5.108)

(ii) For T (s) = 1/(1 + s) and s = ıω, plot log�(ω) and φ(ω) against ω for
−100 < ω < 100.

(iii) When T (s) is a transfer function as in (i), we can plot log� and φ against logω
for 0 < ω <∞. Do this for T (s) = 1/(1+ s).

Exercise 5.5 Let p(s) be a complex polynomial with leading term sn, and let
r(s) = p(s)− (s + 1)n.
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(i) Show that

R(s) = r(s)

(s + 1)n
(5.109)

is stable.
(ii) Show that p(s) = 0 has no roots in the left half-plane if and only if the Nyquist

contour of R(s) does not pass through or wind around−1.

(ii) Hence show that

p(s) = s4 + 3s3 + 2s2 + s + 1 (5.110)

has zeros in the left half-plane.

Exercise 5.6 Let p(s) = s2 − 2s + 7 and q(s) = s3 + 2s2 + (69/4)s + 65/4.

(i) Verify that R(s) = p(s)/q(s) is stable.
(ii) By considering the Nyquist locus of R, discuss whether T = R/(1+R) is also

stable. Supply graphs to justify your results.
(iii) Replace p(s) by r(s) = s2 − 2s − 20, and repeat (i) and (ii).

Exercise 5.7 Let θ be an improper rational function such that θ(s)+1 has no zeros
in RHP.

(i) Show that R(s) = −1/(1+ θ(s)) is stable.
(ii) If the Nyquist locus of R does not pass through or wind around −1, show that

θ(s) has no zeros in RHP.

Exercise 5.8 At frequency ω, the Nyquist contour of R points in the direction
iR′(iω). Show that

i dR
ds
(iω)

R(iω)
=

d�
dω

�(ω)
+ i dφ
dω

(5.111)

is a decomposition into real and imaginary parts.

Exercise 5.9 (Cumulants) Suppose that a piecewise continuous function y :
(0,∞)→ C satisfies the conditions:

(1) there exist κ,M > 0 such that |y(t)| ≤ Me−κt for all t > 0;
(2)

∫∞
0 y(t)dt �= 0.

(i) Show that Y (s) = ∫∞
0 e−sty(t) dt converges for all s such that �s > −κ ,

and defines a holomorphic function of such s.
(ii) Show that ϕ(s) = logY (s) defines a holomorphic function on {s : |s| < δ}

for some 0 < δ ≤ κ , hence has a convergent power series

ϕ(s) =
∞∑

j=0

cj s
j

j ! (|s| < δ).
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In probability theory, one considers the case where y ≥ 0 and∫∞
0 y(t)dt = 1, and the terms (−1)j cj are known as cumulants.

(iii) Let y1 and y2 satisfy (1) and (2) for some constants. Show that y = y1 ∗y2
also satisfies (1) and (2), for some constants.

(iv) Show that the ϕ corresponding to y and the ϕ1 and ϕ2 corresponding to y1
and y2 satisfy

ϕ(s) = ϕ1(s)+ ϕ2(s),

and the cj are likewise additive.
(v) For y(t) = e−κt sin at where κ > 0 and a > 0, obtain an expression for

ϕ(s) and the cj .

block diagram

ODE: dX/dt = AX + BU ; Y = CX + DU Transfer function T (s) = D + C(sI – A)–1 B

Poles, zeros, factors of transfer functionLinear system in matrices (A, B, C, D)

Kalman decomposition

Frequency response T (i

Nyquist plot, Bod plot

Stability criterion

L

) = Γ (   )e



Chapter 6
Algebraic Characterizations of Stability

The results of the previous chapter provide a geometrical and analytical approach
to the problem of stability. The tools they use are effective when implemented by
modern computers. However, the solutions they provide are often only approximate,
as they depend upon solving algebraic or transcendental equations which often
admit only of numerical rather then exact solutions. In this chapter, we take rational
transfer functions, and consider algebraic approaches to stability.

• We use algorithms which can be carried out in exact arithmetic without approxi-
mation, such as:

• polynomial long division which gives a Euclidean algorithm for polynomials;
• elementary row operations for matrices with polynomial entries.
• We move between conditions on coefficients of polynomials and entries of

matrices.
• Basic computer algebra makes determinant calculations easy, so we present

Hurwitz’s Theorem 6.12 solving Maxwell’s stability problem.

This discussion involves functions F(s) where s is the variable that arises in the
Laplace transform. At the end of the chapter, we use the inverse Laplace transform
to take us back to state space models in terms of f (t).

6.1 Feedback Control

Vehicles are usually under human control.

Example 6.1

(i) An airliner starts at rest on the runway and then is accelerated until it achieves
lift-off. To achieve this, the engines are run almost flat out. Once the aircraft
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reaches cruising altitude, the pilot will reduce the amount of fuel going into the
engines, and fly at a steady speed.

(ii) A car on the motor way is not run flat out. Instead, the driver regulates the
speed by means of the accelerator, so that when the car is going too fast, say
over 70 miles per hour, the driver can reduce the amount of fuel going into the
engine, and thus slow down the car. Likewise the driver can speed up the car
by allowing more fuel to go into the engine. Regulating speed thus involves the
continual attention of the driver; so can we automate this?

Remark 6.2 (Feedback Controllers) The engineer Watt produced various
controllers (governors) for steam engines and developed the principle of feedback
control. The output is fed through a machine back into the input. A plant is some
sort of machine, described by a rational matrix transfer function. Consider a plant
given by a linear system G (m× k) and a controller represented by a linear system
−K (k×m). The output fromG is fed back into the input. The minus sign indicates
that we want negative feedback (if the engine goes too fast, the controller will slow
it down).

• Controllers generally use negative feedback.
• Usually, plants are described by their Laplace transforms.
• Rational transfer functions and controllers are simplest to deal with.
• Proportional-integral-differentiator controllers PID are widely used, as discussed

below in Sect. 6.2.

Definition 6.3 (Simple Feedback Loop)

(i) Suppose thatG has k inputs and m outputs. We chooseK to havem inputs and
k outputs. Then the simple feedback loop (SFL) has transfer function

T = (I +GK)−1G. (6.1)

(ii) Suppose that G and K are rational matrix functions. The poles of G are called
open loop poles; the poles of T are called closed loop poles.

6.2 PID Controllers

Definition 6.4 PID (proportional-integral-derivative) controllersK have the form

K(s) = a + b
s
+ cs, (6.2)

where a, b, c are constants, usually real. The differentiator is expressed in s-space
as cs.

In 1866, Robert Whitehead, a naval engineer from Bolton in England, invented
PD controllers for torpedoes, in which the differentiator moves the errant torpedo
abruptly back on track. In more sensitive applications,PI controllers are preferable,
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as they have a milder effect on the system. A PID controller has three parameters
a, b, c, and by choosing these carefully, engineers can often select a controller that
ensures stability while having the right degree of responsiveness in the resulting
controlled system. For instance, the steering of a car should be stable, so that the
car does not drift off the intended route, but the driver should still be able to change
direction of the vehicle. Note that K(s) is unstable unless b = c = 0. It may
seem paradoxical to stabilize an unstable plant by adding an unstable controller, but
this choice is sometimes made. Inevitably, this poses potential difficulties which we
address later in our discussion of internal stability.

Problem 1 Given a stable plant R(s), we consider a feedback loop with propor-
tional feedback θ , so that the new transfer function is T = R/(1 − θR). When is
this stable?

Certainly T is stable for θ = 0, so the question is how much latitude we
have in the choice of θ while retaining a stable system. Such feedback might
arise deliberately, as in Black’s amplifier Example 1.7, or inadvertently; this issue
is whether the feedback can be accommodated. By a simple scaling argument,
replacing−θR by R, we note that the case of T = R/(1+R) is sufficiently general
as to give results in the general case. Nyquist’s Criterion Theorem 5.30 is therefore
formulated for a stable plant and a simple feedback look with proportional controller
K = −1, giving T = R/(1+ R).

Problem 2 Given a SISO system with rational transfer function G, can we find a
rational controller−K such that

T = (I +GK)−1G (6.3)

is stable rational?

This is a more general question in which G(s) is not necessarily stable, but we
allow K to be a rational controller, possibly unstable.
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Example 6.5 (Proportional Feedback) Consider a SISO system with transfer func-
tion G(s) = p(s)/q(s) with p, q complex polynomials. The zeros of p are called
open loop zeros, while the zeros of q are called open loop poles. Then the controller
−K = −k with constant k > 0 gives a proportional negative feedback loop with

T = (I +KG)−1G = p

kp + q . (6.4)

In particular, let p(s) = s2 and q(s) = bs + c where b, c > 0. Then G(s) is not
proper; whereas

T (s) = s2

ks2 + bs + c (6.5)

is proper and has poles in the open left half-plane at

s = −b ±
√
b2 − 4ck

2k
, (6.6)

so the controlled system with T is stable.

Example 6.6 (Proportional-Integral Controller) Find a PI feedback controller of
the form−a − b/s that stabilizes the plant with transfer function

G(s) = s/(s − 1)(s + 3).

The plant has poles at s = 1,−3, hence is unstable. We consider

G

1+GK = 1

(1/G)+K = s

s2 + (2− a)s − b − 3
. (6.7)

For stability we require positive coefficients, so 2 − a > 0 and −b − 3 > 0. In
particular, we choose b = −4 and a = 0, and get

G

1+GK =
s

(1+ s)2 , (6.8)

which is stable.
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6.3 Stable Cubics

Proposition 6.7 Let a, b, c,A,B,C be real constants. Then

(i) s + a is stable, if and only if a > 0;
(ii) s2 + bs + c is stable, if and only if b, c > 0;

(iii) s3 + As2 + Bs + C is stable, if and only if A,B,C > 0 and AB − C > 0.

Proof

(i) Obvious.
(ii) The roots of the quadratic are

z± = −b ±
√
b2 − 4c

2
, (6.9)

where c = z+z− and b = −(z+ + z−). If c < 0, then b2 − 4c > 0 and
s2 + bs + c has real zeros of opposite sign, hence is unstable. If c = 0, then
s = 0 is a zero, so the quadratic is unstable. Hence we need c > 0; also −b
as the sum of the roots, must be negative, so b > 0. Conversely, if b, c > 0,
then b2− 4c < b2 and either there are two negative roots, or a pair of complex
conjugate roots in LHP.

(iii) Note that s3+As2+Bs+C →∞ as s →∞ and s3+As2+Bs+C →−∞ as
s → −∞. By the intermediate value theorem there exists a real root s = −a.
Hence we have a factorization

s3 + As2 + Bs + C = (s + a)(s2 + bs + c) (6.10)

where A = a+b, B = ab+ c and C = ac. Now the cubic is stable if and only
if s + a and s2 + bs + c are stable; that is, if and only if a, b, c > 0 by (i) and
(ii). Hence A,B,C > 0, and

AB − C = a2b + bab+ bc = b(a(a + b)+ c) > 0. (6.11)

Conversely, if A,B,C,AB − C > 0, then a, b, c > 0. First note that ac > 0
so a and c have the same sign, and if a, c < 0, then we cannot have A,B > 0.
So a, c > 0, and AB − C = b(Aa + c) > 0, so b > 0 also.

	

Example 6.8 (Governors) In the nineteenth century, the term governor was used for
what we would now call a proportional-integral controller; see [32] for an historical
account. Maxwell [40] considered Jenkin’s governor, and found that the nature of
solutions depended upon the roots of a cubic equation

MBn3 + (MY + FB)n2 + FYn+ FG = 0 (6.12)
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where M,B, Y, F,G are various real constants. He solved this cubic by the
trigonometric method described in the following exercise.

Example 6.9 (Discriminant of the Cubic) Suppose that the depressed cubic equa-
tion z3 + pz + q = 0 has roots z1, z2 and z3. From the factorization

z3 + pz + q = (z− z1)(z− z2)(z− z3)

we deduce by comparing coefficients that

0 = z1 + z2 + z3, p = z1z2 + z2z3 + z1z3, q = −z1z2z3;

hence one can use the identities z3
j + pzj + q = 0 for j = 1, 2, 3 to show

0 = (z1 + z2 + z3)
2 = z2

1 + z2
2 + z2

3 + 2p;

0 = z3
1 + z3

2 + z3
3 + 3q = 0;

0 = z4
1 + z4

2 + z4
3 − 2p2.

Let

δ =
∣
∣
∣
∣
∣
∣

1 1 1
z1 z2 z3

z2
1 z

2
2 z

2
3,

∣
∣
∣
∣
∣
∣

so that by the multiplicative property of determinants

δ2 =
∣
∣
∣
∣
∣
∣

1 1 1
z1 z2 z3

z2
1 z

2
2 z

2
3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 z1 z
2
1

1 z2 z
2
2

1 z3 z
2
3

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

3 0 −2p
0 −2p −3q
−2p −3q 2p2

∣
∣
∣
∣
∣
∣

= −4p3 − 27q2,

which is given by the coefficients of the cubic. Note that δ2 is real if p and q are
real.

Exercise (Trigonometric Solutions of the Cubic) It is possible to obtain algebraic
surd expressions for the roots of cubics and biquadratics by a carefully chosen
sequence of substitutions. These results were known in the 16th century and were
published by Cardano. Unfortunately, the surd expressions are rather complicated,
and do not make it easy to see where the roots are located in the complex plane. For
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this reason, the trigonometric solution is sometimes preferable, and gives accessible
conditions for the roots of the real cubic to be real. The following exercise gives the
method, which was know to Viete.

Solving the depressed cubic by trigonometry

(i) Show that the substitution s = z− A/3 reduces the real cubic equation

s3 + As2 + Bs + C = 0 (6.13)

to the depressed cubic in the style of Scipione del Ferro

z3 + pz + q = 0 (6.14)

where the new real coefficients are

p = B − A2/3, q = C − AB/3+ 2A3/27. (6.15)

(ii) Show that cos 3θ = 4 cos3 θ −3 cos θ for all θ ∈ C; this is the crucial identity.
(iii) Let γ 2 = (−4p/3) so that γ is real for p ≤ 0 and purely imaginary for p > 0.

For p �= 0, and z = γ cos θ , show that the depressed cubic reduces to

cos 3θ = 3q

γp
. (6.16)

(iv) Suppose that p < 0. Show that for −1 < 3q/(γp) < 1, there are three real
roots for the depressed cubic equation in (i), given by

z = γ cos θ, γ cos(θ + 2π/3) γ cos(θ − 2π/3) (6.17)

where θ ∈ R satisfies the identity in (iii).
(v) Suppose that p < 0. Show likewise that for 3q/(γp) ∈ (1,∞) and for

3q/(γp) ∈ (−∞,−1) and for there is a real root and a pair of complex
conjugate roots. In the last case, it helps to consider 3θ = π + 3iφ with
φ ∈ R, so cos 3θ = − cosh 3φ.

(vi) Suppose that p > 0. Show that there is a real root, and a pair of complex
conjugate roots. Here it helps to consider 3θ = π/2+ 3iφ.

(vii) Let � = −(4p3 + 27q2) be the discriminant of the depressed cubic. Deduce
that (i) has three real roots if and only if � > 0.

Example 6.10 Suppose that G(s) = p(s)/q(s) is a plant where p(s), q(s) ∈ C[s],
and we wish to stabilize G in a simple feedback loop involving the PID controller
K(s) = a + b/s + cs. Then we have

1

1+GK

[
1 G

K GK

]

= 1

sq + p(as + b + cs2)

[
sq sp

(as + b + cs2)q p(as + b + cs2)

]

.

(6.18)
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The common denominator is

�(s) = sq + p(as + b + cs2), (6.19)

and we require all the zeros of�(s) to lie in LHP. A necessary condition for stability
is that all the coefficients of �(s) are of the same sign; this gives a system of
linear inequalities in a, b, c, one inequality for each coefficient of �(s). By linear
programming, we either have no solution, or a feasible region in which all the linear
inequalities are satisfied. We can then determine whether some points in this feasible
region do indeed give roots in LHP.

Example 6.11 Consider a plant G(s) = s2 + βs + γ, where γ > 0 and β ∈ R,
and form the simple feedback loop with a PI controller K(s) = a + b/s. Then the
transfer function is

G

1+KG =
s3 + βs2 + γ s

s + (s2 + βs + γ )(as + b) =
s3 + βs2 + γ s

as3 + (b + βa)s2 + (1+ βb + γ a)s + γ b , (6.20)

so by the Proposition 6.7 we have stability when the coefficients of the cubic on the
denominator satisfy

A = b/a + β > 0, B = 1/a + βb/a + γ > 0, C = bγ /a > 0, (6.21)

AB − C = (b/a + β)(1/a + βb/a)+ βγ > 0. (6.22)

For example, when γ > 0 and 1 + (2 + γ )β > 0, we can choose a = b = 1 for a
stable system.

Ferrari solved the biquadratic (quartic) equation of degree four by radicals, thus
obtaining the roots in terms of algebraic surds. For quintic equations, Hermite
demonstrated a solution in terms of elliptic functions. These approaches become
increasingly complicated, and for polynomials of higher degree, one has to resort
to numerical or graphical approaches for locating the roots. Maxwell’s stability
question is solved by the Routh–Hurwitz criterion Theorem 6.12 in the next section.

6.4 Hurwitz’s Stability Criterion

We consider the equation

a0s
n + a1s

n−1 + · · · + an−1s + an = 0 (6.23)
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where a0 > 0, a1, . . . , an−1 ∈ R, and for notational convenience we take aj = 0
for j < 0 and for j > n. Then we build the n× n matrix

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 a3 a5 . . . a2n−1

a0 a2 a4 . . . a2n−2

0 a1 a3 . . . a2n−3
...

. . .
. . .

...

0 . . . ∗ . . . an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6.24)

in which the indices increase in steps of two as we move from left to right along
each row, and decrease in steps of one as we move down each column. The leading
diagonal of the Hurwitz matrix gives the coefficients of the polynomial in order
a1, a2, . . . , an, omitting the leading coefficient a0.

Theorem 6.12 (Hurwitz) All the roots of the polynomial equation have negative
real parts, if and only if all the leading minors of H are positive, so

�1 = a1 > 0, �2 > 0, . . . , �n = det(H) > 0. (6.25)

Proof The proof in [30] involves a complicated application of the argument
principle, and is omitted. 	

In calculations, we can assume that all the coefficients are positive, since this has
already been established as a necessary condition for stability. With the aid of
computers, Hurwitz’s condition 6.12 becomes a feasible calculation for medium
sized matrices, and can be carried out in exact arithmetic without root finding.
Another advantage is that one can compute the minors when they involve additional
parameters, which often happens in control problems.

Example 6.13 For the cubic equation s3 + As2 + Bs + C = 0, we have

H =
⎡

⎣
A C 0
1 B 0
0 A C

⎤

⎦ , (6.26)

with leading minors

A,

∣
∣
∣
∣
A C

1 B

∣
∣
∣
∣ = AB − C,

∣
∣
∣
∣
∣
∣

A C 0
1 B 0
0 A C

∣
∣
∣
∣
∣
∣
= (AB − C)C, (6.27)

and Hurwitz condition is that all of these are positive. Considering the last two
minors, we see that C > 0, so the condition is A,C,AB − C > 0, which is
equivalent to Proposition 6.7.
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Hurwitz’s criterion 6.12 turns out to be equivalent to the solution achieved by
Routh. In this book we present Hurwitz’s version since the former can be expressed
in terms of determinants rather then Routh’s special arrays.

6.5 Units and Factors

We can solve the stability problem using some commutative algebra. Ultimately we
will describe and solve the problem using the polynomial ring C[s], and it is helpful
to introduce some related rings of rational functions.

Definition 6.14 Let R be a commutative ring with 1.

(i) Say that u ∈ R is a unit if there exists v ∈ R such that uv = 1.
(ii) We say that f ∈ R divides g ∈ R if there exists h ∈ R such that g = fh. Such

an f is called a factor or divisor of g, denoted f | g.
(iii) Given nonzero g1, g2 ∈ R, an element d is called a greatest common divisor (or

highest common factor) if d divides both g1 and g2, and all common divisors
of g1 and g2 divide d .

Remark 6.15

(i) In Z, the units are {±1}.
(ii) In Z, we let (f ) = {af : a ∈ Z} be the integers that are divisible by f . Then

f |g⇔ (f ) ⊇ (g) for f, g ∈ Z \ {0}.
(iii) Note that if d is a greatest common divisor of g1 and g2, then ud is also a

greatest common divisor for any unit u ∈ R.

6.6 Euclidean Algorithm and Principal Ideal Domains

For a general introduction to ideals and factorization, see [6] chapter XIII.

Definition 6.16 (Ideals)

(i) Let R be a commutative ring with 1. An ideal J is a subset of R such that
0 ∈ J , −a ∈ J for all a ∈ J , a + b ∈ J for all a, b ∈ J and ra ∈ J for all
r ∈ R and a ∈ J . In particular, {0} and R are ideals of R.

(ii) An ideal J is called principal if there exists a ∈ J such that J = {ra : a ∈ R},
and such an ideal is denoted (a). Observe that a|b⇔ (a) ⊇ (b).

(iii) An integral domain R is a commutative ring with 1 in which fg = 0 implies
f = 0 or g = 0. An integral domain R in which all ideals are principal, is
called a principal ideal domain. In algebra, the abbreviation PID is commonly
used, although this conflicts with the abbreviation we use for proportional-
integral-differentiator controllers.
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Example 6.17

(i) The prototype of a principal ideal domain is Z with the usual multiplication
and addition. Note that (2) is the ideal of even integers, (2) ∩ (3) = (6) and
(2)+ (3) = Z. Ideals in Z are studied using Euclid’s algorithm.

(ii) In the field of rational functions C(x), the only ideals are {0} and C(x).
(iii) In C[x] the ideal J = {f ∈ C[x] : f (1) = 0 = (df/ds)(1) = f (2)}

can be expressed as J = ((x − 1)2(x − 2)). There is a Euclidean algorithm
for polynomials, based upon polynomial long division, which we use to study
ideals, and in Proposition 6.18 we show all ideals in this ring are principal.

(iv) The space C(s)p of proper rational functions may be regarded as a ring of
functions near∞ since each F ∈ C(s)p has a well defined limit lims→∞ F(s).
Hence we can introduce the strictly proper rational functions C(s)0 = {F(s) ∈
C(s)p : F(∞) = 0} which is the principal ideal generated by 1/s. To see this,
note that F(s) = (1/s)(sF (s)) where 1/s ∈ C(s)0 and sF (s) ∈ C(s)p for all
F ∈ C(s)0.

(v) It is not possible to extend the discussion of (iv) to C(s). The identity 1 =
(1 + s)(1 + s)−1 shows that one cannot regard elements of C(s) as a ring of
functions from C ∪ {∞} to C since there can be poles at∞.

(vi) The principal ideal domains that are most useful in control theory are C[s] and
C[1/(1+ s)].

Proposition 6.18 The ring C[x] is a principal ideal domain with units C \ {0}.
Proof Let f, g be nonzero polynomials with degrees n and m. Then fg is a
polynomial of degree n + m. So the identity fg = 1 occurs only if f and g are
nonzero constants.

Let J be an ideal in C[x]. If J = {0}, then J = (0). If J contains a nonzero
constant polynomial λ, then J also contains λ−1λ = 1, so J = (1) = C[x].
Otherwise, we consider the set {degree(f ) : f ∈ J, f �= 0}, which is a non-
empty subset of N, hence has a smallest member m. Now m = degree(g) for
some g ∈ J , and if f ∈ J with f �= 0, then by the Euclidean algorithm for
polynomials f = qg + r where q, r ∈ C[x] and either r = 0 or degree(r) < m.
Now r = f − qg ∈ J , so by the minimality of m, we must have r = 0. Hence
f = qg, and we deduce that J = (g). Multiplying g by the reciprocal of its leading
coefficient, if necessary, we can suppose that g is monic, and this choice is then
unique. 	

Corollary 6.19 (Minimal Polynomial) Let A ∈ Mn×n(C). Then there exists a
unique m(s) ∈ C[s] that is monic and of degree less than or equal to n such that
p(A) = 0 for p(s) ∈ C[s] if and only if m(s) is a factor of p(s) in C[s].
Proof Consider J = {p(s) ∈ C[s] : p(A) = 0} and observe that J is an ideal
in C[s]. Further, by the Cayley-Hamilton Theorem 2.29, we have χA(s) ∈ J . By
Proposition 6.18, there exists a unique monic m(s) such that J = (m(s)), and the
degree ofm(s) is less than or equal to n by (2.9). 	
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Lemma 6.20 Let f and g be nonzero in a principal ideal domain R, and (f, g) =
{af + bg : a, b ∈ R}. Then (f, g) is an ideal in R, and (f, g) = (h) where h is a
greatest common divisor of f and g. This h is unique up to multiplication by a unit.

Proof One easily checks that (f, g) is an ideal, hence (f, g) = (h) for some
nonzero h ∈ R. Also, f = 1f + 0g ∈ J , so f = kh for some k ∈ R. Likewise
g = 0f + 1g ∈ J , so g = ph for some p ∈ R, hence h is a common divisor of f
and g. Conversely, if r is a common divisor of f and g, then f = ur and g = wr
for some R, so h = af + bg = (au+ bw)r , and r is a divisor of h. If h = rs and
r = hk, then h = skh, so h(1 − sk) = 0, hence 1 = sk since h �= 0, hence s is a
unit. 	


The formula h = af + bg expressing the greatest common divisor of R as a
combination with a, b ∈ R is known as Bezout’s identity. One can write

h = [
a b

]
[
f

g

]

. (6.28)

We say that f and g are coprime if there exist a, b ∈ R such that 1 = af + gb. This
is equivalent to R = {af + bg : a, b ∈ R}. If R is a Euclidean domain such as C[s]
or Z, one can use Euclid’s algorithm to determine whether f and g are coprime by
finding a highest common factor h and a, b such that h = af + bg.

Definition 6.21 (Euclidean Domain) Let R be an integral domain with unit 1. Say
that R is a Euclidean domain if there exists δ : R \ {0} → {0, 1, . . . } such that for
all x, y ∈ R \ {0} there exists q, r ∈ R such that x = qy + r and either r = 0, or
δ(r) < δ(y).

Example 6.22

(i) The integers Z give a Euclidean domain for δ(x) = |x|.
(ii) The polynomial ring C[s] is Euclidean for δ(f ) the degree of the polynomial

f . Likewise, K[s] is a Euclidean domain for any field K.

(iii) The ring Z[s] is not Euclidean.

Proposition 6.23 Any Euclidean domain is a principal ideal domain.

Proof This follows exactly as in Proposition 6.18. 	

Algorithm The iterated Euclidean algorithm applies to a Euclidean domainR with
δ : R \ {0} → {0, 1, . . . } the Euclidean function.

Given x0, x1 ∈ R the algorithm determines a, b, x ∈ R such that (x) = (x0, x1)

and x = ax0 + bx1.
Step 0. Let x0, x1 ∈ R and suppose δ(x0) ≥ δ(x1).
Step 1. Introduce q1, x2 ∈ R such that x0 = q1x1 + x2 and either x2 = 0, in

which case stop; or δ(x1) > δ(x2), in which case continue.
Step 2. Introduce q2, x3 ∈ R such that x1 = q2x2 + x3 and either x3 = 0, in

which case stop; or δ(x2) > δ(x3), in which case continue.
Step n. Introduce qn ∈ R such that xn−1 = qnxn in which case stop.



6.7 Ideals in the Complex Polynomials 185

The algorithm terminates since δ(x1) > δ(x2) > δ(x3) > . . . is a strictly
decreasing sequence of nonnegative integers, so must reach 0 in at most δ(x1) steps.
Also

(x0, x1) = (x1, x2) = (x2, x3) = · · · = (xn−1, xn) = (xn).

We reverse the steps and make the remainder the subject of the formulas

xn = xn−2 − qn−1xn−1

xn−1 = xn−3 − qn−2xn−2

...
...

x2 = x0 − q1x1,

so we recover an, bn ∈ R such that xn = anx0 + bnx1 by substituting back.
Equivalently, we can write

[
x1

x2

]

=
[

0 1
1 −q1

] [
x0

x1

]

[
x2

x3

]

=
[

0 1
1 −q2

] [
x1

x2

]

...
...

[
xn−1

xn

]

=
[

0 1
1 −qn−1

] [
xn−2

xn−1

]

and we can recover xn = anx0 + bnx1 by matrix multiplication.

6.7 Ideals in the Complex Polynomials

Proposition 6.24 Let F be a nonempty finite set of complex polynomials, and J (F )
the ideal in C[s] generated by F ; that is, the intersection of all the ideals in C[s]
that contain F . Then by finitely many applications of the division algorithm, one
determines p ∈ C[s] such that (p) = J (F ).
Proof We give an algorithm for finding p. For F = {p1, . . . , pm} we can describe
J (F ) explicitly as

J (F ) = {h1p1 + · · · + hmpm : h1, . . . , hm ∈ C[s]}. (6.29)

We assume that the elements of F are nonzero and let d(F ) = min{deg(p);p ∈ F }.
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Start with F0 = F and choose p0 ∈ F0 such that deg(p0) = d(F0). For each
p ∈ F0, we use the Euclidean algorithm for polynomials to write p = qp0 + r
where q, r ∈ C[s] and either r = 0 or deg(r) < deg(p0). Note that r = p − qp0 ∈
J (F0). If remainder r = 0 for all p ∈ F0, then p0 divides all p ∈ F0 and we have
J (F0) = (p0). Otherwise, there exist nonzero remainders, and we introduce the set
of nonzero remainders F1 = {r = p − qp0; r �= 0;p ∈ F0} where J (F1) = J (F0)

and d(F1) < d(F0). Then we repeat with F1 instead of F0.
A strictly decreasing sequence of positive integers is finite, so after at most d(F )

steps, we obtain a nonempty finite set of nonzero complex polynomialsFj such that
J (Fj ) = J (F ) and J (Fj ) = (pj ) for some pj ∈ Fj . 	

Example 6.25 (Lowest Common Denominator) Let F be a nonempty and finite set
of complex rational functions, so F ⊂ C(s), and let

J = {p(s) ∈ C[s] : p(s)f (s) ∈ C[s], ∀f (s) ∈ F }. (6.30)

Then J is an ideal in C[s]. To see this, note that 0 ∈ J since 0 ∈ C[s] and for
p(s), q(s) ∈ J we have (p(s) + q(s))f (s) ∈ C[s] for all f (s) ∈ F ; likewise
p(s)f (s)g(s) ∈ C[s] for all p(s) ∈ J , f (s) ∈ F and g(s) ∈ C[s].

Now J = C[s] if and only if 1 ∈ J , or equivalently, F ⊂ C[s]. This
happens in particular if F = {0}. Otherwise, we let fj (s) = pj (s)/qj (s) with
pj (s), qj (s) ∈ C[s] for j = 1, . . . , n be the nonzero elements of F , and observe
that q(s) = q1(s) . . . qn(s) satisfies q(s)fj (s) ∈ C[s] for all j = 1, . . . , n, so q(s)
is a nonzero element of J . Then by the Proposition 6.18, there exists p(s) ∈ C[s]
such that J = (p(s)), so we can clear the denominators of the elements of F by
multiplying by p(s). This p(s) is often called the lowest common denominator,
and we can find it explicitly by the Euclidean algorithm. More precisely, p(s) is
the polynomial of lowest degree in J \ {0}, and is unique up to multiplication
by a nonzero complex number. This result has a significant application to finding
partial factions, and enables us to calculate inverse Laplace transforms, as in
Proposition 6.55

6.8 Highest Common Factor and Common Zeros

By Proposition 6.18 and Lemma 6.20, any two nonzero polynomials in C[s] have
a greatest common divisor. In C[s], the units are precisely the nonzero constant
polynomials, so we can replace a greatest common divisor by a monic greatest
common divisor. The following result characterizes the case in which the greatest
common divisor is 1. The criterion can be assessed via the Euclidean algorithm,
which one can carry out in exact arithmetic, with computer assistance as required.
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Proposition 6.26 Nonzero complex polynomials P and Q have no common com-
plex zeros if and only if there exist complex polynomialsM and N such that

PM +QN = 1. (6.31)

Proof If P andQ have a common zero λ, then

P(λ)M(λ) +Q(λ)N(λ) = 0,

contrary to the equality.
Conversely, suppose that P and Q have no common zeros and carry out the

Euclidean algorithm for P and Q to obtain complex polynomials M,N,R such
that R is the highest common factor of P andQ and PM +QN = R. If R = r is a
nonzero constant, then we can multiply through by r−1 to obtain PM/r+QN/r =
1, as required. Otherwise, R is a complex polynomial of positive degree, and hence
by the fundamental theorem of algebra [6] has a complex zero λ. Now R is a factor
of both P and ofQ, so s − λ is a factor of both P andQ, so λ is a common zero of
P andQ, contrary to assumption. 	

Corollary 6.27 A nonconstant polynomial P has only simple zeros if and only if
the highest common factor of P and P ′ is 1.

Proof Now P has multiple zeros if and only if (s − λ)2 is a factor of P for some
λ ∈ C, or equivalently P(λ) = (dP/ds)(λ) = 0. Otherwise, P and dP/ds have no
common zeros and we have the situation of the Proposition 6.26. See also [6], page
403. 	

Remark 6.28

(i) MATLAB can find the greatest common divisor (highest common factor) for
polynomials via command
>> [g,M,N]=gcd(P,Q)

(ii) Let G be a nonconstant complex rational function. Then we can write G =
P/Q for complex polynomialsP andQ, and find their highest common factor
H by the Euclidean algorithm. First, ifH = 1, then P andQ have no common
complex zeros and the algorithm gives complex polynomials X and Y such
that PX + QY = 1. The X and Y can can be found using the Euclidean
algorithm, which can be carried out in exact arithmetic–no need to find roots
of polynomial equations. If H is a polynomial of positive degree, then we can
write P = Hp and Q = Hq where p, q are complex polynomials such that
p/q = P/Q = G, and p and q have highest common factor 1, and we are back
in the first case. Thus we can reduce G to G = p/q where p, q are complex
polynomials with no common complex zeros.

(iii) The algebra C[x, y] of complex polynomials in two variables is not a principal
ideal domain, but does have unique factorization. See [6], pages 76 and 349.
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(iv) The Euclidean algorithm for polynomials [6] page 64 works for K[s] for any
field K such as the reals R or the rationals Q, so Proposition 6.18 holds in this
context. However, 1+ s2 and (1+ s2)2 have no common zeros in R, but clearly
they have common factor 1 + s2. Proposition 6.26 makes essential use of the
fundamental theorem of algebra, which establishes algebraic completeness of
C.

6.9 Rings of Fractions

Definition 6.29 (Multiplicative Sets) Let R be an integral domain, and S ⊆ R

such that 1 ∈ S and s, t ∈ S implies st ∈ S; then S is said to be multiplicative. A
multiplicative set S is said to be saturated if ab ∈ S for a, b ∈ R implies a, b ∈ S.

Example 6.30 The following sets are multiplicative for the usual multiplication
operation:

(i) in an integral domain R, the set R� = {r ∈ R : r �= 0};
(ii) the set of units, namely the set of u ∈ R such that uv = 1 for some v ∈ R;

(iii) in C[s], the set of monic stable polynomials;
(iv) in C[s], the set {(1+ s)n : n = 0, 1, . . . } of powers of (1+ s);
(v) in C[s], the set of even polynomials f (s) so that f (s) = f (−s);

(vi) S� the set of nonzero stable rational functions.

The examples (i), (ii), (iii) and (iv) are saturated; whereas (v) is not, since s2 is an
even polynomial which is the product of the odd polynomials s and s. (vi) This is
saturated as a subset of the ring of stable rational functions, which forms an integral
domain. However (1 + s)/(1 + s) = 1 is stable, whereas (1 + s) is not stable, so
(vi) is unsaturated in C(s).

Definition 6.31 (Ring of Fractions)

(i) For a multiplicative subset S of an integral domain R, we introduce S−1R =
{a/b : a ∈ R, b ∈ S}, the set of fractions with numerator in R and denominator
in S. We identify a/b with c/d when ac = bd , and identify a/1 with a ∈
R. Then S−1R becomes a commutative ring for the obvious operations a/b +
f/g = (ag + bf )/(bg) and (a/b)(f/g) = (af )/(bg), and we can regard R as
a subring of S−1R.

(ii) In particular Q(R) = {P/Q : P ∈ R,Q ∈ R�} gives the field of fractions of
R.

Example 6.32

(i) We can choose S = {g ∈ C[s] : g �= 0} and R = C[s] so that S−1R = {f/g :
f, g ∈ C[s] : g �= 0} = C(s).
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(ii) The ring S consists of proper rational functions p(s)/q(s) with denominator
q(s) a monic stable polynomial. In Proposition 6.58, we summarize the
properties of S, and write out the formulas in detail there.

(iii) We can choose S� in S, to form {P/Q : P ∈ S,Q ∈ S�} which we show in
Proposition 6.36 out to be all of C(s).

(iv) The advantage of a saturated set is that we can take a fraction p/q ∈ S−1R

and any factorization p = p1p2 and q = q1q2 in R with give p/q =
(p1/q1)(p2/q2) with factors p1/q1 and p2/q2 in S−1R.

The following result introduces a ring which is surprisingly important in the
theory. We have already encountered this in Exercise 4.6.

Lemma 6.33 Let R be the space of proper complex rational functions with poles
only at −1. Then R is a principal ideal domain, and a subring of S.

Proof Observe that {g(s)/(1 + s)n : f (s) ∈ C[s], n = 0, 1, . . . } gives a ring of
rational functions with the only possible poles at−1 and∞. When g(s)/(1+ s)n is
proper, then the only possible pole is at −1.

For f (s) ∈ R, there is Laurent expansion about −1 given by

f (s) = p(s) +
n∑

k=1

ak

(s + 1)k
, (6.32)

where the principal part p(s) is a polynomial, which reduces to a constant since f
is proper. Hence the map C[λ] → R

n∑

k=0

akλ
k �→

n∑

k=0

ak

(s + 1)k
(6.33)

is an isomorphism of algebras. Hence R is a principal ideal domain. 	

In Proposition 6.36, we show that {P/Q : P ∈ R,Q ∈ R�} is all of C(s).

Example 6.34 (Changes of Variable in the Rational Functions) Consider C(s) and
let g(s) ∈ C(s). Then the map λ �→ g(s) and 1 �→ 1 determines a homomorphism
of fields C(λ) → C(s) via f (λ) �→ f (g(s)). Consider a, b, c, b ∈ C such that
ad − bc �= 0, and write

λ = as + b
cs + d , s = dλ− b

−cλ+ d . (6.34)

There is an isomorphism of fields C(λ) → C(s) : f (λ) �→ f (as+b
cs+d ) with inverse

f (s) �→ f ( dλ−b−cλ+d ). In particular, we can take

λ = 1

s + 1
, s = λ− 1

−λ . (6.35)



190 6 Algebraic Characterizations of Stability

Let P(λ) ∈ C[λ]. Then P(1/(1 + s)) gives a stable rational function in s. We have
a ring R = C[1/(1+ s)] which is a principal ideal domain and a subring of S.

In the next few sections we consider how the stable rational functions can be used
to solve control problems. The implications for Laplace transforms are discussed in
the final two sections of this chapter.

6.10 Coprime Factorization in the Stable Rational Functions

Definition 6.35 (Coprime) Let P(s),Q(s) ∈ S be non zero. We say that P andQ
are coprime if there exist X(s) and Y (s) in S such that

P(s)X(s) +Q(s)Y (s) = 1. (6.36)

Proposition 6.36 (Coprime Factorization into Stable Rationals) Let G(s) be a
complex rational function. Then there exist P(s) andQ(s) in S such that

G(s) = P(s)

Q(s)
(6.37)

and P(s) and Q(s) are coprime in S. In particular, the field of fractions of S is
C[s].
Proof

(1) We have shown that C(s) and C(1/(s+1)) are isomorphic. The issue is to show
that we can choose P(s) andQ(s) coprime in S. SinceG(s) is rational, we can
write G(s) = M(s)/N(s) where complex polynomialsM,N have no common
zeros.

(2) We introduce a new variable λ = 1/(1+ s) and write

M̃(λ) = λmM
(1− λ
λ

)

Ñ(λ) = λmN
(1− λ
λ

)
(6.38)

where m is the maximum of the degrees of M and N , so that M̃(λ) and Ñ(λ)
are polynomials. Now M̃(λ) and Ñ(λ) have no common zeros. The problematic
case is λ = 0, but we note that M̃(0) is the mth coefficient of M , and Ñ(0) is
themth coefficient ofN ; so either M̃(0) or Ñ(0) is not zero by the choice ofm.

(3) By Proposition 6.26 there exist complex polynomials X̃(λ) and Ỹ (λ) such that

M̃(λ)X̃(λ)+ Ñ(λ)Ỹ (λ) = 1. (6.39)
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(4) Finally we convert back to the original variable s = (1− λ)/λ and introduce

P(s) = M̃
( 1

1+ s
)
; Q(s) = Ñ

( 1

1+ s
)
; (6.40)

X(s) = X̃
( 1

1+ s
)
; Y (s) = Ỹ

( 1

1+ s
)
; (6.41)

so that P(s),Q(s),X(s), Y (s) belong to S. Indeed, they are all proper and the
only poles are at s = −1. Furthermore, P(s) andQ(s) satisfy

P(s)X(s) +Q(s)Y (s) = 1 (6.42)

and

G(s) = M(s)
N(s)

= M̃(1/(1+ s))
Ñ(1/(1+ s)) =

P(s)

Q(s)
. (6.43)

We have shown that C(s) is the field generated by S.
	


Algorithm (Coprime Factorization Algorithm for Stable Rationals)

(1) Write G(s) as a quotient of polynomials in s with no common zeros.
(2) Introduce λ via s = (1− λ)/λ and clear the denominators.
(3) Apply the Euclidean algorithm for polynomials in λ.
(4) Convert back to the original variable s by λ = 1/(1+ s).

Example 6.37 (Coprime Factorization in Stable Rationals) Let

G(s) = s2 + 5

s2 − s + 1
. (6.44)

Then with s = (1− λ)/λ, we have

G(s) = (1− λ)2 + 5λ2

(1− λ)2 − λ(1− λ)+ λ2
= 6λ2 − 2λ+ 1

3λ2 − 3λ+ 1
. (6.45)

Then by the Euclidean algorithm

(24λ− 2

7

)(
3λ2 − 3λ+ 1

)
−

(12λ− 9

7

)(
6λ2 − 2λ+ 1

)
= 1 (6.46)

so letting λ = 1/(1+ s), we have PX +QY = 1 with P,Q,X, Y ∈ S
( 22− 2s

7(1+ s)
)( 3

(1+ s)2 −
3

1+ s + 1
)
−

( 3− 9s

7(1+ s)
)( 6

(1+ s)2 −
2

1+ s + 1
)
= 1.

(6.47)
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Realizing the quotient via linear systems. Suppose that G(s) = P(s)/Q(s) where
P(s) and Q(s) are coprime in S, where Q(s) is proper but not strictly proper.
Then there exists a BIBO stable linear system �1 = (A1, B1, C1,D1) with transfer
function P(s), and a BIBO stable linear system �2 = (A2, B2, C2,D2) with
transfer functionQ(s). Then there exists a linear system �×2 = (A×2 , B×2 , C×2 ,D×2 )
with transfer function 1/Q(s), which is not necessarily stable. Then G(s) is the
transfer function that arises from multiplying 1/Q(s) and P(s), namely running the
linear systems �1 and �×2 in series; see Proposition 7.14.

Definition 6.38 (Unstable Poles) For rational transfer function G(s), the unstable
poles of G are the poles in the closed left half-plane {s : �s ≥ 0} ∪ {∞}.
Corollary 6.39 The poles of G(s) in {s : �s ≥ 0} ∪ {∞} are given by the zeros of
Q(s) in {s : �s ≥ 0} ∪ {∞}.
Proof Suppose that s0 ∈ {s : �s ≥ 0} ∪ {∞} has Q(s0) = 0. Then s0 is not a pole
of X(s) or of Y (s), so from the equation P(s)X(s) + Q(s)Y (s) = 1, we deduce
that P(s0)X(s0) = 1, so P(s0) �= 0 and s0 is a pole of G(s). Conversely, the poles
of G(s) = P(s)/Q(s) are either poles of P(s), which are all in LHP , or zeros of
Q(s). 	


6.11 Controlling Rational Systems

Proposition 6.40 Let G = P/Q be a complex rational function, as in Proposi-
tion 6.36. Then the rationalK = X/Y is such that

G

1+GK ,
K

1+GK ,
1

1+GK ,
GK

1+GK (6.48)

are all stable rational functions.

Proof We recall that PX +QY = 1, we we have

G

1+GK = P/Q

1+ PX/QY = PY ;
K

1+GK = X/Y

1+ PX/QY = XQ;
1

1+GK = 1

1+ PX/QY = QY ;
GK

1+GK = PX/QY

1+ PX/QY = PX. (6.49)

Given any rational SISO, we have produced an algorithm for finding a controller to
stabilize it. 	
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Wellposedness of the SFL diagram
The standard form of the rational simple feedback loop linear system has inputs

r, d and n and states x, y and z so that

x = r − z
y = d +Kx
z = n+Gy (6.50)

for some rational functionsG and K , hence

⎡

⎣
1 0 1
−K 1 0

0 −G 1

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
r

d

n

⎤

⎦ . (6.51)

Definition 6.41 (Well Posed) The system is said to be well posed if the inputs
(r, d, n) uniquely determine the states (x, y, z).

Lemma 6.42 The SFL system is well posed if and only if 1+GK �= 0, and in this
case, the inputs determine the states by

⎡

⎣
x

y

z

⎤

⎦ = 1

1+GK

⎡

⎣
1 −G −1
K 1 −K
GK G 1

⎤

⎦

⎡

⎣
r

d

n

⎤

⎦ . (6.52)

We abbreviate this to X = �U .

Proof The proof consists of calculating the inverse of the matrix above. 	
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Definition 6.43 (Internal Stability of SFL) The SFL system is internally stable
if all the transfer functions in the matrix� are stable, so

1

1+GK ,
G

1+GK ,
GK

1+GK ,
K

1+GK , (6.53)

all belong to S.

This is equivalent to having the all entries of the matrix

1

1+GK
[
GK K

G 1

]

(6.54)

in S. This matrix does not have any particular physical interpretation, but its entries
are all stable if and only if the entries of � are all stable, where � is physically
meaningful. The idea is that we want all the junctions in the diagram of the SFL to
be stable. (Think of the x, y, z as representing the temperature of the components of
a tumble drier; we need to ensure that these do not overheat.)

Consider a SISO system (A,B,C,D) with transfer functionG(s), and consider
the corresponding simple feedback loop with rational controller K . We now allow
G(s) to be an arbitrary rational function, and write it in the form G = P/Q with
coprime P,Q ∈ S.

By previous results, there exists another SISO such that K is the corresponding
transfer function, so in this sense we have shown that any SISO with rational
transfer function can be stabilized by a rational (possibly unstable) controller. In
applications, one may have other criteria in mind when selecting a controller. In
applications, one can tune controllers so that they ensure stability, but allow the
system to be responsive.

Theorem 6.44 (Youla’s Parametrization of Stabilizing Controllers) Suppose
thatG = P/Q has a coprime factorizationPX+QY = 1 where P,Q,X, Y ∈ S.

(i) Then K = X/Y internally stabilizes SFL.
(ii) The set of all rational controllers K that internally stabilize SFL is

{
K = X +QR

Y − PR : R ∈ S; Y − PR �= 0
}
. (6.55)
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Proof (i) Suppose that K = X/Y . Then,

I +GK = 1+ X
Y

P

Q
= YQ+XP

YQ
= 1

YQ
; (6.56)

so 1
1+GK = YQ and hence� has all entries in S, since

� = YQ
⎡

⎣
1 −P/Q −1
X/Y 1 −X/Y

PX/YQ P/Q 1

⎤

⎦ =
⎡

⎣
YQ −YP −YQ
XQ YQ −XQ
XP YP YQ

⎤

⎦ . (6.57)

Suppose thatG = P/Q and K = X/Y where PX +QY = 1. Then

1

1+GK
[
GK K

G 1

]

= 1

PX +QY
[
PX QX

PY QY

]

=
[
X

Y

]
[
P Q

]
(6.58)

Hence we have found a controller that internally stabilizes the simple feedback loop
system.
(ii) Suppose that K = X/Y . Then, as in Lemma 6.42

I +GK = 1+ X
Y

P

Q
= YQ+XP

YQ
= 1

YQ
; (6.59)

so 1
1+GK = YQ and hence� has all entries in S, since

� = YQ
⎡

⎣
1 −P/Q −1
X/Y 1 −X/Y

PX/YQ P/Q 1

⎤

⎦ =
⎡

⎣
YQ −YP −YQ
XQ YQ −XQ
XP YP YQ

⎤

⎦ . (6.60)

Hence we have found a controller that internally stabilizes the simple feedback
loop system. Suppose that

K = X +QR
Y − PR (6.61)

Then

I +GK = 1+ X +QR
Y − PR

P

Q
= YQ+XP
(Y − PR)Q =

1

(Y − PR)Q ; (6.62)

so

1

1+GK = (Y − PR)Q (6.63)
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and hence

� =
⎡

⎣
(Y − PR)Q −(Y − PR)P −(Y − PR)Q
(X +QR)Q (Y − PR)Q −(X +QR)Q
(X +QR)P (Y − PR)P (Y − PR)Q

⎤

⎦ (6.64)

has all its entries in S. Conversely, letK be a rational controller that stabilizes SFL;
then

1

1+KG
[
GK G

K 1

]

(6.65)

is a submatrix of �, hence has all its entries in S. Hence

R = [
X Y

] 1

1+KG
[
GK G

K 1

] [
Y

−X
]

(6.66)

belongs to S, and we write this as

R = [
X Y

]
[
G

1

]

(1+KG)−1 [
K 1

]
[
Y

−X
]

= (XG+ Y )(KY −X)
1+KG

= (XP/Q + Y )(KY − X)
1+KP/Q

= (PX +QY)(KY − X)
Q+KP = KY −X

KP +Q.

Y − PR = Y − PKY − PX
KP +Q = QY + PX

KP +Q = 1

KP +Q �= 0; (6.67)

and we solve forK from

(KP +Q)R = KY −X (6.68)

to get

K = X +QR
Y − PR . (6.69)
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6.12 Invariant Factors

The theory of linear algebra is often formulated for matrices with entries in a field.
Much of theory extends to matrices with entries in a principal ideal domainR, so we
are able to introduce the machinery necessary to describe MIMO systems in terms
of transfer functions involving C[s] and C[1/(1+ s)].
Definition 6.45 The elementary row operations on a matrix over R are:

(i) interchanging two rows;
(ii) multiplying one row by a unit in R;

(iii) adding a multiple of one row to another.

For later use, we prove the following basic results.

Lemma 6.46 Let R be a principal ideal domain.

(i) An n × n matrix X with entries in a principal ideal domain R is invertible in
Mn×n(R) if and only if detX is a unit in R.

(ii) For all B ∈ Rn×1, there exists X ∈ Mn×n(R) with detX a unit in R such that
XB = col[r, 0, . . . , 0], where (r) is the ideal generated by the entries of B.

Proof

(i) Existence follows from

Xadj(X) = (detX)In (6.70)

and the forward implication follows from identity detX det(X−1) = det In =
1.

(ii) Suppose thatB = col[b1, . . . , bn]. First observe that we can permute the entries
of B by interchanging pairs of neighbouring entries, as in

⎡

⎢
⎣

0 1 0

1 0
...

0 . . . I

⎤

⎥
⎦

⎡

⎣
b1

b2

B ′

⎤

⎦ =
⎡

⎣
b2

b1

B ′

⎤

⎦ (6.71)

where B ′ = col[b3, . . . , bn] and the matrix here has (detX)2 = detX2 = 1,
so detX is a unit. Now we prove the statement by induction on n, starting with
the crucial case n = 2. Let x, y ∈ R with y �= 0. Then

[
y

x

]

=
[
p q

−b a
] [
r

0

]

(6.72)

where the matrix is unimodular in M2×2(R) and r is the generator of the ideal
(x, y) = {wx+zy : w, z ∈ R}. To see this, we introduce (r) = (x, y), so r �= 0,
and we write y = ar and x = br for some a, b ∈ R. We have r = py + qx for
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some p, q ∈ R; then r = par + qbr and 1 = ap + bq by cancellation; then

[
p q

−b a
] [
y

x

]

=
[
r

0

]

, (6.73)

so we can left multiply by the inverse matrix to solve.
Suppose we have the result for n, and consider n + 1. Then Bn+1 =

col[b1, . . . , bn, bn+1] can be written as Bn+1 = [Bn; bn+1] where Bn =
col[b1, . . . , bn], so we have Xn ∈ Mn×n(R) with detXn a unit in R such that

[
Xn 0
0 1

] [
Bn

bn+1

]

=
⎡

⎣
rn

0
bn+1

⎤

⎦ , (6.74)

where (rn) is the ideal generated by the entries of Bn. We now permute the
entries of the final column vector, and apply the case of n = 2 to find rn+1 =
(rn, bn+1).

	

In particular, when R is a Euclidean domain, we can find the entries of X

by following through the steps in this induction proof and using the Euclidean
algorithm in the case n = 2.

Proposition 6.47 (Unimodular-Upper Triangular Decomposition) Let R be a
principal ideal domain, and A ∈ Mn×n(R). Then there exists a upper triangular
T ∈ Mn×n(R) and a unimodular U ∈ Mn×n(R) such that A = UT .

Proof By the Lemma 6.46, there exists X0 ∈ Mn×n(R) with detX0 a unit in R
such that

X0A =
[
r1 s1

0 A1

]

, (6.75)

so we can introduceX1 ∈ M(n−1)×(n−1)(R) with detX1 a unit in R such that

[
1 0
0 X1

]

XA =
⎡

⎣
r1 . . . . . .

0 r2 . . .

0 0 A2

⎤

⎦ (6.76)

and repeat until we have an upper triangular matrix T0 and X ∈ Mn×n(R) with
detX0 a unit in R such thatXA = T0; then we let U0 = X−1 so A = U0T0. Finally,
we multiply the first column of U0 by 1/ detU0 to get a unimodularU , and the first
row of T0 by detU0 to get an upper triangular T with A = UT . 	


Let B = [bjk] be an n × m matrix with entries in R. For S ⊆ {1, . . . , n} and
T ⊆ {1, . . . ,m} with �S = �T = �, let det[bjk]j∈S,k∈T be the determinant formed
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from the submatrix of B, known as an �- minor. Then let

J� =
(

det[bjk]j∈S,k∈T : �S = �T = �
)

(6.77)

be the ideal generated by all of these �-minors. By considering the determinant
expansion of each minor in terms of smaller minors, we observe that

Jn ⊆ Jn−1 ⊆ · · · ⊆ J1, (6.78)

where J1 is simply the ideal generated by the individual entries of B. Since R is a
principal ideal domain, we have J� = (��), with �1 | �2 | · · · | �n. Recall that
�� is uniquely determined up to multiplication by a unit in R. With �n = dn�n−1,
the additive quotient group Jn−1/Jn is naturally isomorphic to the additive quotient
group R/(dn), namely the group with addition modulo (dn). To see this, use the
group homomorphism R → Jn−1 : p �→ p�n−1 followed by the quotient map
Jn−1 → Jn−1/Jn which is a group homomorphism. Note that �n | �n−1p if and
only if dn | p.

The divisibility conditions can be made more precise by a theorem which was
proved by H.J.S. Smith for R = Z.

Theorem 6.48 (Invariant Factors) Let R be a principal ideal domain and B ∈
Mn×m(R). Then there exist unimodular matrices X ∈ Mn×n(R) and Y ∈
Mm×m(R) and a n×m matrix D such that B = XDY , where

D =

⎡

⎢
⎢
⎢
⎢
⎣

d1 0 . . . 0

0
. . . 0

...
...
. . . dr

...

0 . . . . . . 0

⎤

⎥
⎥
⎥
⎥
⎦

with r ≤ min{m,n} and d1 | d2 | · · · | dr , and �u = d1, d2 . . . du. The sequence
(d1, . . . , dr ) is called an invariant factor sequence and D is an invariant factor
matrix. The factors are unique up to multiplication by units.

Proof The proof is a considerable refinement of the method used to prove
unimodular-upper triangular factorization, and is given in detail in [20]. By
calculating the �n, one can find the dk via �k = d1, . . . dk , and hence find D.
Uniqueness can be proved from determinants identities, as in Exercise 6.18. For
small matrices with entries in C[s] we can use the algorithm of Proposition 6.24 to
compute the �k. 	

Example 6.49 For G,K ∈ R, the matrix

⎡

⎣
1 −G −1
K 1 −K
GK G 1

⎤

⎦ (6.79)
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has ideals

J3 = ((1+GK)2), J2 = (1+GK), J1 = (1), (6.80)

as one easily shows by calculating the minors.

We now revert to the notation used previously.

Proposition 6.50 Let (A,B,C,D) be a MIMO with A ∈ Mn×n(C).
(i) Then the transfer function is

T (s) = P(s)

χA(s)
(6.81)

where χA(s) is the characteristic polynomial of A and the entries of P(s)
belongs to the ideal Jn−1 in C[s] that is generated by the n − 1-minors of
sI − A.

(ii) Suppose that Jn−1 = (�n−1(s)) where the degree of �n−1(s) is positive. Then
χA(s) = dn(s)�n−1(s) and

T (s) = D + R(s)

dn(s)
(6.82)

where the fraction is a matrix of strictly proper rational functions.

Proof

(i) In the principal ideal domain C[s] we can write Jn = (χA(s)), and Jn−1 for the
ideal generated by the n− 1-minors of sI −A, or equivalently by the entries of
adj(sI − A). Then the result follows from the formula

T (s) = χA(s)−1(χA(s)D + Cadj(sI − A)B). (6.83)

(ii) If Jn−1 = (�n−1(s)) where the degree of �n−1(s) is positive, then we can
write χA(s) = dn(s)�n−1(s) and dn(s) ∈ C[s] is a new common denominator
for the entries of T (s) of lower degree less than n. By the Euclidean algorithm,
a typical p(s) ∈ Jn−1 has the form p(s) = χA(q)q(s) + �n−1(s)r(s) where
q(s) ∈ C[s] and r(s) ∈ C[s] has either r(s) = 0 or the degree of r(s) is less
than the degree of dn(s). We apply this to the entries p(s) of P(s) in (i).

This applies in particular to cases in which A has Jordan block decomposition as
in

A =
⎡

⎣
λ 1 0
0 λ 0
0 0 λ

⎤

⎦ , (6.84)

and J2 = (s − λ) with J3 = ((s − λ)3), so d3(s) = (s − λ)2. 	
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Let R be an integral domain. The matrix identity

[
x −y
−q p

] [
p y

q x

]

=
[

1 0
0 1

]

(6.85)

is equivalent to px−qy = 1 for x, y, p, q ∈ R. So given p, q ∈ R we can look for
x, y ∈ R to make the matrices on the left-hand side invertible. Equivalently, given
p, q ∈ R we can look for x, y ∈ R to make the determinants of matrices on the
left-hand side be units in R. If p �= 0, we can then consider the element q/p as a
fraction in its lower terms in the quotient field over R. Note that this involves an
additional assumption on p, since the matrix identity

[
0 1
1 0

] [
0 1
1 0

]

=
[

1 0
0 1

]

(6.86)

does not lead to such a fraction.
We now consider coprime factorization in Mn×n(R) for n > 1 which is not

commutative and has zero divisors. We need to respect left and right factors.

Definition 6.51

(i) Given P,Q ∈ Mn×n(R), we say that [P ;Q] are right coprime if there exist
X,Y ∈ Mn×n(R) such that XP − YQ = In; so that

[
X −Y ]

[
P

Q

]

= In. (6.87)

(ii) Given W,Z ∈ Mn×n(R), we say that [W,Z] are left coprime if there exist
R, S ∈ Mn×n(R) such that −WR + ZS = In; so that

[−W Z
]
[
R

S

]

= In. (6.88)

Note that [P ;Q] are right coprime if and only if [P�,Q�] are left coprime, as
we see by taking the transpose of XP − YQ = In.

Lemma 6.52 The following data are equivalent inMn×n(R):
(i) a right coprime [P ;Q], and a left coprime [−W,Z] such that−WP+ZQ = 0;

(ii) given P,Q,W,Z ∈ Mn×n(R) such that the block matrix identity

[
X −Y
−W Z

] [
P R

Q S

]

=
[
In 0
0 In

]

(6.89)

holds for some X,Y,R, S ∈ Mn×n(R).
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Proof Given (ii), we immediately have (i) by considering the block diagonal and
bottom left entries. Conversely, given (i) we have X,Y,R, S ∈ Mn×n(R) such that

[
X −Y
−W Z

] [
P R

Q S

]

=
[
In E

0 In

]

(6.90)

where E = XR− YS. To remove this term, we postmultiply by

[
In −E
0 In

]

to obtain

[
X −Y
−W Z

] [
P R − PE
Q S −QE

]

=
[
In 0
0 In

]

(6.91)

which gives a matrix factorization with P,Q,−W,Z in the required positions.
Suppose that we have a factorization as in the Lemma 6.52 for R = C[1/(1+s)],

and suppose further that P and Z are invertible; then

G = QP−1 = Z−1W (6.92)

is an n× n matrix with entries in the quotient field over R. 	


Proposition 6.53 (Stabilizing MIMOs) Given the data as in the Lemma 6.52,
suppose further that X,P ∈ Mn×n(R) are invertible inMn×n(C(s)). Then

(i) G = QP−1 = Z−1W has a doubly coprime factorization;
(ii) The simple feedback loop with plant G is stabilized with controller K =

−RS−1, so that

(I +GK)−1G = SW ∈ Mn×n(S),
(I +GK)−1 = SZ ∈ Mn×n(S),

(I +KG)−1K = −PY ∈ Mn×n(S),
(I +KG)−1 = PX ∈ Mn×n(S).

Proof Proposition 3.16 Schur complements, S − RP−1Q ∈ Mn×n(C(s)) is
invertible with inverse Z ∈ Mn×n(S); likewise Z − WX−1Y is invertible in
Mn×n(C(s)) with inverse S ∈ Mn×n(S). In the simple feedback loop, suppose that
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G = Z−1W and K = −RS−1. Then we have a sequence of identities:

(I +GK)y = Gu
(I − Z−1WRS−1)y = Z−1Wu

Z−1(ZS −WR)S−1y = Z−1Wu

y = SWu;

the case of (I +GK)−1 is similar. Likewise we useG = QP−1 andK = −X−1Y ,
so

(I +KG)y = Ku
(I −X−1YQP−1)y = −X−1Yu

(XP − YQ)P−1y = −Yu
y = −PYu,

and (I +KG)−1 is found similarly. We can carry out all the calculations within the
domain R ⊂ S, and express the hypothesis as detX �= 0, and detP �= 0.

The results also apply to

[
X −Y
−W Z

]

,

[
P R

Q S

] [
k × k k ×m
m× k m×m

]

(6.93)

whereG ∈ Mm×k(C(s)) and K ∈ Mk×m(C(s)) so that GK and KG are defined.
	


We can use these results in cases of interest due to the following theorem.

Theorem 6.54 (Coprime Factorization) Let R be a principal ideal domain with
field of fractions QR. Then for all G ∈ Mm×k(QR), there exist a left coprime
factorization and a right coprime factorization.

Proof Let Gj,� = qj,�/pj,� be a nonzero entry of G, written as a fraction where
pj,� and qj,� are coprime; then let y be the least common multiple of all the pj,�.
Then P = yIk ∈ Mk×k(R) and Q = yG ∈ Mm×k(R) have G = QP−1. Then
by the unimodular-triangular decomposition result, there exists a unimodular U ∈
M(k+m)×(k+m)(R) with block form

U =
[
U1,1 U1,2

U2,1 U2,2

]

(6.94)
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such that

[
U1,1 U1,2

U2,1 U2,2

] [
yIk

Q

]

=
[
T

0

]

(6.95)

where T is upper triangular. Then we introduce the inverse of U in block form

[
U1,1 U1,2

U2,1 U2,2

] [
S1,1 S1,2

S2,1 S2,2

]

=
[
I 0
0 I

]

(6.96)

where yIk = S1,1T and Q = S2,1T , so S1,1 and T are invertible, and G =
Q(yIk)

−1 = S2,1T T
−1S−1

1,1 = S2,1S
−1
1,1. Also U1,1S1,1 + U1,2S2,1 = Ik , so we

have a right coprime factorization of G. 	


6.14 Inverse Laplace Transforms of Strictly Proper Rational
Functions

In the final three sections of this chapter, we reinterpret the results in terms of
the state space functions via the Laplace transform and its inverse. We introduce
a complex vector space V of functions f (t) satisfying (E) and a complex vector
space ofR of functionsF(s) that are holomorphic near to∞. The Laplace transform
takes L : V → R, and we also introduce a inverse Laplace transform via a contour
integral such that J : R → V , such that LJ = I : R → R, as one can verify
by computing the formulas. Further, for all f ∈ V , we introduce g = JLf − f
which has Lg = 0, so by the Laplace uniqueness theorem 4.11, g = 0, hence
JL = I : V → V , so L has inverse J .

Proposition 6.55 (Laplace Inversion for Rationals) Let F(s) be a strictly proper
rational function with poles at distinct λj of order dj + 1 (j = 1, . . . ,m) and let
σ > �λj for all j = 1, . . . ,m. Then F(s) is the Laplace transform of

f (t) = lim
R→∞

1

2πi

∫ σ+iR

σ−iR
estF (s)ds (t > 0) (6.97)

where

f (t) =
m∑

j=1

Res
{
estF (s); s = λj

}
(6.98)

is a complex linear combination of t�eλj t where � = 0, . . . , dj for j = 1, . . . ,m.

Proof This result is more general but less explicit than Proposition 4.27. To
calculate the integral, we need to know the poles and then we can compute the
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necessary partial fractions by the Euclidean algorithm of Proposition 6.24 . We
write F(s) = p(s)/q(s) where the degree of p(s) is less than the degree of q(s),
and q(s) = ∏m

j=1(s − λj )dj+1 where λj are the poles of multiplicity dj + 1. Then

qj (s) =∏m
k=1;j �=k(s − λk)dk+1 give an ideal

J = (
q1(s), . . . , qm(s)

)
(6.99)

in C[s], so J = (p) for some p ∈ C[s] such that p divides qj for all j =
1, . . . ,m; since the λj are distinct, p is a unit, so J = (1). Hence the algorithm
of Proposition 6.24 gives hj (s) ∈ C[s] such that 1 = ∑m

j=1 hj (s)qj (s). Now we
apply the division algorithm and obtain gj (s), rj (s) ∈ C[s] such that p(s)hj (s) =
gj (s)(s − λj )dj+1 + rj (s) and degree of rj (s) is less than dj + 1; hence

F(s) = p(s)
q(s)

=
m∑

j=1

p(s)hj (s)qj (s)

q(s)

=
m∑

j=1

gj (s)+
n∑

j=1

rj (s)

(s − λj )dj+1 . (6.100)

We note that rj (s) is nonzero since F(s) does have a pole at λj , but F(s) → 0 as
s → ∞ so

∑m
j=1 gj (s) = 0. We can introduce constants aj,� such that F(s) has

partial fractions decomposition

F(s) =
m∑

j=1

dj∑

�=0

aj,�

(s − λj )�+1
. (6.101)

We proceed to calculate the contour integral round a semicircular contour �R
with centre σ and large radius R > 0 that goes into the left half-plane and encircles
all the poles; see Fig. 4.2 in Exercise 4.13 for this Bromwich contour. We have

1

2πi

∫

�R

estF (s)ds =
m∑

j=1

Res
{
estF (s) : s = λj

}

=
m∑

j=1

dj∑

�=0

aj,�

�!
d�

ds�
est

∣
∣
∣
s=λj

=
m∑

j=1

dj∑

�=0

aj,�

�! t
�eλj t (t > 0) (6.102)

by Cauchy’s integral formula. Without changing the value of the integral, we can
replace the integral round �R by an (improper) integral up the line from σ − i∞
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to σ + i∞ since the integral round the semicircular arc SR parametrized by s =
σ + Reiθ for π/2 ≤ θ ≤ 3π/2 and a typical summand contributes

∫

SR

ets

(s − λj )�+1

ds

2πi
= e

tσ

2π

∫ 3π/2

π/2

exp(tReiθ )Reiθ dθ

(σ + Reiθ − λj )�+1 (6.103)

which converges to 0 as R → ∞. As in Corollary 4.23, the Laplace transform
of f (t) is F(s). If F(s) = O(1/s2) as s → ∞, then the integral is absolutely
convergent. 	

Corollary 6.56 (Laplace Transforms and Stable Rational Functions) The
Laplace transform gives a bijection between

span
{
tneλt : n = 0, 1, . . . ; �λ < 0

}
(6.104)

and the set of strictly proper complex rational functions that have all their poles in
the open left half-plane {λ : �λ < 0}. All stable strictly proper rational functions
arise as transfer functions of SISOs (A,B,C, 0) where A has all its eigenvalues λj
in LHP.

Proof The Laplace transform of tneλt is n!/(s − λ)n+1, which is a strictly proper
rational function that has a pole of order n + 1 at λ in the open left half-
plane. Conversely, any strictly proper rational function has a partial fractions
decomposition as in the preceding proof. With σ = 0, Proposition 6.55 gives
an inverse formula for the Laplace transform, hence the Laplace transform is
bijective between these sets of functions. The final statement is immediate from
the realization result in Sect. 2.11. 	

Example 6.57 Let (A,B,C,D) be a SISO with stable transfer function T (s).
Suppose that u(t) = ∑N

j=1 aj e
iωj t with aj ∈ C and distinct ωj ∈ R is chosen

as the input so that the output y(t) has Laplace transform

Y (s) = T (s)
N∑

j=1

aj

s − iωj .

By a slight extension of Proposition 4.27, one can show that

y(t) =
N∑

j=1

T (iωj )aje
iωj t + z(t) (6.105)

where z(t) → 0 as t → ∞. Suppose that we wish to pick out the part of the
signal that has angular frequency ω1. Then we choose T (s) so that T (iω1) = 1 and
T (iωj ) = 0 for j = 2, . . . , N , so y(t) = a1e

iω1t + z(t).
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Proposition 6.58 The set S of stable rational functions forms a differential ring,
so

(i) S is a ring under pointwise multiplication and addition, so that F(s),G(s) ∈
S and λ,μ ∈ C imply F(s)G(s) ∈ S and λF(s)+ μG(s) ∈ S;

(ii) multiplication is commutative F(s)G(s) = G(s)F (s), and there is 1 ∈ S;
(iii) F(s)G(s) = 0 for all s ∈ RHP implies F(s) = 0 or G(s) = 0 on RHP , so

S is an integral domain;
(iv) the units in S are P/Q where P and Q are nonzero stable polynomials of

equal degree; S is not a field.
(v) Matrix X ∈ Mn×n(S) has inverse Y ∈ Mn×n(S) if and only if detX is a unit

in S.
(vi) For all F(s) ∈ S the derivative dF/ds also belongs to S and is strictly

proper;
(vii) for all a ∈ RHP , the shifted function F(s + a) also belongs to S;

(viii) Let G(s) ∈ S be strictly proper with inverse Laplace transform g(t); then
dG/ds is the Laplace transform of −tg(t), and G(s + a) is the Laplace
transform of e−atg(t).

Proof

(i) Multiplication and addition: Given F1(s) = G1(s)/H1(s) and F2(s) =
G2(s)/H2(s) with degree(G1(s)) ≤ degree(H1(s)) and degree(G2(s)) ≤
degree(H2(s)) we have

F1(s)F2(s) = G1(s)G2(s)

H1(s)H2(s)
(6.106)

where degree(G1(s)G2(s)) ≤ degree(H1(s)H2(s)). Also, the zeros of
H1(s)H2(s) are either zeros of H1(s) or zeros of H2(s), hence are in LHP.
By partial fractions, we can write F ∈ S as

F(s) = Q+
∑N

j=1
aj (s − λj )−nj , (6.107)

where here Q ∈ C is a constant since F ∈ S is proper, and all the λj have
�λj < 0. So we can take linear combinations of such F , and stay in S. Also

F1(s)+ F2(s) = G1(s)H2(s)+H1(s)G2(s)

H1(s)H2(s)
∈ S. (6.108)

(ii) Commutativity of multiplication follows from the corresponding property for
polynomials;

(iii) likewise.
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(iv) Whereas 1/(s+1) belongs to S, the inverse s+1 is not proper, hence not in S.
Note that P/Q ∈ S if and only ifQ is a nonzero stable polynomial of degree
greater than or equal to the degree of P . Hence P/Q and Q/P both belong
to S if and only if P andQ are both nonzero, stable and of equal degree.

(v) For X,Y ∈ Mn(S) the equation XY = In implies detX detY = 1, so detX
is a unit in S and X has inverse X−1 = (detX)−1adj(X) = Y . The converse
also holds.

(vi) We can differentiate

dF

ds
=

N∑

j=1

−njaj
(s − λj )nj+1 , (6.109)

which is strictly proper and the poles are at λj in open left half-plane.
(vii) Note that λ ∈ LHP is a pole of F(s) if and only if λ− a ∈ LHP is a pole of

F(s + a). In terms of linear systems, this amounts to replacing (A,B,C,D)
by (A+ aI, B,C,D).

(viii) The inverse Laplace transform is given by Propositions 6.55, 4.6 and Corol-
lary 6.56.

	

Theorem 6.59 With the usual multiplication and differentiation, let:

• H be the set of complex functions that are holomorphic near∞;
• C(s)p be the set of proper rational functions;
• S be the set of stable rational functions;
• R be the set of proper rational functions with poles only at −1; so

R ⊂ S ⊂ C(s)p ⊂ H. (6.110)

(i) Let R be one of these. Then R is a differential ring of holomorphic functions
and R0 = {F(s) ∈ R : F(∞) = 0} is an ideal.

(ii) Under the inverse Laplace transform

f (t) = lim
r→∞

1

2πi

∫ σ+ir

σ−ir
estF (s)ds (t > 0) (6.111)

with large σ > 0, this R0 corresponds to a complex vector space V
of functions f satisfying the exponential growth condition (E) such that
f, g ∈ V implies tf (t) ∈ V and f ∗ g ∈ V .

Proof This is similar to Proposition 6.58. When F is holomorphic near infinity
and F(s) → 0 as s → ∞, we have F(s) = O(1/s) and the contour integral
for the inverse Laplace transform is well defined. Given f, g ∈ H, there exist
neighbourhoods {s : |s| > r1} on which f is holomorphic and {s : |s| > r2} on
which g is holomorphic, so both f and g are holomorphic on {s : |s| > max{r1, r2}}.
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The particular spaces V are specified in Propositions 4.12, 6.55, Corollary 6.56 and
Exercise 4.6. By the remarks preceding Proposition 6.55, the Laplace transform
gives a bijection L : V → R. 	


In the case of H, we are still dealing with transcendental objects such as infinite
power series. However, in special cases, we can reduce to algebraic functions, as in
the following section.

6.16 Bessel Functions of Integral Order

The definitive account the theory of Bessel functions remains [59], a copy of which
was chained to a table at the University of Chicago during the construction of the
first atomic pile [39]. Here we are concerned with Bessel functions of the first kind
of integral order. These have the remarkable property that their Laplace transforms
are algebraic functions, which leads to some significant applications, and greatly
simplifies the analysis. In this section, we introduce Bessel functions of integral
order by one convenient definition, then discuss their properties, and conclude with
an application to signal transmission.

Definition 6.60 The Bessel function of the first kind of integer order n may be
defined as in [61] page 362 by

Jn(x) =
∫ π

−π
eix sin θ−inθ dθ

2π
. (6.112)

(i) Note that Jn(x) is bounded and real for all real x. Then the function
fx(θ) = eix sin θ is continuously differentiable and 2π periodic with nthe

Fourier coefficient Jn(x), so

eix sin θ =
∞∑

n=−∞
Jn(x)e

inθ . (6.113)

We have with θ = π − φ the identities

Jn(x) =
∫ π

0
cos(x sin θ − nθ)dθ

π

=
∫ π

0
cos(x sin φ + nφ − nπ)dφ

π

= (−1)n
∫ π

0
cos(x sin φ + nφ)dφ

π

= (−1)nJ−n(x).
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(ii) We have the identities

Jn+1(x)− Jn−1(x) = −2i
∫ π

−π
eix sin θ sin θe−inθ dθ

2π
= −2

dJn

dx
(6.114)

and by integration by parts

ix
(
Jn+1(x)+ Jn−1(x)

) = 2ix
∫ π

−π
cos θeix sin θ e−inθ dθ

2π

=
[ 1

π
eix sin θ e−inθ

]π

−π + 2in
∫ π

−π
eix sin θ e−inθ dθ

2π

= 2inJn(x)

between the Bessel functions of various orders.
(iii) By expanding the exponential as a series, we have for n ≥ 0

Jn(x) =
∫ π

−π

∞∑

k=0

(ix)k

k! sink θ e−inθ
dθ

2π

=
∫ π

−π

∞∑

k=0

(ix)k

k!(2i)k (e
iθ − e−iθ )ke−inθ dθ

2π

and we can use the binomial theorem to express this as

Jn(x) =
∫ π

−π

∞∑

k=0

(ix)k

k!(2i)k
k∑

�=0

(
k

�

)

ei(k−2�−n)θ dθ
2π

=
∞∑

�=0

(ix)n+2�

(n+ 2�)!(2i)n+2� (−1)�
(
n+ 2�

�

)

=
∞∑

�=0

(−1)�xn+2�

2n+2�(n+ �)!�! (6.115)

It is easy to justify the change in order of the integration and summation, since
the series are uniformly convergent.

(iv) By differentiating the power series and comparing coefficients, one checks
that y(x) = Jn(x) satisfies Bessel’s differential equation

x2 d
2y

dx2 + x
dy

dx
+ (x2 − n2)y = 0. (6.116)
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Since Jn(x) = (−1)nJ−n(x), we have found only one independent solution;
the other solution is a Bessel function of the second kind, which is unbounded
at t = 0; see [61] p 370.

(v) The Laplace transform of Jn(x) is

Yn(s) =
∫ ∞

0
e−sx

∫ π

−π
eix sin θ−inθ dθ

2π
dx

=
∫ π

−π

∫ ∞

0
eix sin θ−inθ e−sxdx dθ

2π

=
∫ π

−π
e−inθ

s − i sin θ

dθ

2π
; (6.117)

so with the substitution z = eiθ we obtain a contour integral round C(0, 1)
with

Yn(s) = −1

πi

∫

C(0,1)

dz

(z2 − 2sz− 1)zn

= −1

πi

∫

C(0,1)

( 1

z− z− −
1

z− z+
) dz

(z− − z+)zn

where z± = s ±
√
s2 + 1 are the quadratic roots. For n ≤ 0, there is only a

simple pole at z = z− inside C(0, 1), so by Cauchy’s theorem

Yn(s) = −1

πi

2πi

zn−
1

−2
√
s2 + 1

= 1

(s −√s2 + 1)n
√
s2 + 1

; (6.118)

whereas for n > 0, we have an nth order pole at z = 0, so we write

Yn(s) = −1

πi

∫

C(0,1)

(
−

∞∑

k=0

zk

zk+1−
+

∞∑

k=0

zk

zk+1+

) dz

(z− − z+)zn

= 1

(s +√s2 + 1)n
√
s2 + 1

= (
√
s2 + 1− s)n√
s2 + 1

(6.119)

by Cauchy’s residue theorem. This Yn(s) is holomorphic near to ∞, on
account of (6.117), so in (vi) we clarify the interpretation of the square root.
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(vi) Using the binomial expansion, we can define the appropriate square root
function by

√
1+ s2 − s =

∞∑

k=1

(
1/2

k

)
1

s2k−1 (|s| > 1) (6.120)

where the series converges and determines a holomorphic function near ∞
which vanishes at∞. Then we can extend the definition of

√
1+ s2 − s to a

holomorphic function on C \ [−i, i] so that
√

1+ s2 takes values ±√1− y2

for s = iy ± 0 on either side of the cut [−i, i]. In the Laplace inversion
formula, the integrand Yn(s)est is holomorphic on C \ [−i, i], so we can
replace the the Bromwich contour integral 4.2 by

Jn(t) =
∫

B

est (
√
s2 + 1− s)n√

1+ s2

ds

2πi

where B is the dog-bone contour that goes from−i+ δ to i+ δ, goes round i
on an arc of a circle, then goes down from i−δ to−i−δ, then goes round−i
on a semicircular arc back to−i+ δ; see Exercise 4.13 and [61] page 365. By
substituting s = i sin θ , one can check consistency with the above definition
of Jn(t).

(vii) We have J0(0) = 1, J1(t) = −dJ0/dt and Jn(0) = 0 for all n = 1, 2, . . . ,
so from (ii) there is a recursion formula for the Laplace transforms

[
Yn+1(s)

Yn(s)

]

=
[
−2s 1

1 0

][
Yn(s)

Yn−1(s)

]

,

[
Y1(s)

Y0(s)

]

= 1√
1+ s2

[√
1+ s2 − s

1

]

(6.121)

for n = 1, 2, . . . , which is slightly different from a recursion formula that we
will encounter for the Chebyshev polynomials (8.30).

(viii) The Bessel functions Jn+1/2(t) are also of interest in signal processing.
These may be written as Jn+1/2(t) = Pn(1/√t) sin t + Qn(1/√t) cos t for
polynomials Pn andQn.

Proposition 6.61 (Differential Ring for Bessel Functions Transforms) Under
the usual pointwise operations,

B = {f (s)+ g(s)
√

1+ s2; f (s), g(s) ∈ C(s)} (6.122)

gives a differential field of meromorphic functions on C \ [−i, i].
Proof We have Y0(s) =

√
1+ s2/(1 + s2) and related formulas for Yn(s). The

polynomial equation Z2 = 1 + s2 may be viewed as an irreducible equation in
C(s)[Z] for indeterminate Z with coefficients in the field C(s), and we can create
a new field B = C(s)[Z]/(Z2 − 1− s2) to solve it. By (6.120) of the Example, the
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elements of B are holomorphic functions on C \ [−i, i] apart from possible poles
from the rational functions.

(i) Addition is the rule

λ(f1(s)+ g1(s)
√

1+ s2)+ μ(f2(s)+ g2(s)
√

1+ s2)

= λf1(s)+ μf2(s)+ (λg1(s)+ μg2(s))
√

1+ s2;

(ii) multiplication works as

(f1(s)+ g1(s)
√

1+ s2)(f2(s)+ g2(s)
√

1+ s2)

= f1(s)f2 + g1(s)g2(s)(1+ s2)+ (f1(s)g2(s)+ f2(s)g1(s))
√

1+ s2;

(iii) differentiation is

d

ds

(
f (s)+ g(s)

√
1+ s2

) = df
ds
+ dg
ds

√
1+ s2 + sg(s)

1+ s2

√
1+ s2,

(iv) and since
√

1+ s2 is not a rational function, we can take reciprocals

1

f (s)+ g(s)√1+ s2
= f (s)− g(s)√1+ s2

f (s)2 − g(s)2(1+ s2)
, (6.123)

where the denominator is a nonzero rational function.
	


Example 6.62 (Periodic Signals) Returning to the time domain, we can use Bessel
functions to express periodic signals. Suppose that g : R → R is periodic with
period p and

∫ p
0 g(t)dt = 0, so φ(t) = ∫ t

0 g(u)du is also periodic with period
p. Then f (t) = eiφ(t) is periodic with period p and has a Fourier representation
f (t) =∑∞

n=−∞ f̂ (n)e2πint/p where f̂ (n) = ∫ p
0 e

iφ(t)−2πint/pdt/p.
In particular, the single tone g(t) = x cos t gives φ(t) = x sin t which is periodic

in t with period 2π , so the Fourier coefficients are

f̂ (n) =
∫ π

−π
eix sin t−int dt

2π
= Jn(x), (6.124)

where we recognize the Bessel function of integral order n as the nth Fourier
coefficient 6.112 , so as in [61] page 358

eix sin t =
∞∑

n=−∞
Jn(x)e

int = J0(x)+ 2
∞∑

n=1

J2n(x) cos 2nt + 2i
∞∑

n=1

J2n−1(x) sin(2n− 1)t. (6.125)
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Note that cos 2nt and sin(2n − 1)t involve higher harmonics than were present in
the original sin t . For x with |x| small, we can approximate Jn(x) by the first few
terms in the Maclaurin expansion Jn(x) = (x/2)n(n!)−1 + . . . , so

eix sin t = 1− x
2

4
+ x

2

4
cos 2t + i

(
x − x

3

8

)
sin t + ix

3

24
sin 3t +O(x4) (6.126)

which gives an approximate formula involving the first few harmonics. The main
term in (6.126) is in the polynomial ring C[sin t, cos t, x], so is well suited for
calculation for reasons discussed in (8.30). One can express the trigonometric
functions in terms of τ = tan(t/2), so that

cos t = 1− τ 2

1+ τ 2 , sin t = 2τ

1+ τ 2 .

This is a familiar, though unpopular, device from elementary calculus for expressing
the circle as a rational curve. See also [3] page 68.

6.17 Exercises

Exercise 6.1 Let K be the matrix

K =
[
m n

−x y
]

, (6.127)

wherem,n, x, y are all integers.

(i) Write down a formula for the inverse matrix K−1, assuming it exists. By
considering detK−1, show that K has an inverse K−1 with integer entries,
if and only if my + xn = ±1.

(ii) Show the condition of (i) is equivalent to m and n having highest common
factor 1.

(iii) Show conversely that if m and n have highest common factor 1, then one can
choose integers x and y such thatK as above is invertible andK−1 has integer
entries.

Exercise 6.2 Let K be the matrix

K =
[
P(s) Q(s)

−X(s) Y (s)
]

, (6.128)

where P(s),Q(s),X(s), Y (s) are all complex polynomials.
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(i) Write down an expression for the inverse matrixK−1. By considering detK−1,
show that K has an inverse with polynomial entries, if and only if P(s)Y (s)+
X(s)Q(s) = κ for some κ �= 0 a constant.

(ii) Show that given P(s) and Q(s), there exist X(s) and Y (s) such that
P(s)Y (s)+X(s)Q(s) = κ for some κ �= 0, if and only if P(s) andQ(s) have
highest common factor 1.

(iii) Show conversely that if P(s) and Q(s) have no common zeros, then one can
choose polynomials X(s) and Y (s) as entries of K such that K is invertible
and K−1 has polynomial entries.

(iv) Given P(s) = s2 + 3s + 2 andQ(s) = s2 + 2s − 3, find a K as in (i).

Exercise 6.3 An amplifier and its controller have transfer functions

G(s) = α

1+ βs , K(s) = b + c
s
, (6.129)

where α, β, b, c are real constants with α, β �= 0.

(i) State conditions under which G(s) is stable.
(ii) Compute the entries of

� = 1

1+GK
[

1 G

K GK

]

, (6.130)

and state conditions for all the entries to be stable.
(iii) Deduce that for all G there exists K such that � is stable.

Exercise 6.4

(i) Find the zeros of the polynomial

p(s) = s3 + 10s2 + 16s + 160. (6.131)

(ii) Obtain numerical approximations to the zeros of

q(s) = s3 + 11s2 + 16s + 160, (6.132)

r(s) = s3 + 9s2 + 16s + 160. (6.133)

(iii) Discuss which of these polynomials p, q, r is stable.

Exercise 6.5 (Descartes’s Rule of Signs) Let σ be the number of changes in sign
in the real sequence a0, . . . , an, ignoring 0. Let r be the number of positive roots
of

a0 + a1x + · · · + anxn = 0. (6.134)

Then r ≤ σ , and σ − r is even.
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Deduce the possible value of r for the polynomial equations:

(i) −2+ 3x + 5x2 + x3 = 0;
(ii) 2+ 3x − 4x2 + (1/2)x3 + x4 − x5 + 6x2 − x7 = 0.

(iii) Find the roots of

−2+ 3x + 5x2 + x3 = 0

numerically; hence find r .
(iv) Likewise, find the roots of

2+ 3x − 4x2 + (1/2)x3 + x4 − x5 + 6x6 − x7 = 0 (6.135)

numerically; hence find r .

Exercise 6.6 Show that R is a commutative ring with 1, where

R =
{ [
a b

0 a

]

: a, b ∈ C

}

, (6.136)

and find the units in R.

Exercise 6.7

(i) Let f, g ∈ C[s] \ {0}. Show that

(fg) ⊆ (f ) ∩ (g) ⊆ (f, g) ⊆ (1), (6.137)

and interpret the ideals in terms of the zeros of f and g.
(ii) Show that f has simple zeros if and only if (f, df/ds) = (1).
Exercise 6.8 Express the rational function

G(s) = s
2 + s + 1

s2 − 2
(6.138)

as the quotient G = P/Q of stable rational functions P and Q that are coprime in
S.

Exercise 6.9 Let A be a nonzero n × n matrix with entries in C[s], and d(A) the
degree of the nonzero polynomial of minimal degree in A.

(i) Show that one can find the greatest common divisor of the entries of A in at
most d(A)(n2 − 1) applications of the Euclidean algorithm.

(ii) Let J� be the ideal in C[s] that is generated by the k × k minors of A. Estimate
the number of applications of the Euclidean algorithm needed to find pk such
that Jk = (pk) for k = 1, 2, . . . , n.
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Exercise 6.10

(i) Show that the following are principal ideal domains: (1) C, (2)C(s), (3)C(s)[λ]
the polynomials in λ with coefficients that are rational functions in s.

(ii) Let T (s) be the transfer function of a a MIMO with input space Cn and output
space Cn. Show that det(λIn − T (s)) belongs to C(s)[λ].

Exercise 6.11 Use Hurwitz’s criterion Theorem 6.12 to show that the real polyno-
mial

s4 + As3 + Bs2 + Cs +D

is stable if and only if

A,B,C,D > 0,

AB −D2 > 0,

ABC − A2D − C2 > 0.

Exercise 6.12 Maxwell sought necessary and sufficient conditions for a real quintic
to be stable. Using Hurwitz’s criterion Theorem 6.12, find conditions on the
coefficients for all the roots of

s5 + As4 + Bs3 + Cs2 +Ds + E = 0 (6.139)

to have negative real parts. Consider the leading minors of

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A C E 0 0
1 B D 0 0
0 A C E 0
0 1 B D 0
0 0 A C E

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

Exercise 6.13 Consider the matrices

A =
⎡

⎣
1 1 −1
4 1 1
5 −2 4

⎤

⎦ , F =
⎡

⎣
1 1 0
−1 3 0
−1 1 2

⎤

⎦ (6.140)

and the matrices sI − A and sI − F over C[s].
(i) Show that the ideals generated by the k-minors of sI−A are J1 = (1) , J2 = (1)

and J3 = ((s − 2)3).
(ii) Compare these with the ideals generated by the k-minors of sI − F .
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Exercise 6.14 Let R be a principal ideal domain , and A ∈ Mn×m(R), and B ∈
Mm×n(R) where m > n. The Cauchy–Binet formula states that

det(AB) =
∑

S

detA|[n]×S detB|S×[n], (6.141)

where [n] = {1, 2, . . . , n}, S ranges over all the subsets of {1, . . . ,m} that have n
elements, and A|[n]×S is the submatrix of A = [ak,�] with (k, �) ∈ [n] × S.

Let X ∈ Mn×n(R) and Y ∈ Mm×m(R) be unimodular matrices such that B =
XAY .

(i) Show that the ideal generated by the k-minors of A and AY satisfy Jk(A) ⊆
Jk(AY ) for k = 1, . . . , n and Jk(AY ) ⊆ Jk(A).

(ii) Deduce that the ideal generated by the k-minors of A and B satisfy Jk(A) =
Jk(B) for k = 1, . . . , n.

(iii) Show that the invariant factors of A are unique up multiplication by units of
R.

Exercise 6.15 Consider Laguerre’s differential equation

t
d2Ln(t)

dt2
+ (1− t)dLn(t)

dt
+ nLn(t) = 0.

(i) Show that the Laplace transform of this equation is

(s − s2)
dL̂n(s)

ds
+ (n+ 1− s)L̂n(s) = 0,

and that

L̂n(s) = (s − 1)n

sn+1

gives a strictly proper rational solution of this equation.
(ii) Deduce that

Ln(t) = lim
R→∞

∫ 1+iR

1−iR
est
(s − 1)n

sn+1

ds

2πi
= 1

n!
dn

dsn

(
(s − 1)nest

)∣∣
∣
s=0

is a polynomial of degree n with Ln(0) = 1 that satisfies Laguerre’s equation.
(iii) By multiplying Laguerre’s equation by e−tLm(t) and integrating by parts,

show that
∫ ∞

0
e−tLn(t)Lm(t)dt = 0 (n �= m).

(iv) Find the Laplace transform of e−tLn(2t).



6.17 Exercises 219

Exercise 6.16 Let SP be the space of monic complex stable polynomials in C[s],
and introduce the ring of fractions S∞ = {f/p : f ∈ C[s], p ∈ SP}.

(i) Show that S ⊂ S∞ ⊂ C(s), so S∞ in an integral domain.
(ii) Show that for sr ∈ RHP , there is a well-defined homomorphism S∞ →

C given by f/p �→ f (sr )/p(sr ) for p ∈ SP and f ∈ C[s]. Deduce that
for a finite subset S = {s1, . . . , sn} with distinct points sj ∈ RHP , we can
introduce J = {f ∈ S∞ : f (sj ) = 0, j = 1, . . . , n}. This is an ideal, and
J = ((s − s1) . . . (s − sn)).

(iii) Let ι : C[s] → S∞ be the natural homomorphism f �→ f/1, and J be a
nonzero ideal in S∞. Show that ι−1(J ) = {f ∈ C[s] : f/1 ∈ J } is an ideal
in C[s], which is a principal ideal domain, so there exists fJ ∈ C[s] such that
(fJ ) = ι−1(J ) and that J = (ι(fJ )), so J is generated by (the image of) a
polynomial. This point is discussed in [29] page 146.

(iv) Deduce that S∞ is a principal ideal domain.
(v) Let P,Q ∈ S∞ be nonzero. By considering the ideal (P,Q) in S∞, show that

either

(1) there exist X,Y ∈ S∞ such that PX +QY = 1; or
(2) there exists s0 ∈ RHP such that P(s0) = Q(s0) = 0.

Exercise 6.17 (Finite-Rank Hankel Operators) For λj ∈ LHP and dj ∈
{0, 1, . . . } for j = 1, . . . ,m, let

V = span
{
tneλj t : n = 0, 1, . . . , dj ; j = 1, . . . ,m

}
(6.142)

which is a subspace of the space that appears in Corollary 6.56. For φ ∈ V , let

�φf (t) =
∫ ∞

0
φ(t + u)f (u)du

for bounded continuous functions f . Show that �φf ∈ V . This �φ gives a Hankel
integral operator in the time domain.



Chapter 7
Stability and Transfer Functions via
Linear Algebra

This chapter considers stability criteria for linear systems that involve linear algebra
for a MIMO system (A,B,C,D). As in Chaps. 5 and 6, we are concerned
with stability of transfer functions, but this time focus attention on the matrix
formulation, especially the main transformation A.

• The aim is to have criteria that are computationally effective for large matrices,
and apply to MIMO systems.

• The new tools are linear matrix inequalities Riccati’s matrix inequality and
Lyapunov’s equation.

• We also consider how transfer functions can be added and multiplied by
combining linear systems (A,B,C,D).

• Continuing the theme of matrix algebra, the chapter also includes some periodic
linear systems and the discrete Fourier transform.

7.1 Lyapunov’s Criterion

Theorem 7.1 Suppose that A is a complex n × n matrix and that there exists a
positive definite matrix K such that Q = −(A′K + KA) is also positive definite.
Then all the solutions of

dX

dt
= AX (7.1)

are bounded on (0,∞).
Note that a positive definite K satisfies K = K ′ and (A′K + KA)′) =

(KA + A′K), so the issue is whether Q satisfies the equivalent conditions (i)–(iii)
of Theorem 3.23. One can either (i) try many positive definite K , and test whether
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Q is also positive definite, or (ii) choose a positive definiteQ, and try to findK such
that KA+ A′K +Q = 0.

Proof To show that 〈X(t),X(t)〉 is bounded, the trick is to consider V (t) =
〈KX(t),X(t)〉. Observe that V (t) ≥ 0 for all t ≥ 0, and use the differential equation
to find

dV

dt
=

〈
K
dX

dt
,X(t)

〉
+

〈
KX,

dX

dt

〉

= 〈
KAX(t),X(t)

〉+ 〈
KX(t),AX(t)

〉

= 〈
KAX(t),X(t)

〉+ 〈
A′KX(t),X(t)

〉

= 〈
(A′K +KA)X(t),X(t)〉 ≤ 0.

Hence V (t) is decreasing on (0,∞). SinceK is positive definite, the eigenvalues of
K are κ1 ≥ κ2 ≥ · · · ≥ κn, where κn > 0; so

0 ≤ κn〈X(t),X(t)〉 ≤ 〈KX(t),X(t)〉 ≤ 〈KX(0),X(0)〉,

and so ‖X(t)‖ ≤ (〈KX0,X0〉/κn)1/2 for all t ≥ 0. 	


7.2 Sylvester’s Equation AY + YB + C = 0

Given n× n matrices A,B and C, the problem is to find a n× n matrix Y such that

AY + YB = −C; (7.2)

this is called Sylvester’s equation see [8] .

Proposition 7.2 There are three possibilities for Sylvester’s equation: either

(i) there exists a unique solution;
(ii) there exist infinitely many solutions;

(iii) there does not exist any solution.

Proof In terms of the matrix entries, we can write A = [ajk], B = [bjk] and
C = [cjk], and then the unknown Y = [yjk] is given by the system

n∑

�=1

aj�y�k +
n∑

�=1

yj�b�k = −cjk, (7.3)

which is a linear system of n2 equations in the n2 unknowns [yjk]. So the
above possibilities arise from the general theory of linear equations. Gauss–Jordan
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elimination reduces this system to reduced echelon form and gives the solutions in
cases (i) and (ii). In case (iii), the system is inconsistent, so there is no solution. 	

Proof (Another of the Same) There is an equivalent way of expressing the preceding
proof in terms of linear transformations. Fix A and B, regard C as a matrix of
parameters and Y as a variable. Then the transformation T : Mn×n → Mn×n :
Y �→ AY + YB is linear on the n2-dimensional vector spaceMn×n, so either:

(i) T is invertible, and for all C there exists a unique Y such that T (Y ) = −C; or
(ii) T is not invertible and hence does not have full rank, so T (Y ) = −C has no

solution for some C. More precisely, the rank of T is r where 0 ≤ r < n2, so
there is an r-dimensional subspaceR = {T (Y ) : Y ∈ Mn×n} such that T (Y ) =
−C has a solution if and only if C ∈ R. The nullspaceK = {Z : T (Z) = 0} is
subspace of dimension n2 − r , so for C ∈ R, the general solution has the form
Z + Y where Z ∈ K and Y is some solution of T (Y ) = −C.

(iii) When C is not an element of R, there is no solution.
	


Proposition 7.3 (Sylvester’s Criterion) Given A and B, Sylvester’s equation
AY +YB = −C has a unique solution Y for all C if and only if A and−B have no
common eigenvalues.

Proof

(i) First suppose that A and −B have no common eigenvalues, so that their
characteristic polynomials χA(λ) and χ−B(λ) have highest common factor 1;
so by Proposition 6.26, there exist polynomials p(λ) and q(λ) such that

p(λ)χA(λ)+ q(λ)χ−B(λ) = 1. (7.4)

By the Cayley–Hamilton theorem 2.29, χ−B(−B) = 0 and χA(A) = 0, so
χ−B(A)q(A) = I . Let Y be any solution of T (Y ) = 0, so AY = −YB. Hence
χ−B(A)Y = Yχ−B(−B) = 0, so

Y = q(A)χ−B(A)Y = q(A)Yχ−B(−B) = 0; (7.5)

hence T is one-to-one. By the rank-nullity theorem 2.2, T is also invertible, so
for allC, there exists a unique Y such that T (Y ) = −C, henceAY+YB = −C.

(ii) Conversely, suppose that μ is a common eigenvalue of A and −B; then

0 = det(μI − A) = det(μI − A�), (7.6)

soμ is also an eigenvalue ofA�; hence there exist nonzero vectors v andw such
that A�w = μw and Bv = −μv. Choose C to satisfy −Cv = w̄, and suppose
with a view to obtaining a contradiction that Y satisfies AY + YB = −C; then
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with the bilinear pairing 〈v,w〉 =∑n
j=1 vjwj , we have

〈
(AY + YB)v,w〉 = 〈− Cv,w〉

〈Yv,A�w〉 + 〈−μYv,w〉 = 〈w̄, w〉
〈Yv,μw〉 + 〈−μYv,w〉 = ‖w‖2 > 0, (7.7)

a contradiction, since 〈Yv,μw〉 + 〈−μYv,w〉 = 0.
	


Proposition 7.4 (An Integral Solution of Sylvester’s Equation) Suppose that all
the eigenvalues of A and B are in the open left half-plane {λ ∈ C : �λ < 0}. Then

Y =
∫ ∞

0
exp(tA)C exp(tB) dt (7.8)

gives the unique solution to

AY + YB = −C. (7.9)

The formula in this Proposition is often not the most practical way of finding Y ;
instead one can use the systems of linear equations in (7.3). The reference [5] gives
alternative expressions for the solution. One can also use computer packages.

MATLAB takes the standard form of Sylvester’s equation to be AY +YB+C =
0, consistent with this book, and gives the solution Y = lyap(A,B,C).
Proof First observe that by Lemma 3.6 there exist M1,M2, δ1, δ2 > 0 such that
‖ exp(tA)‖ ≤ M1e

−δ1t and ‖ exp(tB)‖ ≤ M2e
−δ2t , so the integral is convergent.

Also

AY + YB =
∫ ∞

0

(
A exp(tA)C exp(tB)+ exp(tA)C exp(tB)B

)
dt

=
∫ ∞

0

d

dt

(
exp(tA)C exp(tB)

)
dt

=
[

exp(tA)C exp(tB)
]∞

0

= −C.

This shows that the map Y �→ AY + YB fromMn×n → Mn×n is surjective, so by
the rank-nullity theorem 2.2, the map is also injective. Hence the solution exists and
is unique. 	
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7.3 A Solution of Lyapunov’s Equation AL + LA′ + P = 0

Corollary 7.5 Suppose that A is a n × n complex matrix such all its eigenvalues
are in the open left half-plane {λ ∈ C : �λ < 0}. Then for all positive definite P ,
there exists a unique positive definite L such that

AL+ LA′ = −P. (7.10)

Proof From the characteristic equation, it follows that λ is an eigenvalue of A,
if and only if λ̄ is an eigenvalue of A′, so we can introduce M, δ > 0 such that
‖ exp(tA)‖ ≤ Me−δt and ‖ exp(tA′)‖ ≤ Me−δt , so the integral

L =
∫ ∞

0
exp(tA)P exp(tA′)dt (7.11)

converges and gives a solution of (7.10) for any matrix P . Hence the map Y �→
AP +PA′ is surjective, and by the rank plus nullity theorem is also injective, so the
solution is unique. In particular, let P be positive definite. Then exp(tA)P exp(tA′)
is positive definite by exercise since

〈exp(tA)P exp(tA′)Y, Y 〉 = 〈P exp(tA′)Y, exp(tA′)Y 〉 (7.12)

which is positive and continuous for t > 0 and Y �= 0. Hence L is a positive definite
solution, whenever P is positive definite, and is the unique solution, as observed.

	

For a more advanced discussion of this topic, see [42]. We have chosen a

slightly different form for Lyapunov’s equation in this Corollary than in the proof
of Theorem 7.1, so as to conform with the MATLAB convention. MATLAB takes
the standard form of Lyapunov’s equation to be AL+ LA′ + P = 0 where A = A′
for positive definite P so L = lyap(A,P ) or equivalently L = lyap(A,A′, P ). In
Theorem 7.1, we used KA+ A′K +Q = 0, so K = lyap(A′,Q).

For K positive definite, let 〈〈v,w〉〉 = 〈Kv,w〉, which defines an inner product
of Cn×1. For A ∈ Mn×n(C) let A) = K−1A′K , so

spec(A)) = spec(A′) = {λ̄ : λ ∈ spec(A)}, (7.13)

and

〈〈Av,w〉〉 = 〈KAv,w〉 = 〈v,A′Kw〉 = 〈v,KA)w〉 = 〈〈v,A)w〉〉, (7.14)

so A) is the adjoint of A with respect to 〈〈·, ·〉〉, and

〈〈(A+ A))v,w〉〉 = 〈(KA+KA))v,w〉 = 〈(KA+ A′K)v,w〉. (7.15)

WhenK andA are as in Corollary 7.5,A is strictly dissipative with respect to 〈〈·, ·〉〉.
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7.4 Stable and Dissipative Linear Systems

For the standard norm on C
n×1, the following sets

{A negative definite} ⊂ {A strictly dissipative} ⊂ {A stable}. (7.16)

have strict containments, but for each A in the largest set, we can change the norm
to move into the middle set.

Theorem 7.6 The following conditions are equivalent for a n × n complex matrix
A.

(i) A is stable, so all eigenvalues of A are in LHP;
(ii) for all positive definite P , there exists a positive definite K such that KA +

A′K = −P ;
(iii) there exist κ,M > 0 such that ‖ exp(tA)‖ ≤Me−κt for all t > 0.

Proof (i)⇒ (iii) Use the Jordan decomposition of A, as in Theorem 3.5.
(iii)⇒ (i) Use resolvent formula for exponentials (3.10).
(ii) ⇒ (iii) Apply Lyapunov’s criterion 7.1 to dissipative A + κI for some

κ > 0.
(iii)⇒ (ii) Corollary 7.5, giving solution of Lyapunov’s criterion 7.1.
(i) ⇒ (ii) From (i) and Sylvester’s criterion 7.3, there exists K such KA +

A′K = −P , and by uniqueness K = K ′. Unfortunately, it is not evident that K is
positive definite, so we need to proceed by the route (i)⇒ (iii)⇒ (ii).
We remark that Proposition 3.34 (viii) and (ix) show that we can takeM = 1 if and
only if A is dissipative, which is the case in which K = I gives a positive definite
P = (−A− A′). 	


7.5 Almost Stable Linear Systems

In some cases, it is possible to stabilize a system that has a single pole in RHP, by
perturbing the main transformation as follows.

Lemma 7.7 Let (A,B,C,D) be a SISO such that A has an eigenvalue λ0 with
algebraic multiplicity one and corresponding eigenvector V . Then either:

(i) CAkV = 0 for k = 0, 1, . . . ; or
(ii) there exists α ∈ C such that the transfer function of (A− αV C,B,C,D) does

not have a pole at λ0.
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Proof

(i) If CV = 0, then CAkV = λk0CV = 0. For C ∈ C1×n, we also observe that this
condition implies

rank

⎡

⎢
⎢
⎢
⎣

C

CA
...

CAn−1

⎤

⎥
⎥
⎥
⎦
< n, (7.17)

so the system (A,B,C,D) is not observable.
(ii) Otherwise, we choose α such that αCV = λ0 + ν for some ν ∈ (0,∞); then

VC is a rank-one matrix such that

(sI − A)−1(sI − A+ αV C) = I + α(sI − A)−1VC = I + α(s − λ0)
−1VC,

(7.18)

so as in Exercise 3.17 the determinants satisfy

det(sI − A)−1 det(sI − A+ αV C) = det
(
I + α(s − λ0)

−1VC
)

= 1+ α(s − λ0)
−1traceVC

= 1+ α(s − λ0)
−1traceCV

= 1+ (s − λ0)
−1(λ0 + ν)

so that

det(sI − A+ αV C) = s + ν
s − λ0

det(sI − A) (7.19)

and the simple zero of det(sI − A) at λ0 is canceled out.
	


Theorem 7.8 Suppose that (A,B,C,D) is an observable SISO, where A has
distinct eigenvalues λ1, . . . , λn. Let V be an eigenvector of A for eigenvalue λ1.
Then there exists α such that �α = (A − αV C,B,C,D) is an observable SISO,
with distinct eigenvalues λ̂1, λ2, . . . , λn, where �λ̂1 < 0. The transfer function of
�α is

Tα(s) = (s − λ1)T0(s)− αDCV
s − λ1 − αCV . (7.20)
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Proof Suppose that (A,B,C,D) is observable. We observe that

C(A− αVC)W = CAW − αCVCW
C(A− αVC)2W = CA2W − αCVCAW − αCACVW + α2CVCVCW

...
...

C(A− αV C)n−1W = CAn−1W + · · · + (−α)n−1(CV )n−1CW.

Suppose that C(A − αV C)kW = 0 for k = 0, . . . , n − 1. Then CAkW = 0 for
k = 0, . . . , n − 1. To see this, we proceed by recursion from one line to the next.
Given that CAkW = 0 for k = 0, . . . , j − 1, then at line j , we see that 0 =
C(A− αV C)jW = CAjW since the other summands involve factors CA�W = 0
for � < j .

Since (A,B,C,D) is observable, the only solution to CAkW = 0 for k =
0, . . . , n − 1 is W = 0. Hence (A − αVC,B,C,D) is also observable. We have
freedom to choose α and ν ∈ (0,∞) as in the Lemma 7.7 so that �λ̂1 < 0 and the
eigenvalues are all distinct.

There are various formulas relating the transfer function Tα of the new system
(A− αV C,B,C,D) with the transfer function T0(s) of the old one (A,B,C,D).
For instance, we start with

(sI − A+ αVC) = (sI − A)+ αVC (7.21)

and premultiply by (sI −A)−1 and postmultiply by (sI −A+ αV C)−1; this gives

(sI−A)−1 = (sI−A+αVC)−1+α(sI−A)−1VC(sI−A+αVC)−1, (7.22)

hence

(sI − A+ αV C)−1 = (
I − α(sI − A)−1VC)−1(sI − A)−1. (7.23)

The matrix (sI − A)−1VC has rank one, so we can compute the middle inverse
matrix by a special argument. With β = α(1− αC(sI − A)−1V )−1, we find that

(
I + β(sI − A)−1VC

)(
I − α(sI − A)−1VC

) = I, (7.24)

so

(sI − A+ αV C)−1 =
(
I + α(sI − A)−1VC

1− αC(sI − A)−1V

)
(sI − A)−1. (7.25)
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hence

C(sI −A+ αVC)−1B =
(

1+ αC(sI − A)−1V

1− αC(sI − A)−1V

)
C(sI −A)−1B, (7.26)

and the transfer function satisfy

Tα(s) = T0(s)

1− αC(sI − A)−1V
− αC(sI − A)−1VD

1− αC(sI − A)−1V
; (7.27)

this discussion applies to a typical V , and since in our case AV = λ1V we can
simplify the expression to obtain (7.20). 	


This result can be applied repeatedly, to remove troublesome eigenvalues one by
one, but the main transformation, hence the eigenvectors, change at each step. In
Corollary 7.15, we consider an alternative approach based upon linear systems, and
in Sect. 9.12 we look again at the determinants.

Example 7.9 Let

(A,B,C,D) =
(
⎡

⎣
1 −3 −4
0 −1 −1
0 0 −5

⎤

⎦ ,

⎡

⎣
1
2
3

⎤

⎦ ,
[
1 0 −1

]
, 0

)

(7.28)

eigenvalues 1,−1,−5 and transfer function

T (s) = 15

8(s + 1)
− 13

4(s − 1)
− 5

8(s + 5)
. (7.29)

To remove the unstable pole at 1, we introduce

V =
⎡

⎣
1
0
0

⎤

⎦ (7.30)

and consider

(A− αV C,B,C,D) =
(
⎡

⎣
1− α −3 α − 4

0 −1 −1
0 0 −5

⎤

⎦ ,

⎡

⎣
1
2
3

⎤

⎦ ,
[
1 0 −1

]
, 0

)

(7.31)

with transfer function

15

4(α − 6)(s + 5)
− 15

4(α − 2)(s + 1)
− 2α2 − 16α + 19

(s − 1+ α)(α2 − 8α + 12)
. (7.32)
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By computing

det

⎡

⎣
C

C(A− αVC)
C(A− αVC)2

⎤

⎦ = 15, (7.33)

we deduce that these linear systems are observable for all α.

7.6 Simultaneous Diagonalization

Say that self-adjoint matrices L0 and L1 are congruent if there exists an invertible
S such that L1 = S′L0S. If we can choose S to be unitary, so that S′S = I and
L1 = S′L0S, then we say that L1 and L0 are unitarily equivalent. Given a pair
of self-adjoint n × n matrices K and L, we can reduce K to a diagonal matrix by
unitary conjugation, and L to a diagonal matrix by unitary conjugation. If K and L
commute, then we can introduce a unitaryW such thatW ′KW andW ′LW are both
diagonal matrices. This is possible only if K and L commute. The following result
is a partial substitute for simultaneous diagonalization.

Proposition 7.10 Suppose that K is a positive definite n × n matrix and L is a
self-adjoint n× n matrix. Then there exist real diagonal matricesDK andDL such
that DK is unitarily equivalent to K , DL is congruent to L and

det(λK − L) = det(λDK −DL) (λ ∈ C). (7.34)

Proof We introduce a unitary matrix U such that U ′KU = DK , where DK =
diag(λj ) is a diagonal matrix with positive entries λj on the leading diagonal,

which are given by the eigenvalues of K . Then we introduce D1/2
K = diag(λ1/2

j ),

which satisfies D1/2
K D

1/2
K = DK and has an inverse D−1/2

K = diag(λ−1/2
j ). Then

D
−1/2
K U ′LUD−1/2

K is self-adjoint, so there exists a unitary matrix V such that

V ′D−1/2
K U ′LUD−1/2

K V = D2 is a real diagonal matrix; we then define DL =
DKD2. Since diagonal matrices commute, we can write

L = UD1/2
K VD−1

K DLV
′D1/2
K U ′,

K = UDKU ′ = UD1/2
K V V ′D1/2

K U ′ = UD1/2
K VD−1

K DKV
′D1/2
K U ′,

so that

λK − L = UD1/2
K VD

−1/2
K (λDK −DL)D−1/2

K V ′D1/2
K U ′. (7.35)
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We observe that detUD1/2
K VD

−1/2
K = detU detV , and the multiplicative property

of determinants also gives

det(λK − L) = detU detV det(λDK −DL) detV ′ detU ′ = det(λDK −DL).
(7.36)

Observe that if we can choose V = I , then L and K commute and L is unitarily
equivalent to DL and we achieve simultaneous diagonalization. 	


7.7 A Linear Matrix Inequality

See [23] and [24]. Consider real matrices (A,B,C, 0), and P positive definite.
Previously, we considered the equalityPA+A′P+C′C = 0 for P positive definite.
Here we consider the condition

PA+ A′P + C′C + PBB ′P ≺ 0 (7.37)

in the sense that the matrix on the left-hand side is negative definite. We introduce

L =
[
PA+ A′P + C′C PB

B ′P −I
]

. (7.38)

and observe that

L =
[
C′C 0

0 −I
]

+
[
P 0
0 0

] [
A B

0 0

]

+
[
A′ 0
B ′ 0

] [
P 0
0 0

]

(7.39)

which is an affine linear expression in P .

Proposition 7.11 (Riccati Matrix Inequality) The matrix L is negative definite if
and only if the Schur complement of −I in L is negative definite, that is

L ≺ 0 ⇔ C′C + PA+ A′P + PBB ′P ≺ 0. (7.40)

Proof Then by completing the squares, we obtain

〈 [
PA+ A′P + C′C PB

B ′P −I
] [
x

u

]

,

[
x

u

] 〉

= 〈
(C′C + PA+ A′P)x, x〉+ 〈

x, PBu
〉+ 〈

B ′Px, u
〉− 〈

u, u
〉

= 〈
(C′C + PA+ A′P + PBB ′P)x, x〉− 〈

u− B ′Px, u− B ′Px〉.
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We maximize this expression by choosing u = B ′Px, removing the final term and
leaving

〈
(C′C + PA+ A′P + PBB ′P)x, x〉. (7.41)

Suppose that L is negative definite; then choosing u = 0, we deduce that

〈(C′C + PA+ A′P + PBB ′P)x, x〉 < 0 (x �= 0) (7.42)

so C′C+PA+A′P +PBB ′P is negative definite. Suppose conversely, that C′C+
PA+A′P +PBB ′P is negative definite. If x = 0 and u �= 0, then 〈L

[
x

u

]

;
[
x

u

]

〉 <

0. Otherwise x �= 0, so 〈L
[
x

u

]

;
[
x

u

]

〉 < 0 by the preceding calculations.

In this case, (A,B,C, 0) has

d

dt
〈Px, x〉+〈Cx,Cx〉 − 〈u, u〉

= 〈P(Ax + Bu), x〉 + 〈Px,Ax + Bu〉 + 〈Cx,Cx〉 − 〈u, u〉
= 〈
(PA+ A′P + C′C)x, x〉+ 〈PBu, x〉 + 〈B ′Px, u〉 − 〈u, u〉

< 0

for all nonzero inputs u. 	


7.8 Differential Equations Relating to Sylvester’s Equation

There are various matrix differential equations relating to Sylvester’s equation. In
the following result, we use an Rt that satisfies the differential equation

dRt

dt
= ARt + RtA (7.43)

with initial condition dR0/dt = −BC, so R0 gives a solution of Sylvester’s
equation AR0 + R0A = −BC.

Proposition 7.12 Let (A,B,C, 0) be a SISO with A stable. Let φ(t) =
C exp(tA)B and

Rt =
∫ ∞

t

exp(uA)BC exp(uA)du, (7.44)
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and let

T (t, u) = −C exp(tA)(I + Rt)−1 exp(uA)B. (7.45)

Then there exists t0 > 0 such that T (t, u) satisfies

φ(t + u)+ T (t, u)+
∫ ∞

t

T (t, v)φ(v + u)dv = 0 (t0 < t < u) (7.46)

and

T (t, t) = d

dt
log det(I + Rt) (t0 < t). (7.47)

Proof There exist κ,M > 0 such that ‖ exp(tA)‖ ≤ Me−κt for all t > 0. Hence
the integral for Rt converges, and there exists t0 > 0 such that

‖Rt‖ ≤
∫ ∞

0
‖ exp(uA)‖‖BC‖‖ exp(uA)‖du ≤

∫ ∞

t

M2‖BC‖e−2κudu

= M
2‖BC‖e−2κt

2κ
,

so there exists t0 such that ‖Rt‖ < 1 for all t > t0. Then I + Rt has an inverse, and
T (t, u) is defined. Then

φ(t + u)+ T (t, u)+
∫ ∞

t

T (t, v)φ(v + u)dv

= C exp(tA) exp(uA)B − C exp(tA)(I + Rt)−1 exp(uA)B

− C exp(tA)(I + Rt )−1
∫ ∞

t

exp(vA)BC exp(vA) exp(uA)B dv

= C exp(tA)
(
I − (I + Rt)−1 − Rt(I + Rt )−1

)
exp(uA)B = 0.

Observe that

dRt

dt
= d

dt

∫ ∞

t

exp(uA)BC exp(uA)du = − exp(tA)BC exp(tA),

by the fundamental theorem of calculus. We write

T (t, t) = −trace
(
C exp(tA)(I + Rt )−1 exp(tA)B

)

= −trace
(

exp(tA)BC exp(tA)(I + Rt)−1)
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= trace
(dRt
dt
(I + Rt)−1)

= d

dt
trace log(I + Rt )

= d

dt
log det(I + Rt ).

	

Example 7.13 (Duhamel’s Formula) Suppose that A andD are stable matrices and
consider a block matrix

[
A B

0 D

]

Then by Schur complements (3.34), we have

[
sI − A −B

0 sI −D
]−1

=
[
(sI − A)−1 (sI − A)−1B(sI −D)−1

0 (sI −D)−1

]

. (7.48)

From this, we deduce that

exp

(

t

[
A B

0 D

])

=
[

exp(tA)
∫ t

0 exp((t − τ )A)B exp(τD)dτ
0 exp(tD)

]

. (7.49)

The Laplace transforms of both sides of this equation are equal to the right-hand
side of the previous formula (7.48).

Mainly in this book we are interested in systems that are autonomous, so that the
coefficients of the differential equations do not depend upon time. However, some
of the formulas can be adapted to deal with systems that have specific types of time
dependence. Given a block matrix

[
A B

C D

]

with A andD square, and a bounded input u, the system

dx

dt
= Ax + B exp(tD)u

y = Cx
x(0) = x0, y(0) = Cx0
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has solution

y(t) = C exp(tA)x0 +
∫ t

0
C exp((t − τ )A)B exp(τD)u(τ)dτ.

If A and D are stable, then the output y is bounded.

7.9 Transfer Functions tf

Rational linear systems can be described in terms of matrices (A,B,C,D) or
transfer functions T (s). The transfer functions have the advantage that there are
natural operations of multiplication and addition, by which rational functions
form an algebra. The matrix description also has advantages in terms of ease of
computations. In this section, we consider various ways of building new transfer
functions from old, in terms of (A,B,C,D). The advantage of the following
formulas is that they can be carried out in exact arithmetic, where possible. We
do not need to solve eigenvalue equations or compute partial fractions, which can
involve solving polynomial equations.

Suppose � = (A,B,C,D) has tf T (s) = D + C(sI − A)−1B, and φ(t) =
Dδ0 + C exp(tA)B. Note that T (s) is the Laplace transform of φ(t) since

L(φ)(s) =
∫ ∞

0
e−st

(
Dδ0 + C exp(tA)B

)
dt

= D + C
∫ ∞

0
exp(t (A− sI))dtB

= D + C(sI − A)−1B = T (s).

(i) Adding transfer functions

The idea is to have devices represented by linear systems �1 and �2 in parallel,
combined into a single linear system. Suppose that �1 = (A1, B1, C1,D1) has tf

T1(s) = D1 + C1(sI − A1)
−1B1,
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and φ1(t) = C1 exp(tA1)B1, and �2 = (A2, B2, C2,D2) has tf T2(s) = D2 +
C2(sI − A2)

−1B2, and φ2(t) = C2 exp(tA2)B2. Then

( [
A1 0
0 A2

]

,

[
B1

B2

]

,
[
C1 C2

]
,D1 +D2

)
(7.50)

has transfer function

T (s) = T1(s)+ T2(s) (7.51)

and φ(t) = φ1(t)+ φ2(t).
(ii) Multiplying transfer functions

The idea is to have devices represented by linear systems �1 and �2 in series,
combined into a single linear system. In the notation of (i), we write the differential
equation for �1 as

dx

dt
= A1x + B1u

v = C1x +D1u

and for input u and state variable x, and use the output v of �1 as the input for �2,
which has differential equation

dξ

dt
= A2ξ + B2v

y = C2ξ +D2v

with state variable ξ and output y. We eliminate v, and use x and ξ for the state
variables in the combined differential equation

d

dt

[
x

ξ

]

=
[
A1 0
B2C1 A2

] [
x

ξ

]

+
[
B1

B2D1

]

u

y = [
D2C1 C2

]
[
x

ξ

]

+D2D1u.
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From the differential equations, or by direct verification, we deduce that the linear
system

( [
A1 0
B2C1 A2

]

,

[
B1

B2D1

]

,
[
D2C1 C2

]
,
[
D2D1

] )
(7.52)

has transfer function T2(s)T1(s).
(iii) Multiplying transfer functions: an alternative
This approach uses Sylvester’s equation to produce a type of partial fraction
decomposition for products of transfer functions. Suppose that we have SISO
systems (A1, B1, C1,D1) has tf

T1(s) = D1 + C1(sI − A1)
−1B1,

and (A2, B2, C2,D2) has tf

T2(s) = D2 + C2(sI − A2)
−1B2,

whereA1 andA2 are n×n matrices such that spec(A1)∩ spec(A2) = ∅. Then there
exists X such that B1C2 = A1X −XA2, so B1C2 = −(sI −A1)X +X(sI −A2);
then

(sI − A1)
−1B1C2(sI − A2)

−1 = −X(sI − A2)
−1 + (sI − A1)

−1X;

hence

T1(s)T2(s) = D1D2 + C1(sI − A1)
−1B1D2 +D1C2(sI − A2)

−1B2

+ C1(sI − A1)
−1B1C2(sI − A2)

−1B2

= D1D2 + C1(sI − A1)
−1B1D2 +D1C2(sI − A2)

−1B2 − C1X(sI − A2)
−1B2

+ C1(sI − A1)
−1XB2

which is the transfer function of

( [
A1 0
0 A2

]

,

[
B1D2 +XB2

B2

]

,
[
C1 D1C2 − C1X

]
,D1D2

)
. (7.53)

More generally, we can use similar formulas to multiply transfer functions of
MIMOs of appropriate shapes whenever A1, B1 and B1C2 are n × n matrices such
that B1C2 = A1X − XA2 has a solution X.
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(iv) Inverting transfer functions

A radio station takes a message U and uses a rational transfer function T (s) to
convert the message into a signal Y which it broadcasts. The receiver wishes to take
the signal Y and recover U . Presumably, the receiver should use a transfer function
such as T (s)−1. Here is how to realize this inverse as a linear system.

Proposition 7.14 (Inverse System) Suppose that� = (A,B,C,D) hasD invert-
ible. Then

�× =
[
A× B×
C× D×

]

=
[
A− BD−1C BD−1

−D−1C D−1

]

has transfer function T ×(s) = D× + C×(sI − A×)−1B× such that

T (s)T ×(s) = T ×(s)T (s) = I.

Proof To see this, we take the usual differential equation

dX

dt
= AX + BU

Y = CX +DU (7.54)
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with input U and output Y , and then solve for U so that the input becomes U and
the output becomes Y . This gives

U = −D−1CX +D−1Y (7.55)

dX

dt
= AX + B(−D−1CX +D−1Y

)
, (7.56)

which we can rearrange to give

dX

dt
= (A− BD−1C)X + BD−1Y (7.57)

U = −D−1CX +D−1Y, (7.58)

so we obtain �×.
We can also use the Schur complement formula (3.34) to show that for a SISO

system (A,B,C,D) with transfer function T (s), the inverse is

T (s)−1 = [
0 1

]
[
A− sI B
C D

]−1 [
0
1

]

. (7.59)

	

The purpose of the following result is to replace the main transformationA by A+
BF in cases in which A+BF is stable; see Lemma 7.7 and Theorem 7.8. Note that
the choice F = 0 gives T2(s) = I and T (s) = T1(s).

Corollary 7.15 Suppose that

T (s) = tf
[
A B

C D

]

, (7.60)

T1(s) = tf
[
A+ BF B
C +DF D

]

; T2(s) = tf
[
A+ BF B
F I

]

. (7.61)

Then

T (s) = T1(s)T2(s)
−1. (7.62)

Proof In particular, we have

[
A+ BF B
F I

]×
=

[
A B

−F I
]

(7.63)
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so

T2(s)T2(s)
−1 = (

I + F(sI −A− BF)−1B
)(
I − F(sI −A)−1B

) = I. (7.64)

Hence

T1(s)T2(s)
−1 = (

D + (C +DF)(sI − A− BF)−1B
)(
I − F(sI − A)−1B

)

= D + C((sI − A− BF)−1 − (sI − A− BF)−1BF(sI − A)−1)B

+DF ( − (sI − A)−1 + (sI − A− BF)−1

− (sI − A− BF)−1BF(sI − A)−1)B

= D + C(sI − A)−1B

= T (s).

	

Example 7.16 (An Input-Output Closed System) Suppose that SISO (A,B,C,D)
has transfer function T (s) and (A×, B×, C×,D×) has transfer function T ×(s),
where T (s)T (s)× = 1. Find a SISO that has transfer function−T ×(s).

Consider the diagram

Show that

[
y1

y2

]

=
[

0 −1
1 0

] [
u1

u2

]

.

It is instructive to consider the cases in which T (s) and T ×(s) individually are
stable.
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(v) Transfer functions for controllers

Suppose that we have a plantG = (A,B,C,D) with transfer function

G(s) = D + C(sI − A)−1B (7.65)

which is to be controlled by another plant K = (a, b, c, d) with transfer function

K(s) = d + c(sI − a)−1b (7.66)

is a simple feedback loop, so that the combined system has transfer function

H(s) = (1+G(s)K(s))−1G(s). (7.67)

We wish to represent this as the transfer function of a single linear system. The
differential equation for G is

dx

dt
= Ax + Bv

y = Cx +Dv

while the differential equation for K is

dξ

dt
= aξ + by

w = cξ + dy

The combined system is to have input u and output y, and we use x and ξ as the
new state variables. Suppose for the moment that d = 0. Then the output ofK is w,
which is multiplied by −1, then added to the input u of the whole system, so that
v = u − w is the input into G. We eliminate v and w by writing w = cξ and the
input for the x differential equation becomes

v = u− w = u− cξ, (7.68)
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and we have an input for the ξ differential equation

y = Cx +Dv = Cx +D(u− cξ),

then we have our new differential equations

d

dt

[
x

ξ

]

=
[
A −Bc
bC a − bDc

] [
x

ξ

]

+
[
B

bD

]

u

y = [
C −Dc]

[
x

ξ

]

+Du

representing the feedback loop system as in the following block matrix.

⎡

⎢
⎢
⎣

A −Bc ∣
∣ B

bC a − bDc ∣∣ bD
−− −− −−
C −Dc ∣

∣ D

⎤

⎥
⎥
⎦ (7.69)

If d �= 0 and 1+ dD is invertible, we use

w = cξ + dy

to eliminate w, then substitute this into the equations for v

v = u− w = u− cξ − dy = u− cξ − d(Cx +Dv)

and solve this

v = (1+ dD)−1(u− cξ − dCx)

With q = (1+ dD)−1, the differential equations become

d

dt

[
x

ξ

]

=
[
A− qBdC −qBc
bC − qbDdC a − qbDc

] [
x

ξ

]

+
[
qB

qbD

]

u

y = [
C − qDdC −qDc]

[
x

ξ

]

+ qDu.

Note that matrices denoted with lower case a, b, c, d multiply matrices with upper
case A,B,C,D.
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(vii) Conjugating transfer functions
We consider

� ↔
[
A B

C D

]

,�′ ↔
[
A′ C′
B ′ D′

]

and the corresponding transfer functions.
Suppose � = (A,B,C,D) has tf T (s) = D + C(sI − A)−1B, and φ(t) =

C exp(tA)B.
Then �′ = (A′, C′, B ′,D′) has tf T̃ (s) = D′ + B ′(sI − A′)−1C′ and φ̃(t) =
B ′ exp(tA′)C′,
so T̃ (s) = T (s̄)′ and φ̃(t) = φ(t)′.

Also

�∗ =
( [
A 0
0 A′

]

,

[
0 B
C′ 0

]

,

[
C 0
0 B ′

]

,

[
0 D

D′ 0

] )
(7.70)

has transfer function

F(s) =
[

0 T (s)

T̃ (s) 0

]

(7.71)

and

�(t) =
[
C 0
0 B ′

]

exp
(
t

[
A 0
0 A′

] ) [
0 B

C′ 0

]

=
[

0 φ(t)

φ(t)′ 0

]

. (7.72)

where F(s̄)′ = F(s) and�(t) = �(t)′ for t ∈ (0,∞).
This produces a symmetrical looking transfer function, but the matrices in �∗

are not themselves self-adjoint.
(vi) Conjugating transfer functions for square matrices

There is a variant for I,A,B,C,D all n× n matrices. Let

J =
[

0 I
I 0

]

(7.73)

�̂ = (Â, B̂, Ĉ, D̂) =
( [

0 A′
A 0

]

,

[
0 B ′
B 0

]

,

[
0 C′
C 0

]

,

[
0 D

D′ 0

] )
(7.74)

which are all self-adjoint, and consider

J
d

dt
X = ÂX + B̂U

Y = ĈX + D̂U. (7.75)
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Then the corresponding transfer function is

T̂ (s) = D̂ + Ĉ(sJ − Â)−1B̂, (7.76)

which is expressed in terms of self-adjoint matrices, and reduces to

T̂ (s) =
[

0 D + C(sI − A)−1B

D′ + C′(sI − A′)−1B ′ 0

]

; (7.77)

which is not self-adjoint.

7.10 Small Groups of Matrices

Example 7.17

(i) The identity matrix and reflection in the origin give a group D2 with two
elements

[
1 0
0 1

]

,

[
0 1
1 0

]

. (7.78)

(ii) There is also a cyclic groupC4 of order four, given by rotations about the origin
through 0, π/2, π, 3π/2

[
1 0
0 1

]

,

[
0 −1
1 0

]

,

[−1 0
0 −1

]

,

[
0 1
−1 0

]

, (7.79)

all of which have determinant one.
(iii) By adding elements, we can introduce the quaternion groupQ8 with elements

[
1 0
0 1

]

,

[
i 0
0 −i

]

,

[
0 1
−1 0

]

,

[
0 i
i 0

]

,

[−1 0
0 −1

]

,

[−i 0
0 i

]

,

[
0 −1
1 0

]

,

[
0 −i
−i 0

]

,

(7.80)

which is a subgroup of SU(2).
(iv) Alternatively, we can introduce the dihedral group of order 8, given by the

symmetries of the square from the products of elements of D2 and C4.

We can choose

J =
[
I 0
0 I

]

,

[
iI 0
0 −iI

]

,

[
0 I

−I 0

]

,

[
0 iI
iI 0

]

, (7.81)

and consider the differential equation and transfer function as in (7.75).



7.11 How to Convert Complex Matrices into Real Matrices 245

7.11 How to Convert Complex Matrices into Real Matrices

In some cases, it is easier to work with matrices with entries that real numbers rather
than complex numbers. The following result shows one way of converting real into
larger complex matrices. We observe that

a + ib↔
[
a −b
b a

]

= a
[

1 0
0 1

]

+ b
[

0 −1
1 0

]

(a, b ∈ R)

gives a bijective correspondence between the complex number a + ib and the
matrix aI + bJ , where J 2 = −I , so {I, J,−I,−J } gives a group isomorphic
to {1, i,−1,−i}, or the group C4 of rotations through multiples of right angles. We
extend this idea as follows. Let �A = (A + Ā)/2 and �A = (A − Ā)/(2i) be
the matrices given by the real and imaginary parts of the entries of a matrix A, so
A = �A+ i�A.

Lemma 7.18 There is a homomorphismMn×n(C)→ M2n×2n(R)

A �→ Â =
[�A −�A
�A �A

]

which is

(i) real linear, so λA �→ λÂ for all λ ∈ R, and A ∈ Mn×n(C);
(ii) additive A+ B �→ Â+ B̂ for all A,B ∈ Mn×n(C);

(iii) multiplicative, so AB �→ ÂB̂ for all A,B ∈ Mn×n(C);
(iv) unital, so In �→ I2n;
(v) Hermitian matrices A = A′ are mapped to real symmetric matrices, so Â =

Â�;
(vi) det Â = | detA|2 for all A ∈ Mn(C), so an invertible A is mapped to an

invertible Â.

Proof (i), (ii) and (iv) are straightforward.
(iii) We have

AB = (�A+i�A)(�B+i�B) = �A�B−�A�B+i(�A�B+�A�B) (7.82)

while for comparison

[�A −�A
�A �A

] [�B −�B
�B �B

]

=
[�A�B − �A�B −�A�B − �A�B
�A�B + �A�B �A�B − �A�B

]

. (7.83)

(v) For Hermitian A, we have A = A′, so (�A + i�A) = (�A + i�A)′, so
�A = (�A)� and �A = −(�A)�. Hence Â is symmetric.
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(vi) Working inM2n(C), we have a similarity of matrices

det Â = det
( [
I iI

0 I

] [�A −�A
�A �A

] [
I −iI
0 I

] )
= det

[
A 0
�A A′

]

(7.84)

so det Â = detA detA′ = | detA|2. Also, for an invertible matrix A, we have
detA �= 0, so det Â �= 0, and Â is also invertible. 	


LetM be a n× n complex matrix. Then

M̂ =
[

0 M

M ′ 0

]

(7.85)

is a self-adjoint matrix, and for λ ∈ C \ R, there is an inverse

(λI2n − M̂)−1 =
[
λI −M
−M ′ λI

]−1

=
[
λ(λ2I −MM ′)−1 M(λ2I −M ′M)−1

M ′(λ2I −MM ′)−1 λ(λ2I −M ′M)−1

]

.

(7.86)

Note that λ2I −M ′M and λ2I −MM ′ are invertible, since λ2 > 0 implies λ ∈ R.

Definition 7.19 Let M be a n × n complex matrix. Say that σ ≥ 0 is a singular
number of M if there exists v ∈ Cn×1 such that v �= 0 and M ′Mv = σ 2v. We can
list them according to multiplicity as σ1 ≥ σ2 ≥ · · · ≥ σn.
Usually singular numbers ofM are defined to be the eigenvalues of (M ′M)1/2, but
it is possible to avoid the complication of square roots, on account of the following
lemma.

Lemma 7.20 Let σ > 0. Then σ is a singular number ofM if and only if there exist
eigenvectors of M̂ of the form

[
w−
v

]

=
[−Mv/σ

v

]

,

[
w+
v

]

=
[
Mv/σ

v

]

corresponding to −σ and σ respectively. Conversely, all the eigenvectors corre-
sponding to nonzero eigenvalue of M̂ arise in pairs of this form.

Proof Let v �= 0 satisfyM ′Mv = σ 2v; then

[
0 M

M ′ 0

] [−Mv/σ
v

]

= −σ
[−Mv/σ

v

]

, (7.87)

[
0 M

M ′ 0

] [
Mv/σ

v

]

= σ
[
Mv/σ

v

]

, (7.88)
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and we have an eigenvalue pair for M̂ for eigenvalues±σ . Conversely, suppose that
we have an eigenvector equation

[
0 M

M ′ 0

] [
w

v

]

= λ
[
w

v

]

(7.89)

with λ �= 0, so λ is real, and λ2 > 0; then Mv = λw and M ′w = λv; hence
M ′Mv = λ2v. We take σ = |λ| > 0 and a pair of non zero vector w− = −Mv/σ
and w+ = Mv/σ.These are distinct, w = ±w±, according to whether λ < 0 or
λ > 0. This we obtain a pair of eigenvectors corresponding to ±λ, where σ = |λ| is
a singular number ofM . 	


7.12 Periods

For ωj ∈ R and aj ∈ C, the sum

f (t) =
n∑

j=1

aje
iωj t (7.90)

represents a signal with periodic summands eiωj t of various periods. To describe the
behaviour of the sum it is helpful to determine the relationship between the periods,
as we do here by some algebra. The following results are special cases of the main
theorem of [20], which provide an algorithm for computing all the quantities we
mention here. Let

A = {k1ω1 + k2ω2 + · · · + knωn : k1, . . . , kn ∈ Z} (7.91)

be the additive group that is generated by the ωj . We note that ϕ : A→ {s : |s| = 1}

ϕ(k1ω1 + k2ω2 + · · · + knωn) = exp
(
i(k1ω1 + k2ω2 + · · · + knωn)

)
(7.92)

is a group homomorphism to the circle, and ϕ(k1ω1+k2ω2+· · ·+knωn) = 1 if and
only if k1ω1 + k2ω2 + · · · + knωn = 2πk for some k ∈ Z. We therefore introduce
the subgroupA∩ 2πZ and the quotient groupM = A/(A∩ 2πZ). We can interpret
the elements ofM as sums 2πk + k1ω1 + k2ω2 + · · · + knωn modulo 2πZ.

Then M is a finitely generated Abelian group, and by general theory has a
decomposition as a direct sum of nonzero subgroups

M =M1 ⊕M2 ⊕ · · · ⊕Mr (7.93)
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where Mj = {kσj : k ∈ Z} is generated by a single element σj and θ(Mj ) =
{k ∈ Z : kσj = 0} is a proper subgroup of Z, so θ(Mj ) = (dj ) = djZ, and Mj is
isomorphic as a group to Z/(dj ).

If dj = 0, thenMj is isomorphic as a group to Z, and we have an infinite group.
If dj �= 0, then we can assume that dj > 1, and Mj is isomorphic as a group to
Z/(dj ), the cyclic group of order dj .

By the theory, we can take 1 ≤ s ≤ r , and arrange the indices so that the positive
dj appear first, with d1|d2| . . . |ds , followed by ds+1 = · · · = dr = 0. This gives
two possibilities:

Proposition 7.21

(i) Either r = s, andM is a finite group such that drm = 0 for all m ∈ M; this is
equivalent to

exp
(
i(k1ω1 + k2ω2 + · · · + knωn)dr

) = 1 (k1, . . . , kn ∈ Z). (7.94)

In particular, ωj = 2πqj/dr for some qj ∈ Z and all j = 1, . . . , r and 2πdr
is the period of sums such as f (t).

(ii) Alternatively, s < r andM contains an infinite subgroup isomorphic to Zr−s .

Proof See [20] for a general discussion of finitely generated Abelian groups. 	

In case (ii), we cannot describe the frequencies simply in terms of fractions with

a single common denominator. The sum f (t) is an almost periodic function, as
described in Bohr’s theory. We refer the reader to [33] and [9] for the general theory
and to [45] for application to linear systems. In the next section return to case (i)
and consider further the notion of sums of terms eiωj t with a common period.

7.13 Discrete Fourier Transform

Consider a time interval [0, 2π] and split this into N equal parts by introducing the
times tj = 2πj/N for j = 0, . . . , N − 1. Given a function f : [0, 2π] → C, we
can introduce samples f (tj ). The set of indices {0, 1, . . . , N−1} can be regarded as
a group under addition modulo N , namely the additive group Z/(N). Equivalently,
we can introduce the multiplicative group

GN = {1, e2πi/N, e4πi/N, . . . , e2(N−1)πi/N } (7.95)

in which e2πji/Ne2πki/N = e2π(j+k)i/N and e2πji/N = e2πki/N if and only if j ∼= k
moduloN . Then (GN, ·) and (Z/(N),+) give the cyclic group with N elements. It
might appear strange to have a cyclical structure for time; however, cyclic patterns
are common in music.

Let V be the complex vector space of functionsF : {0, 1, . . . , N−1} → C, with
the usual pointwise addition and scalar multiplication. We also introduce the scalar
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product

〈F,G〉 = 1

N

N−1∑

j=0

F(j)G(j) (F,G ∈ V ). (7.96)

Lemma 7.22 Let Ek(j) = e2πjki/N for j, k ∈ {0, 1, . . . , N − 1}. Then (Ej )
N−1
j=0

gives a complete orthonormal basis for V .

Proof We have

〈Ek,Ek〉 = 1

N

N−1∑

j=0

Ek(j)Ek(j) = 1

N

N−1∑

j=0

1 = 1;

whereas for k �= �, we have −N < j − � < N , so e2π(k−�)i/N �= 1 and we can use
the geometric sum formula

〈Ek,E�〉 = 1

N

N−1∑

j=0

e2π(k−�)ji/N

= 1

N

N−1∑

j=0

(
e2π(k−�)i/N)j

= 1

N

1− e2π(k−�)i

1− e2π(k−�)i/N

= 0.

The space V evidently has dimension N since we can specify any F ∈ V by its
values at N points; so we have a complete orthonormal basis. 	

Proposition 7.23 For all F ∈ V , there is an orthogonal expansion

F =
N−1∑

k=0

akEk (7.97)

where ak = 〈F,Ek〉 and

〈F,F 〉 =
N−1∑

k=0

|ak|2. (7.98)

Proof This is an immediate consequence of the Lemma 7.22 and basic facts about
orthogonal bases. 	
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The ak are known as discrete Fourier coefficients and the sequence (ak)
N−1
k=0 as

the discrete Fourier transform. Note also that Ek : {0, 1, . . . , N − 1} → C satisfies
Ek(m+ n) = Ek(m)Ek(n) and |Ek(n)| = 1, hence Ek is a multiplicative character
on {0, 1, . . . , N − 1} = Z/(N). We also have Ej+�(n) = Ej(n)E�(n).

Using {0, 1, . . . , N − 1} to index the rows and columns, we introduce the matrix

U = 1√
N

[
e2πjki/N

]N−1

j,k=0
. (7.99)

Corollary 7.24 The Fourier expansion of F ∈ V is

F = √N U
⎡

⎢
⎣

a0
...

aN−1

⎤

⎥
⎦ (7.100)

where U has the properties:

(i) U ′U = I ;
(ii) U2 is a permutation matrix on the basis {Ej : j = 0, 1, . . . , N − 1};

(iii) U4 = I .

Proof

(i) We observe that Ek(j) = e2πjki/N , so writing the Ek as columns, we have

U = 1√
N

[
E0 E1 . . . EN−1

]
, (7.101)

where the columns are orthonormal in V by the Lemma 7.22; equivalently,
U ′U = [〈Ej ,Ek〉] is the identity matrix. By the Proposition 7.23, F =
∑N−1
k=0 akEk.

(ii) The (j, �) entry of U2 is

[U2]j,� = 1

N

N−1∑

k=0

e2πi(j+�)k/N = 〈Ej+�, E0〉, (7.102)

so we apply the Lemma 7.22 . In the case k = � = 0, we have 〈Ej+�, E0〉 =
1; in the case j = N − �, we have j + � ∼= 0 modulo (N), and we have
〈Ej+N−j , E0〉 = 〈E0, E0〉 = 1; in all other cases, j + � is not congruent to 0
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modulo (N), so 〈Ej+�, E0〉 = 0. Hence U2 has the form

U2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . . . . 0
0 . . . 0 1
... 1 0
... · ...

0 1 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.103)

The effect of U2 is to fix E0, and take Ej to EN−j for j = 1, . . . , N − 1.
(iii) Given the shape of E2, it is clear that U4 = I .

	


7.14 Exercises

Exercise 7.1 For

A = B =
[

1 0
0 0

]

, (7.104)

let T : M2×2(C)→ M2×2(C) be the operator

T (X) = AX +XB (X ∈ M2×2(C)). (7.105)

(i) Show that T is linear.
(ii) Find null(T ) = {X : T (X) = 0} and range(T ) = {T (X) : X ∈ M2×2(C)}.
Exercise 7.2 Consider the matrix

A = −
⎡

⎣
1 2 3
2 5 1
1 2 7

⎤

⎦ . (7.106)

(i) Show that −A − A′ is not positive definite, by considering the determinant or
otherwise.

(ii) Show that there exists a positive definite K such that

− AK −KA′ = I (7.107)

has a solution, and find K numerically. (Use appropriate computer programs.)
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Exercise 7.3 Let S : C→ M2×2(C) be a matrix function such that

S(k)S(−k) = I2, S(k)� = S(k), S(−k̄) = S(k) (k ∈ C),

where the last matrix has entries that are the complex conjugates of the entries of
S(k).

(i) Show that for k real, S(k) is unitary.
(ii) For

S(k) =
[
r(k) t (k)

t (r) r(k)

]

, let �(k) = 1

t (k)t (−k)
[−r(k)t (−k) t (−k)

t (k) −r(−k)t (k)
]

.

Show that trace�(k) = 0 and det�(k) = −1 for all k ∈ C.
(iii) For

S(k) = eiθ(k)
[

cosψ(k) i sinψ(k)
i sinψ(k) cosψ(k)

]

,

find conditions on θ,ψ : C → C that ensure that S satisfies the stipulated
conditions, and compute�(k).

In scattering theory, S(k) is known as the scattering matrix, while �(k) is the
transfer matrix.

Exercise 7.4 (Gramians in continuous time)

(i) Suppose that the controllability Gramian

KC =
∫ ∞

0
exp(tA)BB ′ exp(tA′)dt

converges. Show that

G(t) =
∫ ∞

t

exp(uA)BB ′ exp(uA′)du

gives a solution of

dG

dt
= AG+GA′, G(0) = KC.

(ii) Suppose that the observability Gramian in continuous time

KO =
∫ ∞

0
exp(tA′)C′C exp(tA)dt
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converges. Show that

H(t) =
∫ ∞

t

exp(uA′)C′C exp(uA)du

gives a solution of

dH

dt
= A′H +HA, H(0) = KO.

Exercise 7.5 By considering the trace, show that the equation

AX − XA = In
has no solution with A,X ∈ Mn×n(C).
Exercise 7.6 (Pauli Matrices)

(i) Show that

σ0 =
[

1 0
0 1

]

, σ1 =
[

0 1
−1 0

]

, σ2 =
[

1 0
0 −1

]

, σ3 =
[

0 −1
−1 0

]

,

(7.108)

give a linear basis forM2×2(C).
(ii) Let [A,X] = AX −XA. Show that

[σ0, σj ] = 0; [σ1, σ2] = 2σ3, [σ1, σ3] = −2σ2, [σ2, σ3] = −2σ1.

(iii) For A = ∑3
j=0 ajσj , C =

∑3
j=0 cjσj and X = ∑3

j=0 xjσj , deduce that
the equation AX − XA + C = 0 has a solution if and only if c0 = 0 and
−a1c1 + a2c2 + a3c3 = 0. Find this solution.



Chapter 8
Discrete Time Systems

• This chapter considers linear systems in discrete time which are specified by a
difference equation. Initially, the results are similar to those achieved in previous
chapters for continuous time linear systems, and involve tools such as the z-
transform which is analogous to the Laplace transform of previous chapters.
There is a corresponding notion of transfer function.

• There is a particularly important difference equation called the three term
recurrence relation for orthogonal polynomials. This provides us with a route
into the classical theory of orthogonal polynomials on bounded intervals of the
real line. Orthogonal polynomials are important in signal processing as they can
be used to construct filters. The exercises cover examples such as Bessel filters.

• We consider some classical examples of orthogonal polynomials such as the
Chebyshev polynomials of the first kind, the Laguerre polynomials and the
Hermite polynomials. In Chap. 9, we will use the Chebyshev polynomials and
variants to solve some random linear systems and models from physics. In
Chap. 10, we use the Laguerre polynomials and their Laplace transforms to study
signals in wireless communication.

8.1 Discrete-Time Linear Systems

In this chapter we consider time as a variable which takes values 0, 1, 2, . . . , as
if viewing the system at unit time intervals. By rescaling, one can adjust the time
interval to be h > 0. The system under consideration has inputs u0, u1, . . . ,∈ C,
and outputs y0, y1, · · · ∈ C, and the corresponding states are x0, x1, · · · ∈ CN×1.
Given constant matrices

[
A B

C D

] [
N ×N N × 1
1× N 1× 1

]

, (8.1)
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the corresponding linear system is the system of difference equations

xn+1 = Axn + Bun
yn = Cxn +Dun (n = 0, 1, 2, . . . ).

A convenient way to represent the inputs is by way of a power series

(un)
∞
n=0 ↔ u(z) =

∞∑

n=0

unz
n; (8.2)

if the power series has radius of convergenceR > 0, then u(z) represents the Taylor
series of a holomorphic function on D(0, R) = {z ∈ C : |z| < R}. Likewise we
introduce formal power series

(xn)
∞
n=0 ↔ X(z) =

∞∑

n=0

xnz
n, (yn)

∞
n=0 ↔ Y (z) =

∞∑

n=0

ynz
n (8.3)

to represent the state and the output, and interpret them as holomorphic functions
when the series converge.

Definition 8.1 (Z-Transform) The function X(1/z) = ∑∞
n=0 xnz

−n is known as
the unilateral Z-transform of (xn)∞n=0, and may be regarded as a discrete-time
Laplace transform. This is a Laurent series in negative powers of z, so the natural
domain of convergence is {z ∈ C : |z| > r} for some r > 0.

8.2 Transfer Function for a Discrete Time Linear System

Definition 8.2 The transfer function of a discrete-time linear system is

T (z) = D + zC(I − zA)−1B. (8.4)

Proposition 8.3

(i) Then T (z) defines a holomorphic function on D(0, 1/‖A‖).
(ii) Let r = min{R, 1/‖A‖}. Then for x0 = 0, there exists a unique solution to the

linear system, which is determined by the coefficients in the power series, where

Y (z) = T (z)X(z) (z ∈ D(0, r)). (8.5)
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Proof

(i) As in Proposition 2.48, (I − zA)−1 has rational entries with possible poles at
the zeros of det(I − zA). Hence by Proposition 3.11, I − zA is invertible for
|z|‖A‖ < 1, and (I − zA)−1 generates a convergent power series

∑∞
j=0 z

jAj ,
so we have an unambiguous interpretation of T (z) as a holomorphic function
via the convergent power series

T (z) = D +
∞∑

n=0

CAnBzn+1. (8.6)

(ii) We multiply the state difference equation by zn+1 and sum over n to obtain

∞∑

n=0

xn+1z
n+1 = z

∞∑

n=0

Axnz
n + zB

∞∑

n=0

unz
n (8.7)

so

X(z)− x0 = zAX(z)+ zBu(z), (8.8)

where by assumption x0 = 0. Now I − zA is invertible for |z|‖A‖ < 1, so we
obtain

X(z) = z(I − zA)−1Bu(z), (8.9)

where the right-hand side is holomorphic on D(0, r) since u(z) and (I − zD)−1

may be expressed as convergent power series. Multiplying the output equation
by zn and summing over n, we obtain

Y (z) = CX(z)+Du(z), (8.10)

hence we obtain the solution

Y (z) = zC(I − zA)−1Bu(z)+Du(z) (z ∈ D(0, r)), (8.11)

which immediately gives Y (z) = T (z)u(z).
Given the convergent power seriesX(z) and Y (z) we can recover the coefficients

from Taylor’s formula

xn = 1

n!
dnX

dzn
(0), yn = 1

n!
dnY

dzn
(0) (n = 0, 1, 2, . . . ) (8.12)

so we have a unique solution for the system of difference equations. 	
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Example 8.4 Suppose that A ∈ M2×2(C). Then the characteristic equation of A is
the quadratic

det(sI − A) = s2 − traceAs + detA

where the eigenvalues λ and μ of A satisfy λ + μ = traceA and λμ = detA; so
either:

(i) A = λI2 for some λ ∈ C;
(ii) A is similar to

[
λ 0
0 μ

]

(8.13)

for some distinct λ,μ ∈ C; or
(iii) A is similar to the Jordan block

[
λ 1
0 λ

]

(8.14)

for some λ ∈ C.

Based upon this, one can easily computeAn and hence the coefficients of the power
series T (z). For instance, in case (iii), we have

T (z) = D + zĈ

(1− λz)2
[

1− λz z

0 1− λz
]

B̂ (8.15)

for vectors Ĉ and B̂ , so T (z) has a possible double pole.
This Example arises in applications such as (8.30), (6.121) and Proposition 8.27.

Remark 8.5

(i) Proposition 8.3 has a converse Proposition 10.29 which realizes a holomor-
phic function on the disc as the transfer function of a discrete-time linear
system.

(ii) The results in this chapter have been formulated so far for SISO systems.
The extension to MIMO systems is straightforward and only involves allowing
matrices (A,B,C,D) with suitable shapes. We carry this out in the remain-
der of this section. The reader can check that Proposition 8.3 extends as
required.
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8.3 Correspondence Between Continuous- and
Discrete-Time Systems

First we recapitulate some previous concepts. We consider the matrix

[
A B

C D

] [
n× n n× k
m× n m× k

]

. (8.16)

and observe that the sequence (CAjB)∞j=0 arises in the following situations:

(i) The continuous time linear system (A,B,C,D) has a transfer function T (s)
with a Laurent series

T (s) = D + C(sI − A)−1B = D +
∞∑

j=0

CAjB

sj+1 ; (8.17)

(ii) the scattering function of (A,B,C,D) has a Taylor series

φ(t) = D + C exp(tA)B = D +
∞∑

j=0

CAjBtj

j ! ; (8.18)

(iii) the discrete time linear system (A,B,C,D) has a transfer function with Taylor
series

Td(z) = D + Cz(I − zA)−1B = D +
∞∑

j=0

zj+1CAjB; (8.19)

(iv) the operators L and K of Sect. 3.11 have product

LK =

⎡

⎢
⎢
⎢
⎣

C

CA

CA2

...

⎤

⎥
⎥
⎥
⎦

[
B,AB,A2B, . . .

] =

⎡

⎢
⎢
⎢
⎣

CB CAB CA2B . . .

CAB CA2B CA3B . . .

CA2B CA3B CA4B . . .
...

. . .
. . . . . .

⎤

⎥
⎥
⎥
⎦
.

(8.20)

(v) If A is similar to a diagonal matrix with eigenvalues λ�, so A = SDS−1, then
CAjB = CSDjS−1B involves the powers λj� .

These statements indicate that the continuous time and discrete time systems are
related via the sequence (CAjB)∞j=0. In the remainder of this section, we consider
a more profound connection between the transfer functions.
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Example 8.6 (Matrix Möbius Transforms) Suppose that Ad,Bd ,Cd and Dd be
complex matrices such that

[
Ad Bd

Cd Dd

] [
n× n n× k
k × n k × k

]

(8.21)

is unitary. This relates to Exercise 3.9. Then

� =
[−Cd Dd
−Ad Bd

] [
k × n k × k
n× n n× k

]

(8.22)

is also unitary. This matrix is associated with a map

�� : Mn×n(C)→ Mk×k(C) : Z �→ Dd + CdZ(I − AdZ)−1Bd (8.23)

known as the (matrix) Möbius transform, which is discussed in [65, page 146]. By
calculation, one shows that

In −��(Z)′��(Z) = B ′d (In − Z′A′d)−1(In − Z′Z)(In − AdZ)−1Bd, (8.24)

which has the consequence that

In − Z′Z � 0 ⇒ In −��(Z)′��(Z) ≥ 0. (8.25)

In particular, we can take Z = zIn and recover the transfer function

��(zIn) = Dd + Cdz(I − zAd)−1Bd = Td(z). (8.26)

Proposition 8.7 Suppose that� is unitary. Then Td(z) is holomorphic on D, with

(i) ‖Td(z)‖ ≤ 1 for all z ∈ D;
(ii) Td(z) is a unitary k × k matrix for all z such that |z| = 1.

Proof

(i) This follows since

I − Td(z)′Td (z) = I − (D′d + z̄B ′d (I − z̄A′d)−1C′d )(Dd + zCd(I − zAd)−1Bd)

= I −D′dDd − z̄B ′d (I − z̄A′d)−1C′dDd − zD′dCd(I − zAd)−1Bd

− z̄zB ′d(I − z̄A′d)−1C′dCd(I − zAd)−1Bd

= B ′dBd + z̄B ′d (I − z̄A′d)−1A′dB + zB ′dAd(I − zAd)−1Bd

− z̄zB ′d(I − z̄A′d)−1(I − A′dAd)(I − zAd)−1Bd

=B ′d (I − z̄A′d )−1
(
(I − z̄A′d )(I − zAd)+ z̄A′d (I − zAd)+ z(I − z̄A′d )Ad
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− |z|2(I − A′dAd)
)
(I − zAd)−1Bd

= (1− |z|2)B ′d (I − z̄A′d)−1(I − zAd)−1Bd

≥ 0.

(ii) Note that T (z) is a k × k matrix and when |z| = 1, we have T (z)′T (z) = I , so
T (z) is unitary.

	

This Proposition 8.7 gives a way of constructing transfer functions that are

bounded and holomorphic on the unit disc. We can deduce a similar result for
continuous time linear systems.

Theorem 8.8 (Discrete-Time and Continuous-Time Transfer Functions)

(i) Suppose that � has the block form

� =
[
Ad Bd

Cd Dd

] [
n× n n× k
k × n k × k

]

(8.27)

where 1 is not an eigenvalue of Ad . Then

[
A B

C D

]

=
[
(Ad + I)(Ad − I)−1 2(Ad − I)−1Bd

Cd(I − Ad)−1 Dd + Cd(I − Ad)−1Bd

]

(8.28)

gives a continuous-time linear system with transfer function T (s) = D +
C(sI − A)−1B.

(ii) If Ad has all its eigenvalues in D, then A has all its eigenvalues in LHP so
T (s) is stable.

(iii) If � is unitary, then T (s) is holomorphic for s ∈ RHP and

‖T (s)‖ ≤ 1 (s ∈ RHP), (8.29)

and T (s) is unitary for all s = iω with ω ∈ R.

Proof

(i) The transfer function Td(z) for the discrete-time system � is defined as in
Sect. 8.2, while the transfer function T (s) for (A,B,C,D) is defined as in
Sect. 2.10, and we need to show that these match up. For s ∈ RHP we write
z = (s − 1)(s + 1)−1, so z ∈ D, and we calculate

Td(z) = Dd + zCd(I − zAd)−1Bd

= Dd + (s − 1)Cd
(
(s + 1)I − (s − 1)Ad

)−1
Bd
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= Dd + (s − 1)Cd
(
s(I − Ad)+ I + Ad

)−1
Bd

= Dd + (s − 1)Cd(I − Ad)−1(sI − A)−1
Bd

then we use (s − 1)I = sI − A+ A− I and A− I = 2(Ad − I)−1 to write

Td(z) = Dd + Cd(I− Ad)−1Bd + 2Cd(I− Ad)−1(sI− A)−1(Ad − I)−1Bd

= D + C(sI − A)−1B

= T (s).

(ii) We observe that if λ ∈ D, then (λ− 1)/(λ+ 1) ∈ RHP so (λ+ 1)/(λ− 1) ∈
LHP . This is relevant for the eigenvalues λ of Ad and A.

(iii) Since � is unitary, we have A′dAd + C′dCd = I , so ‖Ad‖ ≤ 1 and all the
eigenvalues of Ad are in D. Hence Td(z) is homomorphic on D, and T (s) =
Td(z) is holomorphic for s ∈ RHP . By the Proposition 8.7, we have ‖T (s)‖ =
‖Td(z)‖ ≤ 1 for all s ∈ RHP . Also with eiθ = (iω − 1)/(iω + 1) we have
T (iω)′T (iω) = Td(eiθ )′Td(eiθ ) = I .

	


8.4 Chebyshev Polynomials and Filters

Example 8.9 (Chebyshev Polynomials) Consider the linear system

A =
[

2s −1
1 0

]

, B = 0, C = [
0 1

]
, D = 0 (8.30)

where s is here regarded as a complex parameter, so

xn+1 = Axn
yn = Cxn (8.31)

and we choose x0 =
[
s

1

]

. Then yn = CAnx0 gives the solution, which is well

adapted for computer algebra. For instance, one can compute

[y0, y1, y2, y3] = C ∗ [x0, A ∗ x0, A ∗A ∗ x0, A ∗ A ∗A ∗ x0] (8.32)
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to find C0, . . . , C3.

(i) Observe that A has characteristic equation λ2 − 2sλ + 1 = 0 with roots s ∓√
s2 − 1 so s = cos θ gives eigenvalues e±iθ for A; whereas s = cosh θ gives

eigenvalues e±θ . This suggests we use the substitution s = cos θ .
(ii) Then we defineCn as the Chebyshev polynomial of the first kind of degree n by

the output yn = Cn(s). These polynomials are characterized by the property
that Cn(cos θ) = cos(nθ), since one can show by induction that, with s =
cos θ ,

xn =
[

cos(n+ 1)θ
cosnθ

]

(n = 0, 1, . . . ). (8.33)

Of course, the induction step is the trigonometric addition rule

cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cos nθ. (8.34)

The zeros of Cn are given by s = cos θ such that cosnθ = 0, so there are n
zeros in [−1, 1] from the equally spaced angles

θ = π

2n
,

3π

2n
, . . . ,

(2n− 1)π

2n
. (8.35)

(iii) We also have the rule

sin(n+ 1)θ + sin(n− 1)θ = 2 cos θ sin nθ, (8.36)

which suggests the definition of the Chebyshev polynomials (Un)∞n=0 such that
Un(cos θ) = sin(n + 1)θ/ sin θ . These are generated by the same recurrence
relation (8.30), but the initial condition is

[
U1(s)

U0(s)

]

=
[

2s
1

]

. (8.37)

(iv) Chebyshev Filters (Fig. 8.1)
Suppose that we require a filter that cuts off signals like the indicator func-

tion I(−1,1)(x), which has a rectangular graph. We cannot find a meromorphic
function T in the RHP such that |T (iω)| = I(−1,1)(ω), since this conflicts with
results about the boundary values of holomorphic functions. However, we can
approximate the indicator function by using the Chebyshev polynomials. Let
ε > 0, and introduce a transfer function Tn(s) = 1/(1 + εiCn(s/i)), so the
frequency response function is

Tn(iω) = 1

1+ εiCn(ω) (ω ∈ R). (8.38)
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Fig. 8.1 Chebyshev filter

Then for−1 ≤ ω ≤ 1,we can writeω = cos θ for some θ ∈ R, soCn(cos θ) =
cos nθ and |Cn(ω)| ≤ 1; hence the gain is

1 ≥ |T (iω)| = 1
√

1+ ε2Cn(ω)2
≥ 1√

1+ ε2
(ω ∈ [−1, 1]), (8.39)

while the phase has tanφ = −εCn(ω), so |φ| ≤ ε.
For ω > 1 we write ω = cosh θ for some θ > 0, so Cn(cosh θ) = coshnθ and

by induction we have Cn(cosh θ) ≥ coshn θ , so the gain is

|T (iω)| = 1
√

1+ ε2Cn(ω)2
≤ 1√

1+ ε2ω2n
(ω ∈ (1,∞)). (8.40)

Forω < −1 we writeω = − cosh θ = cosh(θ+iπ) for some θ > 0, soCn(cosh(θ+
iπ)) = coshn(θ + iπ) = (−1)n coshnθ and we argue as in the previous case.

For large n, the gain has a graph which resembles the graph of the indicator
function. The Chebyshev filter is easy to compute as the iteration scheme in (8.30)
is simple. On the interval [−1, 1] the graph of the gain exhibits a slight ripple
effect.

This example is the simplest instance of a rather general result that applies to
orthogonal polynomials with respect to weights, which we discuss next.
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8.5 Hankel Matrices and Moments

Let w : R→ [0,∞) be an integrable function such that

0 <
∫ ∞

−∞
|x|kw(x)dx <∞ (8.41)

for all k = 0, 1, 2, . . . . Then w is called a weight, and we can generate a sequence
of moments

μk =
∫ ∞

−∞
xkw(x)dx (k = 0, 1, . . . ) (8.42)

such that μk ∈ R. Clearly the even moments satisfy μ2k ≥ 0; whereas there is no
reason to suppose that the odd moments μ2k+1 are nonnegative. We introduce the
Hankel matrix

� = [μj+k]∞j,k=0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

μ0 μ1 μ2 . . .

μ1 μ2 μ3 . . .

μ2 μ3 μ4 . . .

μ3 μ4 μ5 . . .
... . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8.43)

where the top row gives the sequence of moments. Then � is real and symmetric,
and has the characteristic property of Hankel matrices that the cross diagonals
are constant. In this section we use the subscript N to refer to (N + 1) × (N +
1) complex matrices, and entries will be indexed with indices j starting from
j = 0.

Lemma 8.10 The top left block �N = [μj+k]Nj,k=0 is a positive definite matrix.

Proof Let f (t) = ∑N
j=0 aj t

j and g(t) = ∑N
j=0 bj t

j be complex polynomials of
degree N . Then

〈
�(aj )

N
j=0, (bj )

N
j=0

〉
=

N∑

j,k=0

aj b̄kμj+k

=
N∑

j,k=0

aj b̄k

∫ ∞

−∞
tj+kw(t)dt

=
∫ ∞

−∞
f (t)ḡ(t)w(t)dt,
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so in particular

〈
�(aj )

N
j=0, (aj )

N
j=0

〉
=

∫ ∞

−∞
|f (t)|2w(t)dt. (8.44)

If aj �= 0 for some j , then |f (t)|2 is a continuous function that is zero at only finitely
many points hence the integral is strictly positive, hence �N is positive definite. 	


8.6 Orthogonal Polynomials

We introduce an inner product

〈f, g〉w =
∫ ∞

−∞
f (t)ḡ(t)w(t)dt (8.45)

on the complex polynomials f, g.

Proposition 8.11 There exists a sequence of real orthogonal polynomials

fn(t) =
n∑

j=0

a
(n)
j t

j (8.46)

such that (i) 〈fj , fk〉 = 0 for all j �= k;
(ii) the matrix UN = [a(k)j ]Nj,k=0 is upper triangular with positive diagonal

entries a(n)n > 0,
(iii) U ′N�NUN is diagonal with positive entries on the diagonal.

Proof

(i) We can apply the Gram-Schmidt process [51, page 258] to (tj )Nj=0 to produce
the required fj (t).

(ii) The matrix of coefficients has the form

UN =

⎡

⎢
⎢
⎢
⎢
⎣

a
(0
0 a

(1)
0 . . . a

(N)
0

0 a
(1)
1 . . . a

(N)
1

... 0
. . .

...

0 . . . . . . a
(N)
N

⎤

⎥
⎥
⎥
⎥
⎦
, (8.47)

and the j th diagonal entry is the leading coefficients of fj (t).
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(iii) We take an arbitrary pair of complex polynomials of degree ≤ N , and write
f (t) =∑N

j=0 ξjfj (t) and g(t) =∑N
j=0 ηkfk(t), so that

〈f, g〉w =
N∑

j,k=0

ξj η̄k〈fj , fk〉w =
N∑

j=0

ξj η̄j hj (8.48)

where we have introduced

hj =
∫ ∞

−∞
|fj (t)|2w(t)dt = 〈fj , fj 〉w. (8.49)

We can also write (ej )Nj=0 for the standard orthonormal basis for C(N+1)×1,
and then

UN =
[
U(e0) U(e1) . . . U(eN)

]
, (8.50)

so

N∑

j=0

ξj η̄jhj = 〈f, g〉w = 〈�NU(ξj )Nj=0, U(ηj )
N
j=0〉 (8.51)

as in the Lemma 8.10. Hence we have a diagonal matrix

U ′N�NUN =

⎡

⎢
⎢
⎢
⎢
⎣

h0 0 . . . 0

0 h1
. . . 0

...
. . .

...

0 . . . 0 hN

⎤

⎥
⎥
⎥
⎥
⎦
. (8.52)

	

There are two common choices for the diagonal constants as in the following
Corollary, which correspond to two commonly used normalizations for orthogonal
polynomials. For some classical orthogonal polynomials, there are other special
normalizations, as in the example of Chebyshev polynomials of the first kind or
the Laguerre polynomials. So it is always worth checking which normalization an
author is using.
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8.7 Hankel Determinants

Corollary 8.12 (Hankel Determinants) The normalizing constants of the orthog-
onal polynomials are determined by the sequence of Hankel determinants (�N)∞N=0
in the following distinct cases.

(i) Let (Pj )Nj=0 be the unique sequence of monic orthogonal polynomials with
hj = 〈Pj , Pj 〉w . Then

�N = det�N =
N∏

j=0

hj . (8.53)

(ii) Let (fj )Nj=0 be the orthonormal sequence with 〈fj , fj 〉w = 1 where fj has
leading coefficient kj > 0. Then

�N = det�N =
N∏

j=0

k−2
j . (8.54)

Proof

(i) We can select a(j)j = 1 for j = 0, . . . , N , so that Pj is a monic polynomial of
degree j and UN has ones on the leading diagonal. Then matrix UN is upper
triangular, with ones on its leading diagonal, so detUN = 1 = detU ′N . Hence
from the formula (8.52), we have

det�N = detU ′N det�N detUN =
N∏

j=0

hj . (8.55)

Of course, we can recover hn from h0 = �0 and hN = �N/�N−1 for N ≥ 1.
(ii) We can choose hj = 1 for all j = 0, . . . , N , so that (fj )Nj=0 is an orthonormal

sequence, and then we write kj = a
(j)
j for the leading coefficients and

U ′N�NUN = I. In this caseUN is upper triangular with entries kj on the leading
diagonal. Then U ′N�NUN = IN , so taking determinants, we see that

1 = detU ′N det�N detUN = det�N

N∏

j=0

k2
j . (8.56)

Of course, we can recover kn from k−2
0 = �0 and k−2

N = �N/�N−1 forN ≥ 1.
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Exercise Show that there exists an upper triangular (N + 1) × (N + 1) matrix G
such that �N = G′G.

Definition 8.13 (Completeness) Let w : [a, b] → [0,∞) be a weight, and
(Pn(t))

∞
n=0 the corresponding sequence of monic orthogonal polynomials for w,

and suppose that
∫ b
a
|f (t)|2w(t)dt converges. We say that (Pn(t))∞n=0 is complete if

∫ b

a

f (t)Pn(t)dt = 0 (n = 0, 1, . . . )

implies that f (t) = 0 on [a, b].

8.8 Laguerre Polynomials

Example 8.14 (Laguerre Polynomials) We introduce the weight w(t) = e−t for
t > 0, so that the moments are the factorials

μk =
∫ ∞

0
tke−t dt = k! (k = 0, 1, . . . ). (8.57)

The corresponding sequence of monic orthogonal polynomials begins with

f0(t) = 1, f1(t) = t − 1, f2(t) = t2 − 4t + 2, (8.58)

with the corresponding

h0 = 1, h1 = 1, h2 = 4; (8.59)

hence

U2 =
⎡

⎣
1 −1 2
0 1 −4
0 0 1

⎤

⎦ , �2 =
⎡

⎣
1 1 2
1 2 6
2 6 24

⎤

⎦ , U ′2�2U2 =
⎡

⎣
1 0 0
0 1 0
0 0 4

⎤

⎦ . (8.60)

The standard Laguerre polynomials Ln(t) are defined as in Exercise 6.15 by

Ln(t) = e
t

n!
dn

dtn

(
e−t tn

)
, (8.61)

so that fn(t) = (−1)nn!Ln(t) is a monic polynomial of degree n. The standard
Laguerre polynomials are normalized so thatLn(0) = 1, and the leading coefficients
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are negative for odd n. One can show that

[
fn+1(t)

fn(t)

]

=
[
t − 1− 2n −n2

1 0

] [
fn(t)

fn−1(t)

]

. (8.62)

Let the nth Laguerre function be yn(t) = e−t/2Ln(t), which has Laplace
transform

Yn(s) = 1

n!
∫ ∞

0
e−(s−1/2)t d

n

dtn

(
e−t tn

)
dt (8.63)

so we integrate by parts n times over to get

Yn(s) = (s − 1/2)n

n!
∫ ∞

0
tne−(s+1/2)tdt (8.64)

so with the substitution u = (s + 1/2)t , we get

Yn(s) = (s − 1/2)n

(s + 1/2)n+1
, (8.65)

which is a stable rational function with zero of order n at 1/2 and a pole of order
n+1 at−1/2 in LHP. For this reason, the scaled Laguerre functions (

√
2yn(2t))∞n=0

are a particularly convenient orthonormal basis for L2(0,∞). They have Laplace
transforms

L(
√

2e−tLn(2t))(s) =
√

2
(s − 1)n

(s + 1)n+1
, (8.66)

which match with the functions from Exercise 6.15 as follows. From Lemma 6.33,
we recall the algebra R of proper rational functions with only poles at −1. We
observe that

span
{ 1

(1+ s)k+1
: k = 0, . . . , n

}
= span

{√
2
(s − 1)k

(s + 1)k+1
: k = 0, . . . , n

}

for n = 0, 1, . . . . We prove this by induction on n. The case n = 0 is trivially
true, so we suppose the identity has been established for all cases up to n − 1, and
consider the case n. The new function in the left-hand space can be written as

1n

(s + 1)n+1 =
((s + 1)− (s − 1))n

2n(s + 1)n
=

n∑

k=0

(−1)k

2n

(
n

k

)
(s + 1)n−k(s − 1)k

(s + 1)n+1

=
n∑

k=0

(−1)k

2n

(
n

k

)
(s − 1)k

(s + 1)k+1 ,
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hence belongs to the space on the right-hand side, and the spaces are of equal
dimension n+ 1.

The advantage of this basis is that the latest function is the Laplace transform of
the following sum of orthogonal functions in L2(0,∞), namely

n∑

k=0

(−1)k

2n
√

2

(
n

k

)√
2e−tLk(2t). (8.67)

In Chap. 10, we will show that the Laguerre orthogonal polynomials (Ln)∞n=0
are complete for the weight e−t on (0,∞), or equivalently that Laguerre functions
(e−t/2Ln(t))∞n=0 give a complete orthonormal basis of L2(0,∞). This is the key
step in our proof of the Paley–Wiener Theorem 10.36. Our proof also uses the
uniqueness of Fourier transforms of L1-functions. In [50, p. 350] there is an
alternative approach, which uses Vitali’s completeness theorem from [50, p. 25] as
in Exercise 8.12. This uses some special identities for the Laguerre polynomials and
has the advantage of being more elementary, but more specialized. In Exercise 8.4,
we consider another approach based upon Green’s functions which is suitable for
Legendre and Chebyshev polynomials which live on bounded intervals.

8.9 Three-Term Recurrence Relation

Proposition 8.15 (Three-Term Recurrence Relation) Suppose that (fn) is as in
Corollary 8.12 and let

An = kn

kn−1
, Bn = −An〈tfn−1, fn−1〉w, Cn = An

An−1
= knkn−2

k2
n−1

(n = 2, 3, . . . ).

(8.68)

Then the (fn) satisfy the recurrence relation

[
fn+1(t)

fn(t)

]

=
[
An+1t + Bn+1 −Cn+1

1 0

] [
fn(t)

fn−1(t)

]

(n = 1, 2, . . . ). (8.69)

We can regard the three-term recurrence relation as generating a discrete time
process in which the matrix depends upon the discrete time n, and has t as a
parameter.

Proof Szegö [54] gives the three-term recurrence relation in the style

fn(t) = (Ant + Bn)fn−1(t)− Cnfn−2(t), (8.70)
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which is equivalent to the matrix version here. To establish this relation, we observe
that the given An makes fn(t)− Antfn−1(t) a polynomial of degree ≤ n− 1, since
we have canceled out the leading coefficients. Hence there exist constants ξj such
that

fn(t)− Antfn−1(t) =
n−1∑

j=0

ξjfj (t). (8.71)

Now for j = 0, . . . , n−3 we have 〈fn, fj 〉w = 0 and 〈tfn−1(t), fj (t)〉w = 0, since
tfj (t) is of degree less than n− 1. We take the inner product of both sides of (8.71)
with fj and we find ξj = 0 for j = 0, . . . , n− 3. This leaves us with

fn(t)− Antfn−1(t) = ξn−1fn−1(t)+ ξn−2fn−2(t). (8.72)

By taking the inner product with fn−1 we obtain

− An〈tfn−1(t), fn−1(t)〉w = ξn−1 = Bn. (8.73)

We then take the inner product with fn−2 and obtain

−Cn = ξn−2 = −An〈tfn−1, fn−2〉w
= −An−1

kn−2

kn−1

〈
fn−1, kn−1t

n−1 + terms of lower degree
〉

w

= −An−1
kn−2

kn−1
〈fn−1, fn−1〉w = − An

An−1
.

	

Corollary 8.16 With respect to the space spanned by the basis (fn)∞n=0, the
operation of multiplication by t is represented by a real symmetric tridiagonal
matrix such that the entries on the diagonal below the leading diagonal are positive
and the entries on the diagonal are real.

Proof Here 1/Aj−1 = Cj/Aj > 0. Hence the matrix J is real symmetric and
tridiagonal with entries on the diagonal below the leading diagonal that are positive;
such a matrix is called a Jacobi matrix. 	

Definition 8.17 A (n+ 1)× (n+ 1) Jacobi matrix looks like

⎡

⎢
⎢
⎢
⎢
⎣

b0 a0 . . .

a0 b1 a1
. . .

...
. . . an−1

0 . . . an−1 bn

⎤

⎥
⎥
⎥
⎥
⎦

(8.74)

with bj ∈ R and aj > 0.
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Such a Jacobi matrix has real eigenvalues. Given (kn)∞n=1, we can generate the
sequences (An)∞n=1 and (Cn)∞n=1 by the recursion formula. Then given (Bn) we can
compute the entire sequence (fn(t))∞n=0 from this recurrence relation. An equivalent
form of the three-term recurrence relation is

tfn−1(t) = 1

An
fn(t)− Bn

An
fn−1(t)+ Cn

An
fn−2(t) (8.75)

which expresses the operation of multiplication by t as a tridiagonal matrix with
respect to the orthonormal sequence (fn)∞n=0.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−B1/A1 C2/A2 0 . . .

1/A1 −B2/A2 C3/A3
. . .

0 1/A2 −B3/A3
. . .

... 0 1/A3
. . .

...
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.76)

Corollary 8.18 Suppose that w is even, so w(t) = w(−t).
(i) Then the odd moments vanish μ2j−1 = 0 and Bj = 0 for all j = 1, 2, . . . .

(ii) The sequence of monic orthogonal polynomials (fj ) is determined by the
recurrence relation (8.70) in which the coefficients An and Cn are determined
by the Hankel determinants (�N)∞N=0.

Proof We have μ2j−1 =
∫∞
−∞ t

2j−1w(t)dt = 0. The even indexed polynomials
(f2j (t))

∞
j=0 are all even functions involving only even powers of t , whereas the odd

indexed polynomials (f2j−1)
∞
j=1 are all odd functions involving only odd powers of

t , so f2j−1(−t) = −f2j−1(t). One can check these facts from the Gram-Schmidt
construction [51, page 258], and make a formal proof by induction on the degree. In
either case we have fn−1(t)

2 even, so

Bn = −An
∫ ∞

−∞
tfn−1(t)

2w(t)dt = 0. (8.77)

The other coefficients in the recurrence relation are

An = kn

kn−1
=

( �2
n−1

�n�n−2

)1/2
, Cn = An

An−1
. (8.78)
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Powers of Infinite Jacobi Matrices
A matrix is fundamentally a table of data. For instance, the outputs of a linear system
can be listed in an infinite column vector [yj ]∞j=0. When all the yj belong to a
vector space V we can carry out addition and scalar multiplication on the entries
coordinatewise, so that

λ[yj ]∞j=0 + μ[zj ]∞j=0 = [λyj + μzj ]∞j=0. (8.79)

Likewise, given a doubly-indexed collection of scalars aj,k , we can form an infinite
matrix A = [aj,k]∞j,k=0 and carry out scalar addition and multiplication on the
entries of such matrices. However, forming the product AB of infinite matrices
A = [aj,k]∞j,k=0 and B = [bj,k]∞j,k=0 involves the series

∑∞
k=0 aj,kbk,� for

j, � = 0, 1, . . . , and we need to ensure that these converge. In the special case in
which most of the entries are zero, then this problem is less significant. The identity
matrix I with 1 on the leading diagonal and 0 in all the off-diagonal entries satisfies
AI = IA = A. If A and B haveAB = BA = I , then A is said to be invertible with
inverse B.

In the remainder of this section we consider matrices A that are tridiagonal, so
that the entries are all zero, apart from those on the leading diagonal or directly
beside the leading diagonal. It is easy to multiply matrices of this special shape, and
most importantly they arise in the theory of orthogonal polynomials, as follows.

Let w be a weight on a bounded interval [a, b] such that
∫ b
a
w(t)dt = 1, and

let (fj )∞j=0 be the system of orthonormal polynomials where fj has degree j and
positive leading coefficient. There is a three term recurrence relation

tfj (t) = ajfj+1(t)+ bjfj (t)+ aj−1fj−1(t) (8.80)

where f−1 = 0 and the coefficients are

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b0 a0 . . .

a0 b1 a1
. . .

0 a2 b2
. . .

... . . .
. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8.81)

where aj > 0.

Proposition 8.19

(i) The operation of left multiplication by An on the column vector [fj (t)]∞j=0
represents multiplication by tn, so the (j, k)th entry of An is given by

[An]j,� =
∫ b

a

tnfj (t)f�(t)w(t)dt (n, j, � = 0, 1, . . . ). (8.82)
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(ii) Suppose that (sI −A) is invertible for some s ∈ C with |s| > |a|, |b|. Then the
(j, k)th entry of (sI − A)−1 is given by

[
(sI − A)−1]

j,k
=

∫ b

a

fj (t)fk(t)w(t)dt

s − t (j, k = 0, . . . ). (8.83)

Proof

(i) We write the entries of A as [A]j,k for j, k = 0, 1, . . . , so the three-term
recurrence relation becomes

tfj (t) =
∞∑

k=0

[A]j,kfk(t), (8.84)

where only finitely many of the terms in this sum are nonzero since A is
tridiagonal. Hence we have

t2fj (t) =
∞∑

k=0

[A]jktfk(t) =
∞∑

k,�=0

[A]j,k[A]k,�f�(t) =
∞∑

�=0

[A2]j,�f�(t),

(8.85)

and generally by induction on n we have

tnfj (t) =
∞∑

k=0

[An]j,kfk(t) (j = 0, 1, . . . ). (8.86)

where all but finitely many terms in the series are zero. From (8.86) we have
the formula

∫ b

a

tnfj (t)f�(t)w(t)dt =
∞∑

k=0

[An]jk
∫ b

a

fk(t)f�(t)w(t)dt = [An]j,�
(8.87)

which follows by orthogonality.
(ii) We can express the infinite identity matrix as I = [∫ ba fj (t)fk(t)w(t)dt]∞j,k=0.

Then by geometric series we have

∫ b

a

fj (t)fk(t)w(t)dt

s − t =
∞∑

n=0

1

sn+1

∫ b

a

tnfj (t)fk(t)w(t)dt

=
∞∑

n=0

1

sn+1 [An]j,k
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=
[ ∞∑

n=0

s−n−1An
]

j,k

= [
(sI − A)−1]

j,k
. (8.88)

To check the final identity, one can estimate the entries of (sI − A)An/sn+1 as
n→∞ and prove they converge to zero.

	

Remark 8.20 Classical orthogonal polynomials

In this book, we mention classical orthogonal polynomials associated with
Chebyshev, Legendre, Hermite and Laguerre. Classical orthogonal polynomials
have some additional special features, and can be introduced in various ways.

(i) They are orthogonal with respect to weights w(x) defined in terms of elemen-
tary functions. In many examples, (dw/dx)/w(x) = 2V (x)/W(x) where V
andW are polynomials withW not zero.

(ii) The classical orthogonal polynomials they satisfy differential equations with
polynomial coefficients. This is important in applications to physics, and many
classical orthogonal polynomials were discovered as solutions of differential
equations in various geometrical coordinates. Also, one can classify second-
order differential equations with polynomial coefficients according to the
singular points where the coefficients are zero; see [61]. There are various
results dating back to Laguerre regarding the weights and the differential
equations.

(iii) Bochner considered sequences of polynomials (Pn(x))∞n=0 where Pn has
degree n that satisfy the differential equation

p0(x)
d2Pn

dx2 + p1(x)
dPn

dx
+ p2(x)Pn(x)+ λnPn(x) = 0

for all x in some common real interval where p0(x), p1(x) and p2(x) are real
polynomials and λn ∈ R. After scaling transformations, he concluded that the
only cases are essentially:

(1) Legendre polynomials, as in (8.90), and related examples of hypergeomet-
ric functions;

(2) Laguerre polynomials, as in (8.61), which we use several times in this
book;

(3) Hermite polynomials as in (8.111), which are important in the quantum
harmonic oscillator;

(4) Bessel type polynomials, as in (8.127) and (8.128) which are related to the
Bessel functions Jn+1/2 and used in linear filters.

(iv) We emphasize the recurrence relations, since these provide an efficient way
to calculate orthogonal polynomials. For the above classical polynomials,
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the recurrence coefficients are rational, so the polynomials can be computed
in exact arithmetic. Generally, the coefficients of the three-term recurrence
relation (8.70) also determine the properties of the orthogonal polynomials
themselves. In particular, the distribution of the zeros of orthogonal polyno-
mials of high degree and the asymptotic form of the polynomials are described
in Szegö’s theory. In the next chapter we consider G(s) = ∫

w(x)dx/(s − x),
which is the Cauchy transform of the weight w and the moment generating
function of (μn). We remark that in classical examples

W(s)
dG

ds
= 2V (s)G(s)+ U(s) (8.89)

for polynomials U,V and W with W nonzero. For a modern discussion of
(i),(ii) and (iv), see [37].

Example 8.21 Legendre polynomials
We introduce the Legendre polynomials by

Pn(x) = 1

2nn!
dn

dxn

(
(x2 − 1)n

)
. (8.90)

From the binomial expansion, we deduce that

1

2nn!
n∑

k=0;2k≥n

(
n

k

)
(2k)!

(2k − n)! (−1)n−kx2k−n, (8.91)

so in particular Pn has degree n. From this, we deduce that Pn satisfies Legendre’s
differential equation

(1− x2)
d2Pn

dx2 − 2x
dPn

dx
+ n(n+ 1)Pn(x) = 0. (8.92)

By integrating by parts for m > n, we see that

∫ 1

−1
Pm(x)Pn(x)dx =

∫ 1

−1

1

2mm!
dm

dxm

(
(x2 − 1)m

) 1

2nn!
dn

dxn

(
(x2 − 1)n

)
dx = 0.

(8.93)

We also have

∫ 1

−1
Pn(x)Pn(x)dx = (−1)n

22n(n!)2
∫ 1

−1
(x2 − 1)n

d2n

dx2n

(
(x2 − 1)n

)
dx

= (−1)n(2n)!
22n(n!)2

∫ 1

−1
(x2 − 1)ndx
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= (2n)!
22n(n!)2

∫ π

0
sin2n+1 θ dθ

= 2

2n+ 1
,

where we have used the substitution x = cos θ . For small values of n, one can
compute the Legendre polynomials by applying the Gram–Schmidt process to the
polynomials (xn)∞n=1 in L2[−1, 1] for the weight w(x) = 1/2. More generally, one
can consider the differential equation

(1− x2)
d2Sn

dx2 − 2x
dSn

dx
− t2x2Sn(x)− μnSn = 0 (8.94)

which has solutions given by the prolate spheroidal wave functions; see page 295
of [7], page 99 of [43] and page 213 of [36]. These functions have applications to
signal processing. See also [35].

8.10 Moments via Discrete Time Linear Systems

Example 8.22 (Moments from a Discrete Time Linear System) Suppose that w is a
weight on [−1, 1], and introduce an inner produce by 〈f, g〉 = ∫ 1

−1 f (t)ḡ(t)dt. This
inner product is associated with the space L2[−1, 1] and does not involve w. Then
we introduce

A :L2[−1, 1] → L2[−1, 1] : f (t) �→ tf (t) (f ∈ L2[−1, 1]),
B :C→ L2[−1, 1] : b �→ √

w(t)b (b ∈ C),

C :L2[−1, 1] → C : f �→
∫ 1

−1
f (t)

√
w(t)dt (f ∈ L2[−1, 1]),

D :C→ C : c �→ 0 (c ∈ C).

Then we have

CAnB =
∫ 1

−1
tnw(t)dt = μn (8.95)
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and the transfer function is

T (z) = D +
∞∑

n=0

zn+1CAnB =
∫ 1

−1

∞∑

n=0

zn+1tnw(t)dt

=
∫ 1

−1

z

1− zt w(t)dt.

This transfer function is commonly studied in a slightly different form, since

T (1/z) =
∫ 1

−1

1

z− t w(t)dt (8.96)

is the Cauchy transform of w. This example is a realization of a transfer function
via a discrete time system, which is different from the situation of Proposition 8.3
since the state space L2[−1, 1] is infinite-dimensional. This extra flexibility allows
us to consider a wider range of examples, and we will pursue this idea in
Proposition 10.29.

Example 8.23 (Chebyshev Polynomials) For example, let

w(t) = 1√
1− t2 (−1 < t < 1) (8.97)

be the Chebyshev weight on (−1, 1). The corresponding transfer function is

T (z) =
∫ 1

−1

z

1− zt
1√

1− t2 dt (8.98)

which reduces with the substitution t = sin θ to

T (z) =
∫ π/2

−π/2
z

1− z sin θ
dθ = πz√

1− z2
. (8.99)

The final step is given by contour integration, or a tan θ/2 substitution.
The Chebyshev polynomials of the first kind are the orthogonal polynomials with

respect to this weight, with the normalization Cn(cos θ) = cos(nθ). Then

μn =
∫ 1

−1

tn√
1− t2 dt (8.100)

can be computed using the substitution t = sin θ or otherwise to give

μ2k =
∫ π/2

−π/2
sin2k θdθ = (2k − 1)(2k − 3) . . .1

(2k)(2k − 2) . . . 2
π (8.101)
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andμ2k−1 = 0. Then the Hankel matrix has the characteristic banded pattern arising
from an even weight

�5 = π

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1/2 0 3/8 0
0 1/2 0 3/8 0 5/16

1/2 0 3/8 0 5/16 0
0 3/8 0 5/16 0 35/128

3/8 0 5/16 0 35/128 0
0 5/16 0 35/128 0 63/256

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.102)

The coefficients of the Chebyshev polynomials are given by the columns of

U5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −1 0 1 0
0 1 0 −3 0 5
0 0 2 0 −8 0
0 0 0 4 0 −20
0 0 0 0 8 0
0 0 0 0 0 16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.103)

as in T2(u) = 2u2 − 1, so that

U ′5�5U5 = π

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1/2 0 0 0 0
0 0 1/2 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.104)

where the diagonal entries arise from the special choice of normalization.
(ii) Let ξ be a random variable such that P[ξ ≤ x] = ∫ x

−1 w(t)dt/π . Then ξ is
called an arc sine random variable, and−ξ is distributed as ξ .

Example 8.24 (Semicircle Moments) The transfer function of the moment sequence
of S(0, 2) is given by expanding the geometric series

T (z) = 1

2π

∫ 2

−2

z

1− xz
√

4− x2dx = 1

2π

∫ 2

−2

∞∑

k=0

zk+1xk
√

4− x2dx (8.105)

and substituting x = 2 sin θ to give

T (z) = 2

π

∫ π/2

−π/2

∞∑

k=0

zk+12k sink θ(1− sin2 θ)dθ (8.106)
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in which only the even powers contribute, so we obtain

T (z) =
∞∑

k=0

(2z)2k+1 1

2k + 1

(2k + 1)(2k − 1) . . . 3 · 1
(2k + 2)(2k) . . . 2

=
∞∑

k=0

(2z)2k+1(−1)k
(

1/2

k + 1

)

(8.107)

so by the binomial theorem we conclude that

T (z) = 1−√1− 4z2

2z
(|z| < 1/2). (8.108)

Example 8.25 (Gaussian Weight) The weight

γ (x) = e
−x2/2

√
2π

(8.109)

is even and the even moments are

μ2n = (2n− 1)(2n− 3) . . .1 = (2n)!
2nn! . (8.110)

This weight gives rise to an orthogonal sequence of monic polynomials called the
Hermite polynomialsHen. These satisfy the recurrence relation

[
Hen+1(x)

Hen(x)

]

=
[
x −n
1 0

] [
Hen(x)

Hen−1(x)

]

. (8.111)

This γ is the probability density function for a Gaussian or normalN(0, 1) random
variable X with mean 0 and variance 1.

8.11 Floquet Multipliers

Let q : R → R be a continuous and periodic function with period 2π ; then Hill’s
equation is

− d
2x

dt2
+ q(t)x(t) = λx(t) (t ∈ R), (8.112)

where λ ∈ C is a complex parameter and x : (0,∞)→ C is a solution. There may
or may not be a periodic solution; so given a solution, we can consider how x(t)
relates to x(2π). To do this systematically, the basic idea is to link the continuous
time differential equation with a discrete time process determined by a 2× 2 matrix
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A, which is variously called the transit matrix or the monodromy matrix. The matrix
A depends upon λ, but we often suppress this in the notation; likewise, we consider
the discrete-time process (X(0),X(2π),X(4π) . . . , ), where the vectorsX(2πj) ∈
C2×1 also depend upon λ. We write the differential equation as

dX

dt
=

[
0 1

q(t)− λ 0

]

X, X =
[
x
dx
dt

]

(8.113)

so that the matrix is periodic in t and has zeros on the leading diagonal. We can
build 2×2 matrix solutions by taking vectorsX1 andX2 that satisfy the differential
equation, and forming F = [X1,X2].
Lemma 8.26

(i) There exists a unique 2× 2 matrix F that satisfies this differential equation and
the initial condition F(0) = I2.

(ii) Let A = F(2π), so

A =
[
a b

c d

]

. (8.114)

Then the characteristic equation of A is

s2 − (a + d)s + 1 = 0, (8.115)

with Hill’s discriminant Δλ = a + b.

Proof By basic theory of differential equations [26], there exists a unique 2 × 2
matrix F that satisfies this differential equation and the initial condition F(0) = I2.
Since the matrix in the differential equation has zero trace, the Wronskian

detF(t) = det

[
x1(t) x2(t)
dx1
dt

dx2
dt

]

(8.116)

is a constant, and we can prove directly since the differential equation gives

d

dt

(
x1(t)

dx2

dt
− dx1

dt
x2(t)

)
= x1(t)

d2x2

dt2
− d

2x1

dt2
x2(t)

= x1(t)x2(t)(q(t)− λ− q(t)+ λ) = 0.

The initial condition gives detF(0) = 1. The matrix F(t + 2π) also satisfies the
differential equation, so by uniqueness, we have F(2π + t) = F(t)A for some
matrix A that is independent of t . Hence F(2π) = F(0)A = A. Also

1 = detF(2π + 0) = detF(0) detA = detA. (8.117)
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Hence we have where detA = ad − bc = 1 and trace(A) = a + d . See [38] for a
discussion of Floquet theory. 	

Proposition 8.27 Suppose that λ is real. Then A is also real, and there are four
cases for the roots of the characteristic equation.

(i) If (a + d)2 < 4, then A has a pair of complex conjugate eigenvalues on the
circle {s : |s| = 1}.

(ii) If (a + d)2 > 4, then A has a pair of real eigenvalues of the same sign, one
inside {s : |s| = 1}, the other outside.

(iii) If a + d = −2, then A has an eigenvalue s = 1, and (8.113) has a periodic
solution.

(iv) If a + d = 2, then A has an eigenvalue s = −1, and (8.113) has an anti
periodic solution such that x(t + 2π) = −x(t).

Proof

(i) Here

λ± = (a + d)±
√
(a + d)2 − 4

2
(8.118)

and the eigenvalues have product 1 so are a pair of complex conjugate roots on
the unit circle.

(ii) Here the eigenvalues are real and have product 1, hence are of the same sign,
and exactly one of them is inside the unit circle.

(iii) Let V+ be a nonzero vector such that AV+ = V+; then X(t) = F(t)V+ is
a solution of the differential equation that satisfies X(2π) = AV+ = V+ =
X(0), so X(t) gives a periodic solution.

(iv) We let V+ be a nonzero vector such that AV+ = V+ and choose X(t) =
F(t)V− so X(2π) = AV− = −V− = −X(0).

The fundamental solution satisfies F(2πn) = An, so we expect to have bounded
solutions in case (i) and unbounded solutions in case (ii). Hill’s discriminant
determines the eigenvalues via (8.118), hence describes the nature of the solutions.

	


8.12 Exercises

Exercise 8.1 (Fibonacci Sequence) For the recurrence relation

Xn+1 =
[

1 1
1 0

]

Xn, X0 =
[

1
1

]

(8.119)

compute the first few terms, and the eigenvalues of the matrix.
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Exercise 8.2 (Legendre Polynomials) For the weight w(t) = 1 for t ∈ (0, 1) and
w(t) = 0 otherwise, calculate the first few monic orthogonal polynomials.

In the notation of the section, introduce the coefficients of the polynomials and
the moments by

U2 =
⎡

⎣
1 −1/2 1/6
0 1 −1
0 0 1

⎤

⎦ , �2 =
⎡

⎣
1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5

⎤

⎦ (8.120)

such that the normalizing coefficients satisfy

U ′2G2U2 =
⎡

⎣
1 0 0
0 1/12 0
0 0 1/180

⎤

⎦ . (8.121)

Exercise 8.3 See [47]. Let w(t) = 1/2 for t ∈ (−1, 1) and w(t) = 0 otherwise.

(i) Show that the moment sequence of w is (1, 0, 1/3, 0, 1/5, . . . ).
(ii) Show that the Cauchy transformG(s) = ∫ 1

−1 w(x)dx/(s − x) satisfies

G(s) = 1

2
log

( s + 1

s − 1

)
(s ∈ C \ [−1, 1]). (8.122)

Exercise 8.4 See [47]. Let w be a weight on [−1, 1], and

T (z) = D +
∫ 1

−1

zw(x)dx

1− xz . (8.123)

Show that the change of variables z = (s − 1)/(s + 1) and x = (t − 1)/(t + 1)
transforms this to

Z(s) = D + s − 1

2

∫ ∞

0

W(t)dt

s + t (8.124)

where

W(t) = 2

(1+ t)2w
( t − 1

t + 1

)
(t > 0), (8.125)

and the new integral involves a Carleman integral.

Exercise 8.5 (Chebyshev Filter)

(i) Use the recursion formula to compute the Chebyshev polynomial C6(s).
(ii) Plot the gain of the frequency response function T6(iω) = 1/(1 + iεC6(ω))

where ε = 0.1.
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Exercise 8.6 (Bessel Polynomials) The Bessel polynomials may be defined by the
recurrence relation

y0(x) = 1, y1(x) = 1+ x
yn+1(x) = (2n+ 1)xyn(x)+ yn−1(x). (8.126)

(i) Compare this with the recurrence relation for Bessel functions of integral order,
and show that

yn(x) =
n∑

k=0

(n+ k)!
k!(n− k)!

(x

2

)k
(8.127)

satisfies this relation.
(ii) Compute the Laplace transform Yn(s) of yn(x).

Exercise 8.7 (Reverse Bessel Polynomials) Let θn(x) = xnyn(1/x) be the reverse
Bessel polynomial where yn is as in Exercise 8.6.

(i) Show that

θn(x) =
n∑

k=0

(n+ k)!
k!(n− k)!

xn−k

2k
(8.128)

and find the Laplace transform of θn(x).
(ii) Show that the reverse Bessel polynomials may be defined by

[
θ1(s)

θ0(s)

]

=
[
s + 1

1

]

(8.129)

and the recursion formula

[
θn+1(s)

θn(s)

]

=
[

2n+ 1 s2

1 0

] [
θn(s)

θn−1(s)

]

(n = 1, 2, . . . ). (8.130)

(iii) Show that θn is a monic polynomial of degree n with positive coefficients, and
find an expression for θn(0).

The Bessel filter has transfer function

!n(s) = θn(0)

θn(s/ω0)
, (8.131)

where ω0 > 0 is a scaling parameter for the frequency.
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Exercise 8.8 (Laguerre Polynomials) The Laguerre polynomial of order α and
degree n for α, n = 0, 1, . . . is L(α)n (x) which satisfies the differential equation

x
d2

dx2L
(α)
n (x)+ (α + 1− x) d

dx
L(α)n (x)+ nL(α)n (x) = 0. (8.132)

(i) Let h(α)n (x) = xαe−xL(α)n (x), and show that

x
d2

dx2h
(α)
n (x)+ (1−α)

d

dx
h(α)n (x)+ (2n+ 1+α− x)h(α)n (x) = 0. (8.133)

(ii) Show that the Laplace transformH(α)n (s) of h(α)n (x) satisfies

H(α)n (s) = Cn,α (s − 1)n

(s + 1)n+1+α , (8.134)

for some constant Cn,α .

Exercise 8.9 (Toda’s Equation) Suppose that orthogonal polynomials (Pn)∞n=0
make vectors

Xn(s) =
[
Pn+1(s)

Pn(s)

]

(8.135)

that satisfies the system of equations

Xn+1(s) = An(s)Xn(s),
d

ds
Xn(s) = "n(s)Xn(s) (n = 0, 1, . . . ), (8.136)

where An(s) and "n(s) are 2× 2 matrices with rational function entries. Show that
these are consistent, provided that

d

ds
An(s) = "n+1(s)An(s)− An(s)"n(s). (8.137)

Exercise 8.10 (Uniqueness of Moment Sequences) Suppose thatw is a weight on
R such that

∫ ∞

−∞
cosh(ω0t)w(t) dt



8.12 Exercises 287

converges for some ω0 > 0.

(i) Show that

f (x + iy) =
∫ ∞

−∞
e−(x+iy)tw(t)dt

defines a holomorphic function on the vertical strip {x + iy : −ω0 < x < ω0}
with

dkf

dzk
(0) = (−i)k

∫ ∞

−∞
tkw(t)dt (k = 0, 1, . . . ).

(ii) Show that dkf/dzk)(0))∞k=0 uniquely determines f , and hence determines w.

Exercise 8.11 (Prolate Spheroidal Wave Functions) For λ ∈ R, let K be the
differential operator

Kf (x) = (1− x2)
d2f

dx2 − 2x
df

dx
− λ2x2f (x), (8.138)

and let

Uf (x) =
∫ 1

−1
eiλxyf (y)dy. (8.139)

Show that

KUf (x) =
∫ 1

−1

(
λ2x2y2 − λ2y2 − λ2x2 − 2iλxy

)
eiλxyf (y)dy (8.140)

and show by integration by parts that UKf (x) = KUf (x) for all f ∈
C2([−1, 1];C). This calculation can be used to show that the eigenfunctions of
U ′U are eigenfunctions of K , satisfying

(1− x2)
d2f

dx2 − 2x
df

dx
− λ2x2f (x) = μf (x), (8.141)

for some μ = μ(λ). The integral operator U ′U is computed in Exercise 10.11.

Exercise 8.12 (Vitali’s Completeness Theorem; See [50, p. 25]) Let w be a
weight on [a, b] and let (fn(t))∞n=0 be the sequence of orthonormal polynomials
for w. Show that

∫ x

a

w(t)dt ≥
∞∑

n=0

( ∫ x

a

fn(t)w(t)dt
)2

(x ∈ [a, b]).
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Vitali’s theorem states that (fn(t))∞n=0 is a complete sequence of orthogonal
polynomials, if and only if equality holds for all x ∈ [a, b].
Exercise 8.13 Prove the identity (8.24). The method is similar to Exercise 3.16
regarding the second resolvent identity.

Exercise 8.14 Theorem 8.8 gives a map � �→ (A,B,C,D) from discrete to
continuous-time linear systems. Find the inverse map, and obtain converse state-
ments for Theorem 8.8 (i) and (ii). The starting point is to show that Ad is the
Cayley transform of A.

Exercise 8.15

(i) Find the eigenvalues and eigenvectors for the matrix A in (8.30).
(ii) Do likewise for the matrix in (6.121).



Chapter 9
Random Linear Systems and Green’s
Functions

In this chapter we consider some applications of discrete time linear systems to
various models. We consider a case in which either the input to the linear systems
is random, known as the ARMA process. Then we consider the Cauchy transform
of Green’s function associated with a distribution. This enables us to use results
of complex analysis and we can use ideas from the preceding chapter regarding
orthogonal polynomials. We consider models in which the main transformation
is a random matrix, and achieve results in specific cases where we can carry out
calculations explicitly. These include results on the semicircle distribution, which
is an important topic in modern wireless communication. Another application is to
population dynamics, namely the May–Wigner model.

9.1 ARMA Process

Auto-regressive moving average models are commonly used in economics. The
input is taken to be random, to reflect changing economic circumstances. The output
involves outputs from the recent past and inputs from the recent past; for instance;
current process can be affected by prices from the recent past. The relationship
between these quantities is expressed in a linear equation with constant coefficient.
More specifically, let (εk)∞k=0 be a sequence of mutually independent random
variables with identical distribution, with mean Eεk = 0 and variance Eε2

k = 1. We
take constants a1, . . . , an and c1, . . . , cm, and suppose that the outputs and inputs
from the recent past are related by the linear equation

yk + a1yk−1 + · · · + anyk−n = εk + c1εk−1 + · · · + cmεk−m (k = 1, 2, . . . ).
(9.1)
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In Chap. 2, we showed how an nth order differential equation could be transformed
into a first-order matrix differential equation. In a similar way, we can transform a
difference equation in several variables into a matrix difference equation. We let the
state be

Xk =

⎡

⎢
⎢
⎢
⎣

yk−1

yk−2
...

yk−n

⎤

⎥
⎥
⎥
⎦
, (9.2)

and the random input be

Uk =

⎡

⎢
⎢
⎢
⎣

εk

εk−1
...

εk−m

⎤

⎥
⎥
⎥
⎦
, (9.3)

which we make into a discrete time system via

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−a1 −a2 . . . . . . −an
1 0 . . . . . . 0
0 1 . . . . . . 0
...

. . .
...

0 . . . . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
∈ Mn×n(C)

B =
[

1 c1 . . . cm

0(n−1)×m

]

∈ Mn×(m+1)(C)

C = [
1 0 . . . 0

] ∈ M1×n(C)

D = 0 (9.4)

Then (9.1) is equivalent to

Xk+1 = AXk + BUk
yk−1 = CXk. (9.5)

We have

det(sI − A) = sn + a1s
n−1 + · · · + an. (9.6)

Suppose that all the eigenvalues λ of A satisfy |λ| < 1. Then (I − zA) is invertible
for all z ∈ D(0, 1).
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9.2 Distributions on a Bounded Interval

Proposition 9.1 The following data are equivalent, and define the notion of an
distribution on [−M,M]:
(1) An increasing function F : [−M,M] → [0, 1] such that F(−M) = 0 and

F(M) = 1, where F is right-continuous so that limy→x+ F(y) = F(x) for all
x ∈ [−M,M);

(2) A positive linear functional φ : C([−M,M];R)→ R such that

φ(λf + μg) = λφ(f )+ μφ(g) (λ,μ ∈ R; f, g ∈ C([−M,M];R)),
(9.7)

such that φ(1) = 1 and φ(h) ≥ 0 for all h ∈ C([−M,M];R) such that
h(x) ≥ 0 for all x ∈ [−M,M];

(3) A probability measure ν on [−M,M];
(4) The cumulative distribution function F of a bounded random variable ξ : "→

[−M,M] on a probability space (",P) such that F(x) = P[ξ ≤ x].
Proof The details of this equivalence are discussed in books on measure theory, so
we give only a brief indication of how the quantities relate to one another. Given (1)
illustrated by Fig. 9.1, we can construct a Stieltjes integral, which defines φ via

φ(g) =
∫

[−M,M]
g(x)dF (x) (g ∈ C([−M,M];R)); (9.8)

and one easily show that φ satisfies the conditions of (2). Conversely, F. Riesz
showed that all φ from (2) arise from an integral in this way; this is the representation
theorem for linear functionals. Here we make essential use of the assumption that
[−M,M] is closed and bounded.

(3) The Stieltjes integral can equivalently be defined in terms of a probability
measure ν such that ν(a, b] = F(b)− F(a).

Suppose as in (4) that ξ is a bounded random variable on a probability space
with probability measure P. Then the distribution of ξ is specified by the cumulative
distribution function F on [−M,M] so that P[ξ ≤ x] = F(x), and we can write
the expectation of the random variable g ◦ ξ as

Eg(ξ) =
∫

[−M,M]
g(x)dF (x) (g ∈ C([−M,M];R)). (9.9)

Observe that φ(g) = Eg(ξ) has the properties of (2).
In particular, ξ has expectation or mean given by the first moment, so μ1 =

Eξ = ∫
tdF (t). The second moment is μ2 = Eξ2 = ∫

t2dF(t), and the variance is
σ 2 = Eξ2 − (Eξ)2. Generally, the nth moment Eξn arises from g(t) = tn . 	
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Fig. 9.1 Graph of a
cumulative distribution
function with jumps at −2
and 1

9.3 Cauchy Transforms

In terms of the previous section, the Cauchy transform is equivalently defined by

(1) G(s) =
∫
dF(x)

s − x , (2) G(s) = φ
( 1

s − x
)
,

(3) G(s) =
∫
ν(dx)

s − x , (4) G(s) = E

( 1

s − ξ
)
,

where we take g(x) = 1/(s − x) for x ∈ [−M,M] and s ∈ C \ [−M,M]. The set
C \ [−M,M] is known as the one-cut plane, and is a connected open set.

In this section, we focus on (1), and in the following Lemma prove properties (i)–
(iv) of G(s) that reflect the properties of F . The cumulative distribution function F
can be discontinuous. For instance, there can exist a sequence of xj ∈ [−M,M]
such that P[ξ = xj ] = F(xj ) − F(xj−) > 0, so F jumps up at each xj .
Case (iii) of the following result can be used in this case. Another circumstance
is when F is continuously differentiable on (a, b) so that F(x) = F(a) +∫ x
a
f (t)dt for a < x < b, so F ′(x) = f (x). Case (iv) can be used when

ξ is a continuous random variable with continuous probability density function
dF/dx.

The Cauchy transform proves us with a generating function for moments, with
the following properties.

Lemma 9.2 (Cauchy Transforms) Suppose that F : [−M,M] → [0, 1] is
increasing with F(−M) = 0 and F(M) = 1, and right-continuous, so that
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limy→x+ F(y) = F(x) for all x ∈ [−M,M). Then the Cauchy transform of F
is

G(s) =
∫ M

−M
dF(x)

s − x . (9.10)

(i) Then G(s) holomorphic on C \ [−M,M] with G(s̄) = G(s) and �G(s) < 0
for all s such that �s > 0, so −G(s) and G(−s) take the upper half plane
{s : �s > 0} to the upper half plane.

(ii) There is a convergent power series expansion

G(s) = 1

s
+

∞∑

n=1

μn

sn+1 (9.11)

for |s| > M , which is determined by the moments μn =
∫M
−M x

ndF(x), so
G(s) is holomorphic near∞.

(iii) Suppose that F jumps at x0. Then the height of the jump is

F(x0)− F(x0−) = lim
h→0+

h

2i

(
G(x0 − ih)−G(x0 + ih)

)
. (9.12)

(iv) Suppose that F is differentiable on (x0 − ε, x0 + ε) for some ε > 0 and that
the derivative dF/dx is continuous there. Then

dF

dx
(x0) = lim

h→0+
1

2πi

(
G(x0 − ih)−G(x0 + ih)

)
. (9.13)

Proof

(i) The function 1/(s − x) is differentiable with respect to the complex variable s
for x ∈ [−M,M] and s ∈ C \ [−M,M]. We check that

dG

ds
= −

∫ M

−M
dF(x)

(s − x)2 (C \ [−M,M]) (9.14)

and

G(t + iσ ) =
∫ M

−M
dF(x)

t + iσ − x =
∫ M

−M
(t − x − iσ )dF (x)
(x − t)2 + σ 2 , (9.15)

so

�G(t + iσ ) =
∫ M

−M
−σdF(x)
(x − t)2 + σ 2 , (9.16)
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so �G(t + iσ ) takes the same sign as −σ .
(ii) For |s| > M , the geometric series 1/(s−x) =∑∞

n=0 x
n/sn+1 is absolutely and

uniformly convergent for x ∈ [−M,M], hence can be integrated term by term
against dF(x). The resulting Laurent series converges for all |s| > M , so the
coefficients (μn)∞n=1 determineG(s) for all s ∈ C \ [−M,M] and conversely.
This is precisely what is meant by G(s) being holomorphic near infinity.

(iii) In this case we have

h

2i

(
G(x0 − ih)−G(x0 + ih)

) = h

2i

∫ M

−M

( 1

x0 − ih− x −
1

x0 + ih− x
)
dF (x)

=
∫ M

−M
h2dF (x)

(x − x0)2 + h2

and we can take the limit as h→ 0+. We have

F(x0)− F(x0−) ≤
∫ x0+δ

x0−δ
h2dF(x)

(x − x0)2 + h2

≤
∫ x0+δ

x0−δ
dF (x)

= F(x0 + δ)− F(x0 − δ).

We can make the left-hand side and right-hand side as close as we please by
taking δ > 0 sufficiently small, since F is right continuous. Having fixed δ >
0, we then take

∫ x0−δ

−M
+

∫ M

x0+δ
h2dF(x)

(x − x0)2 + h2 ≤
h2

δ2

∫ M

−M
dF(x) = h

2

δ2

small by letting h→ 0+.
(iv) The method is similar to (iii), except the constants are different. Here

1

2πi

(
G(x0 − ih)−G(x0 + ih)

) = 1

2πi

∫ M

−M

( 1

x0 − ih− x −
1

x0 + ih− x
)
dF(x)

= 1

π

∫ M

−M
hdF(x)

(x − x0)2 + h2 (h > 0),

which is the Poisson integral of dF , where dF(x) = (dF/dx)dx on (x0 −
ε, x0 + ε). See [56] and [34]. Taking the limit as h→ 0+, we recover F ′(x0),
as follows. Given η > 0, there exists ε > δ > 0 such that (dF/dx)(x0)− η <
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(dF/dx)(x) < (dF/dx)(x0)+ η for all x ∈ [x0 − δ, x0 + δ], so

((dF/dx)(x0)− η)
π

∫ x0+δ

x0−δ
hdx

(x − x0)
2 + h2

≤ 1

π

∫ x0+δ

x0−δ
h(dF/dx)dx

(x − x0)
2 + h2

≤ ((dF/dx)(x0)+ η)
π

∫ x0+δ

x0−δ
hdx

(x − x0)2 + h2
.

Now we fix this δ > 0, and split the integral

1 =
∫ ∞

−∞
h

(x − x0)2 + h2

dx

π
=

∫ x0+δ

x0−δ
+

∫ x0−δ

−∞
+

∫ ∞

x0+δ
hdx

(x − x0)2 + h2

dx

π
,

(9.17)

in which the final two summands are equal and satisfy

1

π

∫ x0−δ

−∞
hdx

(x − x0)2 + h2
= 1

π

∫ ∞

x0+δ
hdx

(x − x0)2 + h2
≤ h

π

∫ ∞

x0+δ
dx

(x − x0)2
= h

πδ
,

(9.18)

and as in (iii)

1

π

∫ x0−δ

−M
+

∫ M

x0+δ
hdF (x)

(x − x0)2 + h2
≤ h

δ2π

∫ M

−M
dF(x) = h

δ2π
.

We let h→ 0+ and deduce that

1

π

∫ x0+δ

x0−δ
h(dF/dx)dx

(x − x0)2 + h2 →
dF

dx
(x0). (9.19)

	

Example 9.3 Let A ∈ MN×N(C) satisfy A = A′ and let CN have an orthonormal
basis of eigenvectors (ej )Nj=1 so that Aej = λj ej where λ1 ≤ λ2 ≤ · · · ≤ λN .

Then a typical unit vector X ∈ C
N satisfies X = ∑N

j=1 ajej where aj = 〈X, ej 〉,
so (sI − A)−1X =∑N

j=1(s − λj )−1aj ej and

G(s) = 〈
(sI − A)−1X,X

〉 =
N∑

j=1

(s − λj )−1|aj |2 (9.20)

is the Cauchy transform of the probability measure
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μ =
N∑

j=1

|aj |2δλj . (9.21)

with cumulative distribution function F(t) = ∑
{j :λj≤t} |aj |2 Now −G maps the

upper half plane to itself since

− 2i�G(s) = −G(s)+G(s) =
N∑

j=1

s − s̄
|λj − s|2 |aj |

2 (9.22)

is positive for �s > 0, and the jumps in F occur at the eigenvalues λj . The heights
of the jumps depend upon X.

In particular, we can choose X =∑N
j=1N

−1/2ej so aj = 1/
√
N and

G(s) = 〈
(sI − A)−1X,X

〉 = 1

N

N∑

j=1

(s − λj )−1 (9.23)

is the Cauchy transform of the probability measure

μ = 1

N

n∑

j=1

δλj . (9.24)

Corollary 9.4 Let w : [−M,M] → [0,∞) be a continuous weight such that∫M
−M w(t)dt = 1. Then the sequence (μn)∞n=0 of moments of w determines w.

Proof By (i) and (ii) applied to F(x) = ∫ x
−M w(t)dt , there is a Cauchy transform

G(s) determined by (μn)∞n=0, and we can apply (iv) of the Lemma 9.2 to dF/dx =
w(x) to recover w fromG(s). 	

Corollary 9.5 (Lerch) Suppose that f is a function of class (E) for which there
exist s0, � > 0 such that the Laplace transform F satisfies F(s0 + n�) = 0 for
n = 0, 1, 2, . . . , so F is zero on some infinite real arithmetic progression. Then
f (t) = 0 for all t > 0.

Proof We have

∫ ∞

0
e−n�t e−s0t f (t)dt = 0 (n = 0, 1, 2, . . . ) (9.25)

so with the new variable x = e−�t , we have

∫ 1

0
xnxs0/�f (−�−1 log x)�−1 dx

x
= 0 (n = 0, 1, . . . ) (9.26)
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where

∫ 1

0
xs0/�|f (−�−1 log x)|�−1 dx

x
=

∫ ∞

0
e−s0t |f (t)|dt <∞. (9.27)

We deduce that

G(s) =
∫ 1

0

�x−1+s0/�f (−�−1 log x)

s − x dx (9.28)

is a holomorphic function for s ∈ C \ [0, 1] such that the Laurent series for
|s| > 0, has coefficient that are all zero. Hence G(s) = 0 for all s ∈ C \ [0, 1],
and by considering G(x + ih) − G(x − ih) as h → 0+, we deduce that
x−1+s0/�f (−�−1 log x) = 0 for all x ∈ (0, 1), so f (t) = 0 for all t > 0. 	

Example 9.6 The sine function sin z is not the Laplace transform of a bounded
function. Note that sin z = 0 for z = nπ for all n ∈ Z.

Remark 9.7

(i) Cases (iii) and (iv) are useful in applications, but do not cover all eventualities
of cumulative distribution functions. The details of the convergence in other
cases are discussed in detail in [34], which presents a theorem of Fatou on the
integral (9.10).

(ii) The connection between distribution functions F on [0, 1] and moment
sequences (μn)∞n=0 is discussed in the Hausdorff moment problem; see [54].
In some applications, one can change [−M,M] to [0, 1] by a simple linear
scaling. Moment problems for distribution functions on [0,∞) or (−∞,∞)
are much more difficult than for [0, 1], and Corollary 9.4 is not always valid
for weights on [0,∞).

(iii) We now have several tools for studying moment sequences.

cdf F −→ (μn)
∞
n=0 moments

↓ ↙ ↓
Cauchy transform G � Hankel matrix

(9.29)

(iv) In Sect. 4.3 and Proposition 6.55 we considered a function that is holomorphic
near∞ and the contour integral

f (t) = lim
R→∞

∫ σ+iR

σ−iR
estG(s)

ds

2πi
(t > 0). (9.30)

In the context of the Lemma 9.2, we take G to be the Cauchy transform of w
and obtain f (t) = ∫M

−M e
txw(x) dx, which is the moment generating function

of w. This appears in basic probability theory.



298 9 Random Linear Systems and Green’s Functions

Given a nonempty open subset " of C, we can consider holomorphic functions
ϕ1, ϕ2 : "→ "1 and then form their composition ϕ = ϕ1 ◦ ϕ2, so that ϕ : "→ "

is also holomorphic. The simplest examples to consider are " = D, or the upper
half plane {s : �s > 0}. The example we have in mind is " = C \ [−M,M], the
plane with the interval [−M,M] cut out.

9.4 Herglotz Functions

Definition 9.8 Holomorphic functions that take the upper half plane to itself are
known as Nevanlinna or Herglotz functions.

Exercise

(i) Show that the linear fractional transformations

ϕ(s) = as + b
cs + d

with a, b, c, d ∈ R and ad − bc > 0 are holomorphic on the upper half plane
{s : �s > 0} and take {s : �s > 0} to itself. They also satisfy ϕ(s̄) = ϕ(s).
Find the inverse transformation of ϕ, and the composition ϕ ◦ ψ of two such
transformations.

(ii) The sum of Herglotz functions is also Herglotz. Let α, γ ≥ 0, and x, β ∈ R

and

ϕ(s) = αs + β − γ

s − x .

Show that ϕ(s̄) = ϕ(s); �ϕ(s) ≥ 0 for all �s > 0, and ϕ(s) is holomorphic
except at x.

(iii) If ϕ(s) is a Herglotz function, then s �→ ϕ(is)/i takes RHP → RHP ; also
s �→ iϕ(s/i) takes LHP → LHP .

(iv) The logarithm function log s = log |s| + iarg s is a Herglotz function, which
also follows from

log s =
∫ ∞

0

( 1

1+ t −
1

s + t
)
dt (�s > 0), (9.31)

which we encountered in (3.157).
(v) Another Herglotz function is i

√
z; see Exercise 9.6 and (9.121). By contrast,

z2 is not Herglotz.
(vi) Let G(s) be a Green’s function as in (9.10). It was shown there that the

functions −G(s) and G(−s) are Herglotz functions. (Some authors define the
Cauchy transform with 1/(x − s) to obtain Herglotz functions.) There is a
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converse to the Lemma 9.2 on Cauchy transforms, which shows that a large
collection of Herglotz functions can be built out of examples (i) and (ii).

Proposition 9.9 (Evans) Suppose that for someM > 0 the function ϕ satisfies

(i) ϕ is holomorphic on C \ [−M,M];
(ii) ϕ(s̄) = ϕ(s);

(iii) �ϕ(s) ≥ 0 for all �s > 0.
Then there exist unique α ≥ 0, β ∈ R and γ ≥ 0 and a cumulative distribution
function F on [−M,M] such that

ϕ(s) = αs + β − γ
∫ M

−M
dF(x)

s − x . (9.32)

(iv) Also α > 0 if and only if �ϕ(s)→±∞ as �s → ±∞.
Proof This is given in [34]. 	


There are numerous variants and refinements of this result. Given functions
ϕ1, ϕ2 satisfying (i)–(iv), we can form the composition ϕ(s) = ϕ1 ◦ ϕ2, which also
satisfies (i)–(iv), for some possibly different M > 0. The original (α1, β1, γ1, F1)

and (α2, β2, γ2, F2) are composed to produce new data (α, β, γ, F ). The functions
have Laurent series beginning with

ϕ1(s) = α1s + β1 − γ1

s
+O

( 1

s2

)
(s →∞),

ϕ2(s) = α2s + β2 − γ2

s
+O

( 1

s2

)
(s →∞), (9.33)

Then by substitution we obtain

ϕ(s) = α1α2s + α1β2 + β1 − α1γ2 + γ1/α2

s
+O

( 1

s2

)
(s →∞). (9.34)

This determines (α, β, γ ), and in favourable cases one can also find F via (iii) and
(iv) of the Lemma 9.2. We can associate (α1, β1, γ1) with the matrix

⎡

⎣
α1 β1 γ1

0 1 0
0 0 1/α1

⎤

⎦ , (9.35)

and use the usual matrix multiplication.
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9.5 Green’s Functions

In the physics literature, the term Green’s function can mean the average value of the
resolvent (sI −A)−1 with respect to sums of entries or some underlying probability
measure. Here we consider some examples. (The term Green’s function can also
refer to the integral kernel of (sI − A)−1, particularly when A is a differential
operator. Also, different authors have diverse sign conventions.)

(i) Let A be an N × N complex matrix, with eigenvalues λ1, . . . , λN listed
according to algebraic multiplicity. Then we define

G(s) = 1

N
trace

(
(sI − A)−1). (9.36)

We have the important formula

G(s) =
∞∑

n=0

1

sn+1

1

N
trace

(
An

)
(|s| > ‖A‖) (9.37)

which shows that the Green’s function is determined by the moments trace(An)/N
and conversely.

The Green’s function may be expressed as

G(s) = 1

N

N∑

j=1

1

s − λj =
1

N

N∑

j=1

e�j (sI − A)−1ej (9.38)

where (ej )Nj=1 is the standard basis for Cn×1. Then G(s) is known as the Green’s
function or the Cauchy transform of the eigenvalue distribution of A; compare
(9.23). Using the final formula, we can realize this as the transfer function of the
linear system

(

⎡

⎢
⎢
⎢
⎢
⎣

A 0 . . . 0

0 A
.. .

...
...
. . .
. . .

...

0 . . . . . . A

⎤

⎥
⎥
⎥
⎥
⎦
,

1√
N

⎡

⎢
⎢
⎢
⎣

e1

e2
...

eN

⎤

⎥
⎥
⎥
⎦
,

1√
N

[
e�1 e�2 . . . e�N

]
, 0

)

. (9.39)

Here B and C are vectors of norm one with C = B ′ so CB = 1.

Proposition 9.10 The Green’s function and the characteristic polynomial are
related by

1

N
trace

(
(sI − A)−1) = 1

N

d

ds
log det(sI − A). (9.40)
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Proof

(i) We have

log det(sI − A) = trace log(sI − A) (9.41)

and we can differentiate both sides of this formula. The Green’s function
captures similar information to the characteristic polynomial, and is sometimes
easier to work with.

(ii) In particular, let A be a N × N self-adjoint matrix, with real eigenvalues
λ1, . . . , λN listed according to algebraic multiplicity. Then the normalized
eigenvalue counting function is

FN(x) = 1

N
�{j : λj ≤ x} (9.42)

which has a graph which resembles a staircase of total height one, which
increases from left to right by steps that are of height some positive integer
multiple of 1/N . Then

1

N
trace

(
(sI − A)−1) =

∫ ∞

−∞
dFN(λ)

s − λ (�s > 0). (9.43)

	

When the A come from a common family, we can consider convergence of this

expression as N →∞.

Theorem 9.11 (Helly) Let (FN )∞N=1 be a sequence of cumulative distribution
functions on a bounded interval [a, b]. Then there exists a subsequence (FNk ) and
a cumulative distribution function F on [a, b] such that:

(i) FNk (x)→ F(x) as Nk →∞ for all x ∈ [a, b];
(ii)

∫ b
a
g(x)dFNk (x) →

∫ b
a
g(x)dF (x) as Nk → ∞ for all continuous functions

g : [a, b] → C;
(iii) the corresponding Cauchy integrals converge, so that

∫ b

a

dFNk (x)

s − x →
∫ b

a

dF(x)

s − x s ∈ C \ [a, b]

uniformly for s in closed and bounded subsets of C \ [a, b] as Nk →∞.

Proof

(i) This is Helly’s choice theorem, as in page 56 of [16].
(ii) This if Helly’s convergence theorem, as in page 56 of [16]. It is important for

this application that the FN live on a common bounded interval [a, b].
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(iii) Let K be any closed and bounded subset of C \ [a, b]. We can apply (ii) to
the function g(x) = 1/(s − x) and deduce that the Green’s functions converge
pointwise on K . It is easy to show that the Green’s functions are uniformly
bounded onK . Since the Green’s functions are also holomorphic, we can apply
Vitali’s convergence theorem 5.21 from [56] to obtain uniform convergence on
K .

Suppose that the limiting cumulative distribution function F(x) is continuously
differentiable with derivative f (x) = dF/dx. Then in physical applications, f is
called the density of states. In the following example, we use convergence of the
Green’s functions to identify the density of states. 	

Example 9.12 (Green’s Function for a One-Dimensional Periodic Lattice) We
considerN points arranged in a ring, so that each point interacts with its immediate
neighbours, and no others. The interaction is described by the matrix �(1) : CN →
C
N defined for X = (xn)Nn=1 by the formula

�(1)(xn) = (2xn − xn+1 − xn−1)
N
n=1 (9.44)

with the convention that x0 = xN . For N = 4, we have

�(1) =

⎡

⎢
⎢
⎣

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

⎤

⎥
⎥
⎦ (9.45)

which is tri-diagonal, apart from−1 in the top right and bottom left entries.
The periodicity of the ring is expressed via an arithmetic condition. A sequence

(exp(inθ))Nn=1 has 1 = exp(iNθ) if Nθ = 2πk for some k = 1, 2, . . . , N , so we
introduce

Xk =
(

exp
2πikn

N

)N

n=1
; (9.46)

then

2 exp
2πikn

N
− exp

2πik(n+ 1)

N
− exp

2πik(n− 1)

N
=

(
2− 2 cos

2πk

N

)
exp

2πikn

N
,

(9.47)

so

�(1)Xk =
(

2− 2 cos
2πk

N

)
Xk. (9.48)

We deduce thatXk are orthogonal eigenvectors that correspond to eigenvalues λk =
2 − 2 cos(2πk/N) ∈ [0, 4] of a real symmetric matrix, and since there are N of
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them, we have an orthogonal basis (Xk)Nk=1. They also give an orthogonal basis for
the matrix (�(1) − I)/2, so we consider the corresponding Green’s function

G
(1)
N (s) =

1

N

N∑

k=1

1

s − cos(2πk/N)
. (9.49)

We can interpret this as a Riemann sum for the integral of 1/(s− cos θ). In the limit
as N →∞, we have

G(1)(s) = 1

2π

∫ 2π

0

dθ

s − cos θ
(9.50)

with uniform convergence on compact subsets of C \ [−1, 1]. To evaluate this
integral, one can use geometric series or contour integration, to obtain

G(1)(s) = 1√
s2 − 1

, (9.51)

with the square root so chosen that sG(1)(s)→ 1 as |s| → ∞. Note that

G(1)(s) = 1

π

∫ 1

−1

dx

(s − x)√1− x2
, (9.52)

which is the Cauchy transform of a Chebyshev (or arcsine) random variable.

Example 9.13 (Green’s Function for the Square Lattice) Now consider a square
lattice made of N2 points in the style of a chess board, with the interpretation that
opposite edges of the square are identified to produce a torus. Each point interacts
with its nearest neighbours and no others on the board, where the interaction is
described by the matrix�(2) : CN2 → CN

2

�(2)(xn,m)
N
n,m=1 = (4xn,m− xn+1,m− xn−1,m− xn,m+1− xn,m−1)

N
n,m=1 (9.53)

where xn,0 = xn,N and x0,m = xN,m for all n,m = 1, . . . , N . Then

Xj,k = (
xj,k

)N
n,m=1 =

(
exp

2πijn

N
exp

2πikn

N

)N

n,m=1
(9.54)

satisfies the periodicity condition for j, k = 1, . . . , N . We also have

〈
Xj,k,X�,p

〉
= N2, (j = �, k = p);
= 0 else;
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and

�(2)Xj,k =
(

4− 2 cos
2πj

N
− 2 cos

2πk

N

)
Xj,k (j, k = 1, . . . , N). (9.55)

Note that the eigenvalues of �(1) are λk for k = 1, . . . , N , and the eigenvalues of
�(2) are the pairwise sums λj + λk for j, k = 1, . . . , N . This can also be seen from
the identity

�(2) = �(1) ⊗ IN + IN ⊗�(1) (9.56)

and exercise Exercise 3.15.
The Green’s function for (�(2) − 4I)/2 is

G
(2)
N (s) =

1

N2

N∑

j,k=1

1

s − cos(2πj/N)− cos(2πk/N)
. (9.57)

Taking the limit as N →∞, we obtain

G(2)(s) = 1

4π2

∫ 2π

0

∫ 2π

0

dθdφ

s − cos θ − cosφ
(9.58)

with uniform convergence for s in compact subsets of C \ [−2, 2].
To evaluate this, we need Jacobi’s complete elliptic integral [41]

K(z) =
∫ π/2

0

dψ
√

1− z2 sin2ψ

. (9.59)

We start the calculation as in the preceding example

G(2)(s) = 1

4π2

∫ 2π

0

1

s − cos θ

∫ 2π

0

dφ

1− (s − cos θ)−1 cosφ
dθ

= 1

2π

∫ 2π

0

dθ

s − cos θ

1
√

1− (s − cos θ)−2

= 1

2π

∫ 2π

0

dθ
√
(s − cos θ)2 − 1

= 1

π

∫ π

0

dθ√
(s − cos θ − 1)(s − cos θ + 1)
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we substitute t = tan(θ/2) and cos θ = (1− t2)/(1+ t2) so

G(2)(s) = 2

π

∫ ∞

0

dt
√
(s − 2+ st2)(s + (s + 2)t2)

(9.60)

in which we substitute t = u√(s − 2)/s to get

G(2)(s) = 2

πs

∫ ∞

0

du
√
(1+ u2)(1+ (s2 − 4)u2/s2)

(9.61)

in which we substitute u = tanψ to get

G(2)(s) = 2

πs

∫ π/2

0

sec2ψ dψ
√
(1+ tan2ψ)(1 + (s2 − 4) tan2ψ/s2)

(9.62)

and we multiply numerator and denominator by cos2ψ to obtain

G(2)(s) = 2

πs

∫ π/2

0

dψ
√
(cos2ψ + (s2 − 4) sin2 ψ/s2)

= 2

πs

∫ π/2

0

dψ
√

1− (2/s)2 sin2 ψ

= 2

πs
K
(2

s

)
.

9.6 Random Diagonal Transformations

The following result is a version of the weak law of large numbers.
We consider

A =

⎡

⎢
⎢
⎢
⎢
⎣

ξ1 0 . . . 0

0 ξ2
. . .

...
...
. . . 0

0 . . . 0 ξN

⎤

⎥
⎥
⎥
⎥
⎦
, (sI − A)−1 =

⎡

⎢
⎢
⎢
⎢
⎣

(s − ξ1)−1 0 . . . 0

0 (s − ξ2)−1 . . .
...

...
. . . 0

0 . . . 0 (s − ξN)−1

⎤

⎥
⎥
⎥
⎥
⎦

(9.63)

Proposition 9.14 Suppose that ξ is a bounded random variable with distribution
function F on [−M,M]. Suppose that A is a N × N real diagonal matrix with
diagonal entries ξ1, . . . , ξN which are mutually independent random variables
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distributed as ξ . Then

1

N
trace

(
(sI − A)−1)→

∫ M

−M
dF(t)

s − t (s ∈ C \ [−M,M]) (9.64)

in mean square and in probability as N →∞.

Proof The term

1

N
trace((sI − A)−1) = 1

N

N∑

j=1

1

s − ξj (9.65)

is a complex random variable for s ∈ C \ [−M,M]. We aim to show that as N →
∞, these random variables converge to a non-random quantity. The probability and
distribution function are related by P[ξ ≤ x] = F(x), where F is increasing from
F(−M) = 0 to F(M) = 1 and F is right-continuous. Here 1/(s − ξ) has mean

G(s) = E
1

s − ξ =
∫ M

−M
dF(t)

s − t (s ∈ C \ [−M,M]) (9.66)

and

E
1

|s − ξ |2 =
∫ M

−M
dF(t)

|s − t|2 (s ∈ C \ [−M,M]), (9.67)

so the variance is

σ 2 = E
1

|s − ξ |2 −
∣
∣
∣E

1

s − ξ
∣
∣
∣
2

=
∫ M

−M

∫ M

−M

( 1

|s − t|2 −
1

(s − t)(s̄ − u)
)
dF(t)dF (u)

= 1

2

∫ M

−M

∫ M

−M

∣
∣
∣

1

s − t −
1

s − u
∣
∣
∣
2
dF(t)dF (u) (s ∈ C \ [−M,M]).

By independence, we deduce that

1

N

N∑

j=1

1

s − ξj (9.68)
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has mean μ and variance σ 2/N , so by Chebyshev’s inequality

σ 2t2

N
P

[∣∣
∣

1

N

N∑

j=1

1

s − ξj − μ
∣
∣
∣ >

tσ√
N

]
≤ E

∣
∣
∣

1

N

N∑

j=1

1

s − ξj − μ
∣
∣
∣
2 = σ

2

N
(t > 0).

(9.69)

Hence

t2P
[∣∣
∣

1

N
trace((sI − A)−1)−G(s)

∣
∣
∣ >

tσ√
N

]
≤ 1 (t > 0). (9.70)

The stated result follows from these estimates. 	


9.7 Wigner Matrices

Definition 9.15 A Wigner matrix is a random matrixW that satisfies the following
conditions.

(i) W is real and symmetric, withW ∈ MN×N(R);
(ii) The entries wj,k for j ≥ k that lie on or above the leading diagonal are

mutually independent random variables, with wj,k = wk,j by (i);
(iii) Ewj,k = 0 and Ew2

j,k = 1, so the mean is zero and the variance is one;
(iv) either there exists M > 0 such that |wj,k| ≤ M for all j, k; or wj,k has a

standard N(0, 1) normal distribution with probability density function γ , for
all j, k, in which case we callW a Gaussian Wigner matrix.

On account of condition (i), the eigenvalues ofW are real numbers.
By condition (iii) we have EW = 0, and by (iii) and (ii) we have EW2 = NI

since the (j, j)th diagonal entry is

E

N∑

�=1

wj,�w�,j = E

N∑

�=1

w2
j,� = N (9.71)

whereas for j �= k, the (j, k)th off diagonal entry is

E

N∑

�=1

wj,�w�,k = E

N∑

�=1

wj,�wk,� =
N∑

�=1

Ewj,�Ewk,� = 0. (9.72)

We often use the random matrix v√
N
W , which satisfies

E
v√
N
W = 0, E

v2

N
W 2 = v2I, (9.73)
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where the entries on the right-hand side do not depend upon N .

Exercise Recall that if ξ1 and ξ2 are independent normal random variables, where
ξj has mean μj and variance σ 2

j , then ξ1+ ξ2 is also a normal random variable with

mean μ1+μ2 and variance σ 2
1 +σ 2

2 . LetW1 andW2 be independentN×N Wigner
matrices with normal entries.

(i) Show that σ1W1 + σ2W2 has the same distribution as
√
σ 2

1 + σ 2
2W1.

(ii) Let U be an N × N orthogonal matrix. Show that UW1U
� has the same

distribution asW1.

Normal random variable are widely used in statistical applications. The central limit
theorem of probability theory gives conditions under which a sum of statistically
independent random variables converges in distribution to a normal random vari-
able. In the theory of random matrices, the semicircle distribution is a counterpart
of the normal distribution, and has some analogous properties. The semicircle law
was used by [Wigner, 1958] to model the distribution of energy levels of nucleons in
an atomic nucleus with large atomic number. Recently, the semicircle law has been
used in models of wireless communication, where one considers a large number of
transmitting aerials which broadcast to a large number of receivers. Both the normal
and semicircle laws satisfy special replication properties such as the addition rules
which we establish in this book. See [58] for modern developments of the theory.

Example 9.16 (Semicircle Law) The semicircle law S(a, r) with centre a ∈ R and
radius r > 0 is the probability density function

w(x) = 2

πr2

√
r2 − (x − a)2 (−r < x < r). (9.74)

The Cauchy transform is

G(s) = 2

πr2

∫ a+r

a−r

√
r2 − (x − a)2
s − x dx (9.75)

in which we substitute x = a + r sin θ

G(s) = 2

πr2

∫ π/2

−π/2
r2 cos2 θdθ

s − a − r sin θ
(9.76)

and expand as a geometric series

G(s) = 2

π

∫ π/2

−π/2

∞∑

k=0

rk

(s − a)k+1 sink θ(1− sin2 θ)dθ (9.77)
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in which only the even powers contribute, so we obtain

G(s) =
∞∑

k=0

2r2k

(s − a)2k+1

1

2k + 1

(2k + 1)(2k − 1) . . .3 · 1
(2k + 2)(2k) . . .2

= 2(s − a)
r2

∞∑

k=0

r2k+2

(s − a)2k+2 (−1)k
(

1/2

k + 1

)

= 2(s − a)
r2

(
1−

√

1− r2

(s − a)2
)

= 2

r2

(
(s − a)−

√
(s − a)2 − r2

)
.

From this calculation, or otherwise, one checks that the mean is μ1 = a, and
μ2 = a2+r2/4. Writing r = 2v, we deduce that a random variable with distribution
S(a, 2v) therefore has mean a and variance v2.

Theorem 9.17 (Wigner) LetW be an N ×N Wigner matrix as above. Then

E
1

N
trace

((
sI − W√

N

)−1)→ 1

2π

∫ 2

−2

√
4− x2

s − x dx (s ∈ C \ [−2, 2])
(9.78)

as N →∞.

Proof See [63]. The proof involves a detailed analysis of μn = E
1
N

trace(W/
√
N)n

as N → ∞. We computed the cases n = 1 and n = 2; the higher odd powers
n = 2k + 1 give μ2k+1 = 0, whereas the higher even powers n = 2k involve
increasingly complicated sums of products of random variables. 	


9.8 Pastur’s Theorem

The following theorem combines the result about diagonal matrices in Proposition
9.14 with Wigner’s semicircle law.

Theorem 9.18 (Pastur)

(i) Suppose that ξ is a bounded random variable with distribution function F on
[−M,M], and letGF be the Cauchy transform of F .

(ii) Suppose that A is a N × N real diagonal matrix with diagonal entries
ξ1, . . . , ξN which are mutually independent random variables distributed as
ξ .

(iii) LetW be an N × N Wigner matrix as above, independent of A.
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Then there exists a cumulative distribution function on some bounded interval
[−M1,M1] with Cauchy transformG, such that

E
1

N
trace

((
sI − A− vW√

N

)−1)→ G(s), (9.79)

as N →∞ andG(s) satisfies the fixed point equation

G(s) = GF(s − v2G(s)). (9.80)

Proof See Pastur [46]. 	

We present two cases in which we can solve the fixed point equation, and a further
case in which we solve a matrix variant of the fixed point equation.

(i) Let ξ = λ0 be a constant, so dF = δλ0 andGF (s) = 1/(s − λ0)

Then the equation

Gv(s) = 1

s − v2Gv(s)− λ0
(9.81)

gives the quadratic

v2G(s)2 + (λ0 − s)G(s)+ 1 = 0 (9.82)

with solution

Gv(s) = s − λ0 −
√
(s − λ0)2 − 4v2

2v2
. (9.83)

This is the Cauchy transform of the S(λ0, 2v) distribution by Example 9.16.

9.9 May–Wigner Model

Consider N species of animals living on an isolated island. The population xj of
species j gives the j th entry of a state vector X ∈ RN×1 at time t > 0. The
environmental conditions on the island encourage proportional growth or decay
of all the populations through time at a common constant rate λ0. Additionally,
there are symmetrical interactions between species j and k which may be mutually
disadvantageous, such as red and grey squirrels competing for the same food supply,
or mutually advantageous, as in sheep and sheep tick. The rate of interaction
between species j and k is represented by a random variable wjk with wkj = wjk
where the random variableswj,k for j < k are mutually independent and identically
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distributed. In particular, we can consider the interaction matrix to be a Wigner
matrix as above, which gives the May–Wigner model. See [21]

For a N × N real diagonal matrix λ0I and a constant v > 0, we consider the
differential equation

d

dt
X =

(
λ0I + v√

N
W

)
X. (9.84)

The associated Green’s function is

GN(s) = E

(

trace
1

N

(
sI − λ0I − v√

N
W

)−1
)

. (9.85)

By Wigner’s theorem and Pastur’s theorem [46], the distribution of eigenvalues
converges as N → ∞ to the S(λ0, 2v) distribution, which is supported on
[λ0 − 2v, λ0 + 2v]. There are therefore two cases concerning the stability of this
system for largeN > 0, depending on whether this interval intersects with (0,∞).
(i) If λ0 + 2v < 0, then most solutions of the differential equation are bounded.

(ii) Whereas if λ0 + 2v > 0, then there are unbounded solutions with positive
probability.

The conclusion is that in case (ii), one population grows unboundedly large.
This model can be refined to address more realistic assumptions regarding the

interaction of species. For instance, one can consider predator-prey relationships in
which wjk and wkj have opposite sign, or models in which each species interacts
with only a bounded number of other species. There is also the question of whether
the solution to the differential equation produces credible values for a population
model, as in the next exercise.

Exercise Let C = [
1 . . . 1

] ∈ R1×N , let A = [ajk]Nj,k=1 ∈ MN×N(R) and for

X0 ∈ RN×1 consider the initial value problem

dX

dt
= AX, X(0) = X0, (9.86)

whereX represents populations from various species as in the May-Wigner model.

(i) Show that CX gives the total population of all species at time t .
(ii) Show thatCX is constant with respect to time for allX0, if and only if CA = 0.

Express this as a condition on the entries [ajk].
(iii) Suppose thatX has nonnegative entries for allX0 that have nonnegative entries

and all t > 0. Show that ajk ≥ 0 for all j �= k.
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(iv) Let fjk(t) = 〈exp(tA)ek, ej 〉. Show that

dfjk

dt
= ajjfjk +

∑

�:� �=j
aj�f�,k (j, k = 1, . . . , N) (9.87)

and deduce the integral equation

fjk(t) = eajj t δjk +
∫ t

0
eajj (t−u)

∑

�:� �=j
aj�f�,k(u)du. (9.88)

See [48] for discussion of this integral equation and [18] for the associated
semigroups. Semigroups that respect positivity conditions arise in probability
theory and were studied by Feller, Kolmogorov, Markov and others.

9.10 Semicircle Addition Law

With F the semicircle S(0, 2α) law, the Cauchy transform of F is

Gα2(z) = z−
√
z2 − 4α2

2α2 (9.89)

so that with z = s − v2G, the fixed point equationG = Gα2(s − v2G) gives

G = s − v
2G−√

(s − v2G)2 − 4α2

2α2
, (9.90)

which gives, when we isolate and square the root,

(
(2α2 + v2)G− s)2 = (s − v2G)2 − 4α2 (9.91)

which reduces to a quadratic equation

(α2 + v2)G2 −Gs + 1 = 0 (9.92)

with solution

G = Gα2+v2(s) = s −
√
s2 − 4(α2 + v2)

2(α2 + v2)
(9.93)

Pastur’s theorem shows that if a random diagonal matrix H0 has entries that satisfy
the S(0, 2α) law is perturbed by an independent Wigner matrix vW/

√
N , then

H0 + vW/
√
N has eigenvalues that satisfy a S(0, 2

√
α2 + v2) law. The addition



9.11 Matrix Version of Pastur’s Fixed Point Equation 313

rule for semicircular distributions is an instance of the composition law for Herglotz
functions from Sect. 9.4.

We observe that

s +√s2 − 4v2

2
+ v2 s −

√
s2 − 4v2

2v2 = s (9.94)

so

1

Gv2(s)
= s − v2Gv2(s) (9.95)

is a map of the above form, corresponding to (1, 0, v2, S(0, 2v)). With Kt(s) =
s + t/s, we haveKv2(1/Gv2(s)) = s and

Kt(Ku(s)) = s + u
s
+ t
s

(
1+

∞∑

n=1

(−u)n
s2n

)
. (9.96)

For this reason, we add the variances α2 and v2 to produce α2 + v2.

9.11 Matrix Version of Pastur’s Fixed Point Equation

See [31]. Let φ : M2×2(C) → C : A �→ trace(A) and extend to � : M2×2(C) ⊗
M2×2(C)→ M2×2(C) : [Aj,k] �→ [φ(Aj,k)]. Then we introduce

sI −D −� =
[
s 0
0 s

]

−
[
m 0
0 −m

]

−
[
�1 0
0 �2

]

(9.97)

with inverse

(
sI −D −�

)−1 =
[
(s −m−�1)

−1 0
0 (s +m−�2)

−1

]

; (9.98)

then with

E =
[

1 0
0 0

]

⊗
[

0 0
0 1

]

+
[

0 0
0 1

]

⊗
[

1 0
0 0

]

∈ M2×2 ⊗M2×2, (9.99)

we consider the fixed point equation

�
((
(sI −D −�)−1 ⊗ I2

)
E
)
= � (9.100)
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so the diagonal entries are

1

s +m−�2
= �1

1

s −m−�1
= �2 (9.101)

giving a pair of quadratic equations

1 = �1(s +m)− �1�2

1 = �2(s −m)− �1�2. (9.102)

We find that

G(s) = 1

2

(
�1 +�2

)

= s

2

(
1−

√
s2 −m2 − 4√
s2 −m2

)
.

Proposition 9.19 This G(s) is the Cauchy transform of the weight function

w(x) = 1

2π

|x|√x2 −m2
√

4+m2 − x2
(x ∈ (−

√
4+m2,−m) ∪ (m,

√
m2 + 4)).

Proof To prove this, we observe that the Cauchy transform is

G(s) =
∫ −m

−
√

4+m2
+

∫ √m2+4

m

1

s − x
|x|√x2 −m2
√

4+m2 − x2

dx

2π

=
∫ √m2+4

m

2s

s2 − x2

|x|√x2 −m2
√

4+m2 − x2

dx

2π

=
∫ m2+4

m2

s

s2 − u
√
u−m2

√
4+m2 − u

du

2π

so with u = m2 + 4 sin2 θ , we have

G(s) = 4s

π

∫ π/2

0

sin2 θ

s2 −m2 − 4 sin2 θ
dθ

= 4s

π

∞∑

k=0

4k

(s2 −m2)k+1

∫ π/2

0
sin2k+2 θ dθ
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= s

2

∞∑

k=0

(2k + 1)(2k − 1) . . .3.1

(2k + 2)2k . . . 4.2

4k+1

(s2 −m2)k+1

= s

2

∞∑

k=0

(
1/2

k + 1

)

(−1)k
4k+1

(s2 −m2)k+1

= s

2

(
1−

(
1− 4

(s2 −m2)

)1/2)

= s

2

(
1−

√
s2 −m2 − 4

s2 −m2

)
.

	

Let G(s) be a Green’s function, as above. Then the Dyson–Schwinger equation

G(z) = 1

z− �(z) (9.103)

introduces the self-energy �(z) = z − 1/G(z). Voiculescu [58] considered the R-
transform

R(z) = G−1(z)− 1/z, (9.104)

in which G−1 is the functional inverse so G ◦ G−1(z) = z. Substituting z = G(s),
we obtain

R(G(s)) = s − 1/G(s) = �(s) (9.105)

and obtain an alternative formula for the self-energy.

9.12 Rank One Perturbations on Green’s Functions

In Sect. 7.5, we considered the effect of adding a rank one operator to A with a
view to making an almost stable system become stable. In this section, we consider
a related question concerning the Green’s functions. The following is based upon
Appendix 1 from [17]. Let A0 = A′0 ∈ Mn×n(C), and let B = C′ ∈ Cn×1. We
introduce

At = A0 + tBC (9.106)

so that (At ) gives a one-parameter family of self-adjoint matrices, obtained by
adding scalar multiples of a rank one operator BC to A0.
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Proposition 9.20 Let ft (s) = C(sI − At)−1B. Then

trace
(
(sI − A0)

−1 − (sI − At)−1
)
= d

ds
log(1− tf0(s)). (9.107)

Proof We start with the formula

sI − At = sI − A0 − tBC, (9.108)

and multiply by (sI − A0)
−1 on the left and (sI − At)−1 on the right. This gives

(sI − A0)
−1 = (sI − At)−1 − t (sI − A0)

−1BC(sI − At)−1; (9.109)

then we multiply by C and the left and B on the right to get

f0(s) = ft (s)− tf0(s)ft (s), (9.110)

which we rearrange to

ft (s) = f0(s)

1− tf0(s)
. (9.111)

We return to (9.109), and multiply by B on the right to

(sI − A0)
−1B = (sI − At)−1B − tft (s)(sI − A0)

−1B; (9.112)

changing the subject of the formula gives

(sI − At)−1B = (sI − A0)
−1B + tft (s)(sI − A0)

−1B (9.113)

and we use the previous formula for ft (s) to give

(sI − At)−1B = (1− tf0(s))
−1(sI − A0)

−1B. (9.114)

We recall that C = B ′, and observe that f0(s̄) = f0(s), so when we take adjoints of
(9.114) and replace s by s̄, we have

C(sI − At)−1 = (1− tf0(s))
−1C(sI − A0)

−1. (9.115)

This gives

(sI − A0)
−1 = (sI − At)−1 − t (1− tf0(s))

−1(sI − A0)
−1BC(sI − A0)

−1,

(9.116)
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and when we take the trace, we obtain

trace
(
(sI −A0)

−1 − (sI −At )−1
)
= −t (1− tf0(s))

−1trace(sI − A0)
−1BC(sI −A0)

−1

= t (1− tf0(s))
−1traceC(sI −A0)

−2B

= −t (df0/ds)

1− tf0(s)
= d

ds
log(1− tf0(s)).

	


9.13 Exercises

Exercise 9.1 For a distribution F on [−M,M], the corresponding logarithmic
potential is defined by

L(z) =
∫

[−M,M]
log |z− t| dF(t) (z ∈ C \ [−M,M]). (9.117)

(i) Show that

( ∂

∂x
− i ∂
∂y

)
L(x+ iy) = G(x+ iy) (x+ iy ∈ C\ [−M,M]). (9.118)

(ii) Deduce that

( ∂2

∂x2
+ ∂2

∂y2

)
L(x + iy) =

( ∂

∂x
+ i ∂
∂y

)
G(x + iy) = 0 (x + iy ∈ C \ [−M,M]).

(9.119)

Exercise 9.2 By expanding the exponential as a power series in ixt and using a
trigonometric substitution, show that

2

π

∫ 1

−1
eixt

√
1− x2dx =

∞∑

n=0

(−1)nt2n

22n(n+ 1)!n! (t ∈ R). (9.120)

Feller identified the sum on the right-hand side with 2J1(t)/t . See Wigner [63] and
(6.115). Alternatively, one can use the dog-bone contour of Exercise 4.13 to invert
the Laplace transform.

Exercise 9.3 Let J0(s) =
∫ π

0 cos(s cos θ)dθ/π and

φ(t) =
∫ a

−a
eitx

√
a2 − x2 dx

πa2 .
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Show that

φ(t) = −
(
J0(at)+ d

2J0

ds2 (at)
)
.

Exercise 9.4 Let w : [a, b] → [0,∞) be a continuous weight let (Pn(t))∞n=0 be the
sequence of monic orthogonal polynomials for w.

(i) Suppose that f : [a, b] → R is a continuous function such that

∫ b

a

f (t)Pn(t)w(t)dt = 0 (n = 0, 1, 2, . . . ).

(ii) Show that

∫ b

a

tnf (t)w(t)dt = 0 (n = 0, 1, 2, . . . ),

and deduce that

∫ b

a

f (t)w(t)

s − t dt = 0 (s ∈ C \ [a, b]).

(iii) By considering the proof of the Lemma 9.2, show that f (t)w(t) = 0 for all
t ∈ [a, b].

Exercise 9.5

(i) Let A ∈ M1×n(C), B ∈ Mn×1(C), C ∈ M1×n(C). Show that

det(sI − A− tBC) = det(sI − A)− tCadj(sI − A)B,

so the characteristic equation for A + tBC is a polynomial equation of degree
n in s with coefficients that are of degree at most one as functions of t .

(ii) Show how to solve this in the case of n = 2, and compare with (6.121) and
(6.119).

Exercise 9.6

(i) Show that i
√
z defines a Herglotz function.

(ii) By substituting E = k2 and using contour integration, show that

1

π

∫ ∞

0

( 1

E − z −
E

1+ E2

)√
EdE = i√z+ 1√

2
. (9.121)

This formula can be used to define i
√
A when A is a matrix with eigenvalues

in the upper half plane.



Chapter 10
Hilbert Spaces

In previous chapters, we have used the state space CN whereN is finite but possibly
large. The next step in the development of the theory is to take the state space to
be infinite-dimensional. Amongst many possible options, the most suitable type of
space to use is Hilbert space. The essential feature of Hilbert space is that it comes
equipped with an inner product that replicates the properties of the scalar product
on Euclidean space. Any complex Hilbert space has a complete orthonormal basis
and one can use this to introduce a system of coordinates for the Hilbert space. In
this chapter, we look at the basic models of Hilbert space and operators on them.
Methods of Hilbert space theory fit well with complex analysis, and allow us to use
spaces of holomorphic functions as models for linear systems. The main models for
Hilbert space are Hilbert sequence space �2 of square summable complex sequences
as in Sect. 10.1, Hardy space of square summable power series as in Sect. 10.2, and
Hardy space on the left half-plane, as in Sect. 10.5. The crucially important operator
is the shift, which we discuss in Sects. 10.3 and 10.4 along with its interpretation
for discrete time linear systems. We use the Laguerre polynomials from Chap. 8 and
the Laplace transform from Chap. 4 to study the Hardy space on the left half-plane,
and refine previous results about the Laplace transform and its inverse. The main
result is the Paley–Wiener theorem, which has to significant applications to signal
processing. We consider sampling of band limited functions.

10.1 Hilbert Sequence Space

Definition 10.1 (Hilbert Sequence Space) Let

�2 = {(un)∞n=0 : un ∈ C;
∞∑

n=0

|un|2 converges}
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be the space of square summable complex sequences. Then �2 forms a vector space
under the coordinatewise operations

λ(un)
∞
n=0 = (λun)∞n=0 (10.1)

(un)
∞
n=0 + (vn)∞n=0 = (un + vn)∞n=0 (10.2)

since |un+ vn|2 ≤ 2|un|2+2|vn|2 makes the latter series square summable. We can
define an inner product by

〈
(un)

∞
n=0, (vn)

∞
n=0

〉 =
∞∑

n=0

unv̄n. (10.3)

Then 〈u, u〉 =∑∞
n=0 |un|2, so 〈u, u〉 ≥ 0, with 〈u, u〉 = 0⇒ u = 0;

〈v + u,w〉 = 〈v,w〉 + 〈u,w〉 (10.4)

〈λv,w〉 = λ〈v,w〉, 〈v,w〉 = 〈w, v〉. (10.5)

Then we define a norm by ‖u‖ = 〈u, u〉1/2. The Cauchy–Schwarz inequality as in
(2.20) gives

∣
∣〈x, y

〉| ≤ ‖x‖‖y‖ (x, y ∈ H) (10.6)

with equality if and only if x and y are parallel.

Definition 10.2 (Inner Product) An complex inner product space H is a complex
vector space with vector addition and scalar multiplication satisfying the usual rules
such as

λ(x + y) = λx + λy, (λ(μx)) = (λμ)x, 1x = x (10.7)

There is an inner product 〈·, ·〉 : H ×H → C such that

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉, λ〈x, z〉 = 〈λx, z〉; (10.8)

〈x, z〉 = 〈z, x〉 (x, y, z ∈ H ; λ ∈ C); (10.9)

〈x, x〉 > 0 (x ∈ H, x �= 0). (10.10)

We introduce the norm by ‖x‖ = 〈x, x〉1/2.
The Cauchy–Schwarz inequality (2.20) and triangle inequality hold forH just as

for Cn with the same proof. We also have the parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (x, y ∈ H), (10.11)

as the reader can check by multiplying out the terms on the left-hand side.
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Definition 10.3 (Hilbert Space)

(i) A complex inner product space H is said to be complete if for all (sn)∞n=1 in
H such that ‖sn − sm‖ → 0 as n,m → ∞, there exists s ∈ H such that
‖sn − s‖ → 0 as n→∞.

(ii) A Hilbert space is a complete inner product space.
(iii) We further suppose that H is separable, so there exists a countable subset

(xn)
∞
n=1 of H such that for all x ∈ H and ε > 0, there exists n such that

‖x − xn‖ < ε.
Example 10.4 Hilbert sequence space �2 is a Hilbert space for the above inner
product (10.3).

Example 10.5 (Notions of Convergence in Hilbert Space)

(i) If (xn)∞n=1 is a sequence inH and x ∈ H is such that ‖xn−x‖ → 0 as n→∞,
then we say that xn converges to x in norm and write xn→ x as n→∞. One
checks that 〈xn, z〉 → 〈x, z〉 for all z ∈ H .

(ii) If (xn)∞n=1 is a sequence in H and x ∈ H is such that 〈xn, z〉 → 〈x, z〉 for all
z ∈ H , then we say that xn converges weakly to x. By (i), convergence in norm
implies weak convergence. The converse is false, but there is a remarkable
connection between the notions of convergence.

(iii) Suppose that xn, z ∈ H have ‖xn‖ = ‖z‖ = 1 for n = 1, 2, . . . , and 〈xn, z〉 →
1 as n→∞. Then ‖xn − z‖ → 0 as n→∞.

To see this, we use the triangle inequality to show ‖xn+xm‖ ≤ 2, and we observe
that 〈xn + xm, z〉 → 2 as n,m → ∞. From the Cauchy–Schwarz inequality, it
follows that ‖xn + xm‖ → 2 as n→∞; then the parallelogram law gives

‖xn− xm‖2 = 2‖xn‖2+ 2‖xm‖2−‖xn+ xm‖2 → 0 (n,m→∞). (10.12)

We deduce that there exists x ∈ H such that ‖xn − x‖ → 0 as n → ∞; hence
〈x, z〉 = limn→∞〈xn, z〉 = 1, and ‖x‖ = limn→∞ ‖xn‖ = 1. Since ‖z‖ = 1 we
deduce that x = z, so ‖xn − z‖ → 0 as n→∞.

Definition 10.6 (Orthonormal Sequence)

(i) Let (en)∞n=1 be a sequence in H such that 〈en, em〉 = δn,m. Then (en)∞n=1 is
said to be an orthonormal sequence.

(ii) Suppose further that (an) is a complex sequence. Then we call
∑∞
n=1 anen an

orthonormal series, and sn =∑n
k=1 akek the nth partial sum.

(iii) Say that (ej )∞j=1 is a complete orthonormal basis of H if 〈ej , ek〉 = δj,k and

for every x ∈ H there exists (aj )∞j=1 ∈ �2 such that x =∑∞
j=1 aj ej .

Using the Gram-Schmidt process [51, page 258], one can easily construct
orthonormal sequences in a Hilbert space. Also, one can show that any separable
Hilbert space has a complete orthonormal basis see [51, page 255]. In particular, we
have already seen that orthogonal polynomials can be used to form orthonormal
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bases in L2(w), for suitable weights, and the notion of completeness and the
notion of completeness for the orthogonal polynomials coincides with the notion
of completeness of the orthonormal sequence in L2(w). Proving that a given
orthonormal sequence is complete can be difficult and in this book we require
classical results such as the Fourier uniqueness theorem as in (4.94) to prove the
Laguerre system is complete.

Example 10.7 (Standard ONB) The prototype is the standard orthonormal basis
(en) of �2 where en is the standard unit vector with 1 in place n and zeros elsewhere.
We have (an)∞n=1 =

∑∞
n=1 anen.

Proposition 10.8 (Riesz–Fischer) Let
∑∞
n=1 anen be an orthonormal series.

(i) If
∑∞
n=1 |an|2 converges then the series s =∑∞

n=1 anen converges in the sense
that there exists s ∈ H such that ‖s − sn‖ → 0 as n → ∞ and ‖s‖2 =∑∞
n=1 |an|2 where sn =∑n

j=1 aj ej .
(ii) In the case (i), the sum s is the same whenever the terms are reordered or

regrouped.
(iii) If

∑∞
n=1 |an|2 diverges, then ‖sn‖ → ∞ as n→∞.

Proof See [65]. 	

Definition 10.9

(i) A map T : �2 → �2 is linear if

T (λx + μy) = λT (x)+ μT (y) (x, y ∈ �2; λ,μ ∈ C). (10.13)

(ii) A linear map is bounded if there existsM > 0 such that ‖T x‖ ≤M‖x‖ for all
x ∈ �2. This is equivalent to the notion of continuity for a linear operator, as
discussed in [51, page 219] and [65, page 60].

(iii) The operator norm of a bounded linear operator T is ‖T ‖ = sup{‖T x‖ : x ∈
�2 : ‖x‖ ≤ 1}. This definition is consistent with the definition of the norm of a
matrix in Definition 2.18.

(iv) A linear map V : �2 → �2 is an isometry if ‖V x‖ = ‖x‖ for all x ∈ H .

10.2 Hardy Space on the Disc

The space of power series on the unit disc with square summable Taylor coefficients
gives a Hilbert space with important applications. In this section, we show how
this Hilbert space can be described in terms of the sequence of coefficients and
equivalently in terms of holomorphic functions on the unit disc, when it is usually
known as Hardy space. We let H 2 be the space of holomorphic functions u on the
unit disc D(0, 1) = {z ∈ C : |z| < 1} such that

‖u‖2
H 2 = sup

0<r<1

∫ 2π

0
|u(reiθ )|2 dθ

2π
<∞. (10.14)
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For f, g ∈ H 2, we write

〈f, g〉 =
∫

C(0,1)
f (z)g(z)

dz

2πiz
=

∫ 2π

0
f (eiθ )g(eiθ )

dθ

2π
, (10.15)

which gives the inner product on H 2. The precise meaning of the final integral in
(10.15) will become clear via Lemma 10.10.

Lemma 10.10 For w ∈ D let kw(z) = 1/(1− w̄z). Then kw ∈ H 2(D) and

f (w) = 〈f, kw〉 (f ∈ H 2(D)) (10.16)

so that f �→ f (w) gives a continuous linear functionalH 2(D)→ C.

Proof The map f �→ f (w) is clearly linear. For w ∈ D let kw(z) = 1/(1 − w̄z),
which is a rational function of z with pole at 1/w̄ outside D. Also, by Cauchy’s
formula for the circle C(0, 1) we have

〈f, kw〉 =
∫

C(0,1)

f (z)

1− z̄w
dz

2πiz
=

∫

C(0,1)

f (z)

z−w
dz

2πi
= f (w). (10.17)

Taking f = kw, we have

〈kw, kw〉 = kw(w) = 1

1− |w|2 . (10.18)

Hence |f (w)| ≤ ‖f ‖‖kw‖ = ‖f ‖/
√

1− |w|2. 	

Lemma 10.11 The map (un)∞n=0 �→ u(z) = ∑∞

n=1 unz
n gives a linear isometric

isomorphism between the space �2 of square summable complex sequences and the
Hardy spaceH 2.

Proof We identify each (un)∞n=0 with the corresponding power series u(z) =
∑∞
n=1 unz

n. Note that (zn)∞n=0 gives an orthonormal sequence in H 2. Given that
∑∞
n=0 |un|2 converges, we have unzn → 0 as n → ∞ for all z ∈ D(0, 1).

Hence u(z) has radius of convergence ≥ 1, and u(z) = ∑∞
n=1 unz

n converges
and determines a holomorphic function on D(0, 1). Now we take 0 ≤ r < 1, and
write z = reiθ so u(reiθ ) = ∑∞

n=1 unr
neinθ gives an absolutely and uniformly

convergent series of functions for θ ∈ [0, 2π]. We can therefore write

∫ 2π

0
|u(reiθ )|2 dθ

2π
=

∫ 2π

0

( ∞∑

n=0

unr
neinθ

)( ∞∑

n=0

ūnr
ne−inθ

) dθ

2π

=
∞∑

n=0

∞∑

m=0

unūmr
n+m

∫ 2π

0
ei(n−m)θ dθ

2π

=
∞∑

n=0

|un|2r2n.
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Letting r → 1−, we deduce that

lim
r→1−

∫ 2π

0
|u(reiθ )|2 dθ

2π
=

∞∑

n=0

|un|2.

This shows that u ∈ H 2. The map (un)∞n=0 �→ u(z) is linear, when we interpret
u(z)+ v(z) as the usual pointwise sum of holomorphic functions on D(0, 1).

Conversely, every u ∈ H 2 is holomorphic on D(0, 1) and determines a Taylor
series u(z) =∑∞

n=0 unz
n, which by the preceding calculation satisfies

∞∑

n=0

|un|2 = sup
0<r<1

∫ 2π

0
|u(reiθ )|2 dθ

2π
<∞.

Hence (un)∞n=0 ∈ �2. Thus every u ∈ H 2 arises from a uniquely determined
(un)

∞
n=0 ∈ �2. 	


10.3 Subspaces and Blocks

Let H and K be Hilbert spaces and form their direct sum L = H ⊕ K = {(ξ; η) :
ξ ∈ K, η ∈ K} with coordinatewise addition and inner product

〈(ξ1; η1), (ξ2; η2)〉L = 〈ξ1, ξ2〉H + 〈η1, η2〉K (ξ1, ξ2 ∈ H ; η1, L : ξη2 ∈ K).

Then there is a natural isometric linear embedding ι : H → L ξ �→ (ξ; 0) and a
linear projection P : L → H : (ξ; η) → ξ such that P ι = I : H → H . Often ι
is suppressed so that H is regarded as a closed linear subspace of L. We can write
K = L.H to indicate that K is the complementary subspace to H within L.

We can also form direct sums of subspaces from inside a given Hilbert space, as
follows.

Definition 10.12 (Orthogonal Complement) Let K be a linear subspace of H
which is closed in the sense that if kn ∈ K and k ∈ H has the property that
‖k − kn‖ → 0 as n → ∞ then k ∈ K . The orthogonal complement of K in H
is defined to be

K⊥ = H .K = {h ∈ H : 〈k, h〉 = 0; ∀k ∈ K}. (10.19)

One easily shows thatK⊥ is a closed linear subspace ofH andH = K⊕K⊥ in the
sense that for all h ∈ H there exist unique k ∈ K and � ∈ K⊥ such that h = k + �.
Given this, one can show that (K⊥)⊥ = K .
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Proposition 10.13 (Orthogonal Projection) Let K be a nonzero closed linear
subspace of a Hilbert space H , and suppose that (ej )∞j=1 is an orthonormal basis

for K . Let Px =∑∞
j=1〈x, ej 〉ej . Then P is the unique operator with the following

properties:

(i) P : H → K is a bounded linear operator with ‖P‖ = 1;
(ii) 〈Px, y〉 = 〈x, Py〉 = 〈Px, Py〉 for all x, y ∈ H ;

(iii) Pk = k for all k ∈ K , and 〈x − Px, k〉 = 0 for all x ∈ H and k ∈ K;
(iv) ‖x − Px‖ = inf{‖x − k‖ : k ∈ K}, and the infimum is uniquely attained at

k = Px.

Proof

(i) Linearity follows from linearity of the inner product. Also Px ∈ K and x =
Px+(x−Px)where x−Px is orthogonal to all of the ej , so Px is orthogonal
to x − Px and ‖x‖2 = ‖Px‖2 + ‖x − Px‖2 where

‖Px‖2 =
∞∑

j=1

|〈x, ej 〉|2 ≤ ‖x‖2,

and Pe1 = 11, so ‖P‖ = 1.
(ii) The three expressions in (ii) all equal 〈Px, y〉 =∑∞

j=1〈x, ej 〉〈y, ej 〉.
(iii) For k ∈ K , we have k =∑∞

j=1〈k, ej 〉ej , so Pk = k and

〈Px, k〉 =
∞∑

j=1

〈x, ej 〉〈k, ej 〉 = 〈x, k〉

so 〈x − Px, k〉 = 0.
(iv) We have an orthogonal decomposition x − k = (x − Px)+ (Px − k) so

‖x − k‖2 = ‖x − Px‖2 + ‖Px − k‖2,

so we minimize the right hand side by taking k = Px, and this choice is
unique. By (iii) and (iv), P is unique.

	

Definition 10.14 (Orthogonal Projection) The P in Proposition 10.13 is called
the orthogonal projection ontoK .

Corollary 10.15 (F. Reisz-Fréchet) Given a linear map φ : H → C such that
|φ(x)| ≤ C‖x‖ for all x ∈ H for some C > 0, there exists a unique e ∈ H such
that φ(x) = 〈x, e〉.
Proof First observe that any e ∈ H gives rise to such a linear functional via φ(x) =
〈x, e〉, so we need to show that all functionals arise thus. LetK = {x ∈ H : φ(x) =
0} which is a linear subspace; also K is closed since xn → x with xn ∈ K implies
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|φ(x)| = |φ(xn − x)| ≤ C‖xn − x‖ → 0, so φ(x) = 0 and x ∈ K . Let P be the
orthogonal projection onto K . If φ = 0, then we can choose e = 0; otherwise, we
choose f ∈ H such that φ(f ) �= 0, and introduce u = (f −Pf )/‖f −Pf ‖ so that
u has ‖u‖ = 1 and u ∈ K⊥; also φ(Pf ) = 0 so φ(u) �= 0. Now for any x ∈ H , we
have

x =
(
x − φ(x)

φ(u)
u
)
+ φ(x)
φ(u)

u

where the term in parenthesis belongs to K , hence is perpendicular to u. Finally we
take the inner product with e = φ(u)u to get 〈x, e〉 = φ(x), and from the Cauchy–
Schwarz inequality we also obtain ‖φ‖ = ‖e‖ is the best possible choice of C. 	

Lemma 10.16 (Adjoint) Let T : H → H be a bounded linear operator. Then
there exists a unique bounded linear operator T ′ : H → H such that 〈T x, y〉 =
〈x, T ′y〉 for all x, y ∈ H .

Proof For y ∈ H , the linear map φ : H → C given by φ(x) = 〈T x, y〉 gives
T ′y ∈ H such that 〈T x, y〉 = 〈x, T ′y〉 by Corollary 10.15. One can check that
y �→ T ′y is a linear map. Also T ′ is bounded since

‖T ′‖ = sup{|〈x, T ′y〉; x, y ∈ H ; ‖x‖ = ‖y‖ = 1}
= sup{|〈T x, y〉; x, y ∈ H ; ‖x‖ = ‖y‖ = 1}
= ‖T ‖. (10.20)

	

Exercise

(i) Verify that this definition is consistent with (3.45) and Definition 2.15 for a
finite-dimensional Hilbert space such as Cn×1 with the standard inner product.

(ii) Show that Lemma 3.17 extends to this context. Show also that the adjoint T ′ is
uniquely determined by its defining equation.

(iii) Deduce that a linear operator V : H → B is an isometry if and only if V ′V =
I .

(iv) Let (en)∞n=1 be an orthonormal sequence in H and V : H → H a linear
isometry. Show that (V en)∞n=1 is also an orthonormal sequence in H .

We consider block matrices of the form

T =
[
A B

0 0

]

, T ′ =
[
A′ 0
B ′ 0

]
H .K
K

(10.21)

Note that matrices of the form of T arise when one considers elementary row
operations to produce zero rows at the bottom of the array.
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Proposition 10.17 Let T : H → H be a bounded linear operator and let K =
{x ∈ H : T ′x = 0} be the nullspace of T ′.

(i) ThenK is a closed linear subspace ofH , and its orthogonal complementH.K
is the closure of the range {Ty : y ∈ H } of T .

(ii) Also T ′ maps K into K , and T maps H .K into H .K .

Proof

(i) For x, z ∈ K and λ,μ ∈ C, we have T ′(λx + μz) = λT ′x + μT ′z = 0, so
λx + μz ∈ K . Also, if xn ∈ K and xn → x as n → ∞, then by continuity
T ′xn→ T ′x as n→∞, so T ′x = 0, hence x ∈ K . Hence K is a closed linear
subspace of H . To identify its orthogonal complement, we observe that x ∈ K
if and only if 〈y, T ′x〉 = 0 for all y ∈ H so 〈Ty, x〉 = 0 for all y; so x is
perpendicular to the range of T .

(ii) This follows from the definition of K and (i).
	


Definition 10.18 We can form the following block matrices of bounded linear
operators. See [15]

(i) We say that A : H → H has dilation T : L → L if PT ι = A; equivalently
we say that A is the compression of T to H , when we have a block matrix and
a commuting diagram

T =
[
A B

C D

] L −→ L

ι ↑ ↓ P
H −→ H

. (10.22)

(ii) In particular, A : H → H has lifting T : L→ L if PT = A so that we have a
block matrix and a commuting diagram

T =
[
A 0
C D

] L −→ L

P ↓ ↓ P
H −→ H

. (10.23)

(iii) Also A : H → H has an extension T : L → L if T P = A, so we have a
block matrix and a commuting diagram

T =
[
A B

0 D

] L −→ L

ι ↑ ↑ ι
H −→ H

. (10.24)

Hence A has extension T if and only if A′ : H → H has lifting T ′ : L → L

so PT ′ = A′.
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When L = H ⊕K , we can write

0 −→ H −→ L −→ K −→ 0

to indicate that H is isometrically included in L and that H is the nullspace of the
orthogonal projection from L onto K . Then in situation (iii), we can say that T is
an extension of A and a lifting of D, as in the commuting diagram

0 −→ H −→ L −→ K −→ 0
A ↓ T ↓ ↓ D

0 −→ H −→ L −→ K −→ 0
. (10.25)

which leaves B undetermined.

10.4 Shifts and Multiplication Operators

The shift operator S and its adjoint S′ are fundamental to the theory, and arises
naturally when one considers �2 and H 2.

Definition 10.19 (Shifts) Let u(z) = ∑∞
n=0 unz

n be a convergent power series on
some open disc. Then the (forward) shift operator on �2 and H 2 is

Su(z) = zu(z) S : (u0, u1, . . . ) �→ (0, u0, u1, . . . ); (10.26)

the backward shift operator on �2 and H 2 is

Au(z) = u(z)− u(0)
z

A : (u0, u1, . . . ) �→ (u1, u2, . . . ). (10.27)

We also introduce a linear projection on �2 and H 2 by

Pu(z) = u(0) P : (u0, u1, . . . ) �→ (u0, 0, . . . ), (10.28)

Exercise For λ ∈ D(0, 1), let

ϕλ(z) = 1

1− λ̄z . (10.29)

(i) Use power series to show that Aϕλ = λ̄ϕλ, so ϕλ is an eigenvector correspond-
ing to eigenvalue λ̄ of A.

(ii) Likewise show that 〈f, ϕλ〉 = f (λ) for all f ∈ H 2.
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Proposition 10.20 (Shifts)

(i) The shift S is an isometric linear transformation onH 2, so ‖Su‖ = ‖u‖ for all
u ∈ H 2.

(ii) The backward shift A is a bounded linear operator on H 2, so ‖A‖ = 1, and
‖Anu‖ → 0 as n→∞ for all u ∈ H 2.

(iii) AS = I and SA = I − P , where P = P ′ is of rank one and P = P 2;
(iv) A = S′ and S = A′.
Proof

(i) Clearly S is linear, and ‖Su‖ = ‖u‖.
(ii) Also A is linear and u(z) = ∑∞

n=0 unz
n satisfies ‖Au‖2 = ∑∞

k=1 |uk|2 ≤‖u‖2; hence ‖A‖ ≤ 1, and by choosing u(0) = 0, we can achieve equality. We
have

‖Anu‖2 =
∞∑

k=n
|uk|2 → 0 (10.30)

as n→∞.
(iii) Note that Su(0) = 0, so ASu(z) = u(z), hence AS = I ; also SAu(z) =

u(z)− u(0), so SA = I −P . The operator P is the orthogonal projection onto
the constant functions.

(iv) With v(z) =∑∞
n=0 vnz

n, we have

〈Su, v〉 =
∞∑

k=0

ukv̄k+1 = 〈u,Av〉. (10.31)

Here A is coisometric in the sense that A′ = S is isometric.
	


Exercise Let C : H 2 → C : f (z) �→ f (0).

(i) Find C′ : C→ H 2 and deduce that C′C = P : H 2 → H 2 and CC′ : C→ C.
Note the distinction between constants in C and the constant functions in H 2.

(ii) Deduce that

[
A

C

]

: H 2 → H 2

C
,

[
S C′

] : H
2

C
→ H 2

are adjoints of one another, and

[
S C′

]
[
A

C

]

= I : H 2 → H 2,

[
A

C

]
[
S C′

] =
[
I 0
0 I

]

: H
2

C
→ H 2

C
.

(10.32)
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Remark 10.21

(i) To have a shift operator that satisfies the Proposition 10.20, it is essential that
H is infinite-dimensional. A linear isometry on a finite-dimensional Hilbert
space is unitary, since for U ∈ Mn×n(C) the condition U ′U = In implies
UU ′ = In.

(ii) Beurling [4] characterized all the closed linear subspaces K of H 2 such that
SK ⊆ K; these are the shift-invariant subspaces.

(iii) He also considered the closed linear subspaces K of H 2 such that AK ⊂ K .
An example of such is span{ϕλ : λ ∈ E} for any finite subset E of D. This
follows from the identity Aϕλ = λ̄ϕλ.

(iv) The shift operator is an essential tool in the study of stationary stochastic
processes. Wiener and Masani [62] use Hardy spaces of holomorphic functions
on the disc as a model space and then extend some results to matrix valued
holomorphic functions. In this way, questions about stochastic processes are
converted into questions about operators on Hilbert space, with the shift
operator being the crucial example.

Let ϕ(s) = (s − 1)/(s + 1). Then ϕ is a rational function with a pole at s = −1
which maps RHP onto D and has inverse ψ(z) = (z + 1)/(−z + 1), where ψ
maps D onto RHP . Now consider T (s) ∈ C(s), and writeW(z) = T ◦ψ(z). Then
T �→ T ◦ψ gives an algebra isomorphism C(s)→ C(z) with inverseW �→ W ◦ ϕ.
Observe that T has all its poles in LHP if and only if W has none of its poles in
D. Further, T has poles on iR ∪ {∞} if and only if W has poles on the unit circle
C(0, 1). This proves the following result.

Proposition 10.22 The space S of stable rational functions corresponds to the
space SD of rational functions that have no poles in D under the map T �→ W =
T ◦ ψ .

Example 10.23 Let W(z) = z and consider Sf (z) = zf (z), so that S : H 2 → H 2

is the shift operator. The following result gives a version of Proposition 10.20 for
the operator of multiplication by a typical W ∈ SD. One can consider f (z) =∑∞
n=0 anz

n as power series in z corresponding to a signal (an)∞n=1 with
∑∞
n=0 |an|2

convergent, andW(z) as a transfer function from a discrete-time linear system as in
(8.4).

Lemma 10.24 A function W : D → C defines a bounded linear operator MW :
H 2 → H 2 : f (z) �→ W(z)f (z) if and only if W is bounded and holomorphic
on D.

Proof (⇒)We haveW(z) = MW1 ∈ H 2(D), so W is holomorphic on D. Also

〈Wkz, kz〉 = W(z)kz(z) = W(z)‖kz‖2,

while

|〈Wkz, kz〉| = |〈MWkz, kz〉| ≤ ‖MW ‖‖kz‖2,
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so |W(z)| ≤ ‖MW ‖, for all z ∈ C, henceW is bounded.
(⇐) Suppose that |W(z)| ≤ M for all z ∈ D. ThenW(z)f (z) is holomorphic on

D for all f ∈ H 2, and

∫ 2π

0
|W(reiθ )f (reiθ )|2 dθ

2π
≤ M2

∫ 2π

0
|f (reiθ )|2 dθ

2π
(10.33)

so ‖Wf ‖H 2 ≤ M‖f ‖H 2 , hence ‖MW ‖ ≤ M . The operatorMW is evidently linear.
	


Proposition 10.25 LetW ∈ SD be a rational function with no poles on D, and let

MW : H 2 → H 2 : f (z) �→ W(z)f (z). (10.34)

(i) ThenMW gives a bounded linear operator on H 2.
(ii) The adjointM ′W has eigenvector kw with eigenvalueW(w) for all w ∈ D.

(iii) Suppose thatW is non zero and has zeros wj ∈ D for j = 1, . . . ,m. Then the
null space of MW is {0}, and the orthogonal complement of the range of MW
contains span{kwj ; j = 1, . . . ,m}.

Proof

(i) The function W is continuous on the closed and bounded set D, hence it is
bounded there with |W(z)| ≤ M for all z ∈ D for some M ≥ 0. By the
Lemma,MW gives a bounded linear operator on H 2(D).

(ii) The operatorMW has an adjointM ′W which is a bounded linear operator onH 2,
characterized by 〈MWf, g〉 = 〈f,M ′Wg〉 for all f, g ∈ H 2. Taking g = kw,
we use the formula (10.16) to show that

〈f,M ′Wkw〉 = 〈MWf, kw〉 = 〈Wf, kw〉 = W(w)f (w), (10.35)

so that

〈f,M ′Wkw〉 = 〈f,W(w)kw〉, (10.36)

hence M ′Wkw = W(w)kw. [Suppose W is not a constant. Then operator M ′W
is not multiplication by W̄ , since W̄ is not holomorphic.]

(iii) Suppose thatW ∈ SD is non constant. Then the null space ofMW is {f ∈ H 2 :
W(z)f (z) = 0,∀z ∈ D} is {0}. Equivalently, the range ofM ′W is dense in H 2,
since f is orthogonal to the range of M ′W if and only if 〈f,M ′Wg〉 = 0 for all
g ∈ H 2, so that 〈Wf, g〉 = 0 for all g ∈ H 2, soWf = 0.

The range of MW is often denoted WH 2, and is {Wf : f ∈ H 2}. Suppose
that W has zeros at w1, . . . , wm ∈ D; then 〈Wf, kwj 〉 = W(wj )f (wj ) = 0 for
all f ∈ H 2, so kwj is orthogonal to WH 2. Hence the orthogonal complement of
WH 2 is H .WH 2, which contains span(kwj ; j = 1, . . . ,m}. We also observe that
H 2 .WH 2 = null(M ′W). 	
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Exercise Suppose that W has simple zeros at w1, . . . , wn ∈ D, and has no other
zeros in D. For example, let

W(z) =
n∏

j=1

z−wj
1− w̄j z (10.37)

which satisfies |W(z)| < 1 for all z ∈ D.

(i) Show that

{h ∈ H 2 : h(wj ) = 0; j = 1, . . . , n} = span{kwj : j = 1, . . . , n}⊥.
(10.38)

(ii) Show that if h ∈ H 2 has h(wj ) = 0 for j = 1, . . . , n, then h/W ∈ H 2, and
deduce that

WH 2 = span{kwj : j = 1, . . . , n}⊥, (10.39)

H 2 = WH 2 ⊕ span{kwj : j = 1, . . . , n}. (10.40)

Definition 10.26 Let W be a rational function that maps D into itself, and for
distinct points z1, . . . , zn ∈ D let P be the matrix

P =
[1−W(zj )W(z�)

1− z̄j z�
]n

j,�=1
. (10.41)

We callW a Pick function and P the Pick matrix for the points w1, . . . , wn.

Proposition 10.27 Then the Pick matrix P is positive semidefinite.

Proof The matrix is hermitian symmetric, so P = P ′. Let α = (aj )nj=1 ∈ Cn×1

and consider

〈Pα, α〉 =
n∑

j,�=1

1−W(zj )W(z�)
1− z̄j z� aj ā�

=
n∑

j,�=1

aj ā�

1− z̄j z� −
n∑

j,�=1

W(zj )ajW(z�)ā�

1− z̄j z� . (10.42)

The first double sum in the last line is

n∑

j,�=1

aj ā�〈kzj kz�〉 =
〈 n∑

j=1

ajkzj ,

n∑

�=1

a�kz�

〉
= 〈f, f 〉,
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where we have introduced f (z) =∑n
j=1 ajkzj . We now consider

M ′Wf =
n∑

j=1

ajM
′
Wkzj =

n∑

j=1

ajW(zj )kzj ,

so

〈
M ′Wf,M ′Wf

〉 =
〈 n∑

j=1

ajM
′
Wkzj ,

n∑

�=1

a�M
′
Wkz�

〉

=
n∑

j,�=1

W(zj )W(z�)aj ā�〈kzj , kz�〉

=
n∑

j,�=1

W(zj )W(z�)

1− z̄j z� aj ā�

which we recognize as the final summand in (10.42). Hence we have

〈Pα, α〉 = 〈f, f 〉 − 〈M ′Wf,M ′Wf 〉 = ‖f ‖2 − ‖M ′Wf ‖2. (10.43)

Since |W(z)| < 1 for all z ∈ D, we have ‖M ′W ‖ = ‖MW ‖ ≤ 1, so 〈Pα, α〉 ≥ 0. 	

Example 10.28 We can take W(z) = z, which gives a Pick matrix P = [1]nj,�=1.
This has rank one for all n = 1, 2, . . . , and is not positive definite for n ≥ 2.

We now consider some changes of variable. To respect the structure of Hardy
spaces, we use the change of variables z = (s − 1)/(s + 1) so that dz/(2πiz) =
ds/(πi(s2 − 1)), and with z = eiθ and s = iω, we have dθ/(2π) = −dω/(π(1+
ω2)). This helps us to transform from the disc to the half-plane, as in Sect. 10.6.
The correspondence between the transfer function of a discrete-time linear system
Td(z) = Dd + zCd(I − zAd)−1Bd and the transfer function of a continuous time
linear system T (s) = D + C(sI −A)−1B is given in Theorem 8.8, which involves
a similar idea.

10.5 Canonical Model

In this section we consider how the specific examples (8.4) and (10.34) relate to the
backward shift operator. See [4] and [22]. In [12–15] there is a systematic discussion
of dilations and extensions of operators. This is a realization theorem, which shows
that a Hilbert-space valued holomorphic function on the unit disc may be realized
as the transfer function of a discrete time linear system. Let H0 and H1 be Hilbert
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spaces, so H1 is the state space and H0 is the input space and output space. Let
(A,B,C,D) be continuous linear operators

[
A B

C D

]
H1

H0
→ H1

H0
;

• A : H1 → H1 is the main operator,
• B : H0 → H1 is the input operator,
• C : H1 → H0 is the output operator,
• D : H0 → H0 is the external (or straight-through) operator.

Given W(z) = ∑∞
n=0Wnz

n and M > 0 with Wn : H0 → H0 a bounded linear
operator with ‖Wn‖ ≤ M for all n, and W0 = D, we seek (A,B,C) such that
Wn+1 = CAnB. We introduce the space of power series with coefficients in H0

H 2(H0) =
{ ∞∑

n=0

anz
n; an ∈ H0;

∞∑

n=0

‖an‖2 <∞
}

(10.44)

which forms a Hilbert space H1 with inner product

〈 ∞∑

n=0

anz
n,

∞∑

n=0

bnz
n
〉
=

∞∑

n=0

〈an, bn〉H0 . (10.45)

We introduce the linear operators:

A :H 2(H0)→ H 2(H0) : f (z) �→ f (z)− f (0)
z

,

B :H0 → H 2(H0) : b �→ W(z)−W0

z
b,

C :H 2(H0)→ H0 : f (z) �→ f (0),

D :H0 → H0 : b �→ W0b.

Proposition 10.29 Let W(z) be as above. Then (A,B,C,D) are bounded linear
operators that determine a linear system with transfer function

W(z) = D + zC(I − zA)−1B (10.46)

where W(z) =∑∞
n=0Wnz

n is holomorphic on D, with Taylor coefficientsW0 = D
andWn+1 = CAnB for n = 0, 1, . . . .

Proof We have Bb = ∑∞
k=1Wkz

k−1b and An : ∑∞
k=0 akz

k �→ ∑∞
k=n akzk−n, so

for n = 1, 2, . . . , we have

AnBb =
∞∑

k=n+1

zk−n−1Wkb (10.47)



10.6 Hardy Space on the Right Half-Plane 335

so CAnBb = Wn+1b; hence

Db + zC(I − zA)−1Bb = Db + zCBb +
∞∑

n=1

zn+1CAnBb

= W0b + zW1b +
∞∑

n=1

zn+1Wn+1b

= W(z)b (b ∈ H0).

	

Exercise Find formulas for A′ and C′, and show that

[
A

C

]

: H
2(H0)

H0
→ H 2(H0),

[
A′ C′

] : H 2 → H 2(H0)

H0
(10.48)

are adjoints of one another, and are inverses in the sense that

[
A′ C′

]
[
A

C

]

= I : H 2(H0)→ H 2(H0), (10.49)

[
A

C

]
[
A′ C′

] =
[
I 0
0 I

]

: H
2(H0)

H0
→ H 2(H0)

H0
. (10.50)

This result has a converse to the effect that a bounded transfer function can be
realized from a linear system (A,B,C,D) of the above form. Furthermore, one can
often realize the linear system explicitly. See [22].

10.6 Hardy Space on the Right Half-Plane

Hardy space on the unit disc is a suitable function space for describing linear
systems in discrete time and their power series transforms. To describe linear
systems in continuous time and their Laplace transforms, we introduce the Hardy
space of functions on the right-half plane. Some of the properties are inherited
from H 2 of the disc by change of variables, and we will introduce an appropriate
orthonormal basis in this way. The basis is related to the Laguerre system or
orthogonal polynomials via the Laplace transform, which turns out to be the crucial
step in the theory. In the next section we consider how the continuous time signals
can be introduced into the Hardy space via the Laplace transform.
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Let H 2(RHP) be the space of holomorphic functions on {s : �s > 0} such that

sup
x>0

∫ ∞

−∞
|f (x + iy)|2 dy

2π
<∞. (10.51)

The inner product is given by

〈f, g〉 =
∫ ∞

−∞
f (iy)ḡ(iy)

dy

2π
. (10.52)

Lemma 10.30

(i) All strictly proper and stable rational functions belong to H 2(RHP).
(ii) For �z > 0, let kz(s) = 1/(s + z̄). Then kz ∈ H 2(RHP) and

f (z) = 〈f, kz〉 (f ∈ H 2(RHP)) (10.53)

so that f �→ f (z) gives a bounded linear functionalH 2(RHP)→ C.

Proof

(i) For f ∈ S, the poles of f are in LHP so f is bounded and holomorphic on the
RHP ; when f is strictly proper, f (s) = O(1/s) as s →∞; hence the integral
of |f (s)|2 converges.

(ii) The function kz(s) has a pole at −z̄ in the left half-plane, so one can easily
check that kz ∈ H 2(RHP). By applying the Cauchy integral formula to the
semicircular contour in the left half-plane, we have the formula

1

2πi

∫ i∞

−i∞
f (s)

s − zds = −f (z),

where the factor of −1 arises since we go up the imaginary axis and hence
describe the contour in the negative sense. By parametrizing the imaginary axis
by s = iy, we can express the integral as an inner product in H 2(RHP). This
integration formula is closely related to the Poisson integral formula (5.70), but
here we require kz ∈ H 2(RHP).

	

Example 10.31 The reader will easily check that the following functions belong to
H 2(RHP):

(i) 1/(1+ s);
(ii) P(s), a strictly proper stable rational function;

(iii) (logp(s))/(1 + s), where p(s) is a stable polynomial;
(iv) (log s)/(1+ s);
(v) whereas 1/s does not, since

∫∞
−∞ dω/(x

2 + ω2)→∞ as x → 0+. A rational
function in H 2 cannot have poles on the imaginary axis.
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Lemma 10.32 The functions

fn(s) =
√

2
(s − 1)n

(s + 1)n+1 (n = 0, 1, . . . ). (10.54)

give a complete orthonormal basis (fn)∞n=0 for H 2(RHP).

Proof We observe that fn(s) is holomorphic except for poles at −1, which is in
LHP. Also

〈fn, fn〉 = 2

2π

∫ ∞

−∞
(iω − 1)n

(iω + 1)n+1

(−iω− 1)n

(−iω + 1)n+1 dω

= 1

π

∫ ∞

−∞
(ω2 + 1)n

(ω2 + 1)n+1 dω =
1

π

∫ ∞

−∞
dω

1+ ω2 = 1.

Given n > k, we write n = k +m wherem ≥ 1, so

〈fn, fk〉 = 2

2π

∫ ∞

−∞
(iω − 1)n

(iω + 1)n+1

(−iω − 1)k

(−iω + 1)k+1 dω

= −1

π

∫ ∞

−∞
(iω − 1)m−1

(iω + 1)m+1 dω =
−1

πi

∫ i∞

−i∞
(s − 1)m−1

(s + 1)m+1 ds = 0

by Cauchy’s Theorem. More explicitly, we can apply Cauchy’s Theorem to the
function f (s) = (s − 1)m−1/(s + 1)m+1, which is holomorphic inside and on the
semicircular contour [−iR, iR] ⊕ SR in the left half-plane.

Now observe that

〈f, fk〉 =
√

2

2π

∫ ∞

−∞
f (iω)

(−iω− 1)k

(−iω+ 1)k+1 dω

= −
√

2

2πi

∫ i∞

−i∞
f (s)

(s + 1)k

(s − 1)k+1 ds,

which by the Cauchy integral formula applied to [−iR, iR] ⊕ SR gives

〈f, fk〉 =
√

2

k!
( dk

dsk

)

s=1

(
f (s)(s + 1)k

) =
k∑

j=0

√
2

k!
(
k

j

)(dk−jf
dsk−j

)

s=1

( dj

dsj

)

s=1
(s + 1)k

=
k∑

j=0

√
2

k!
(
k

j

)(dk−j f
dsk−j

)

s=1

2k−j k!
(k − j)! ,

in which all the numerical coefficients are positive. Suppose that 〈f, fk〉 = 0 for
all k = 0, 1, . . . . From 〈f, f0〉 = 0, we deduce that f (1) = 0; then 〈f, f1〉 = 0



338 10 Hilbert Spaces

gives f ′(1) = 0, and so on until f (k)(1) = 0 for all k. By the identity theorem for
holomorphic functions, we deduce that f = 0 identically. 	

Corollary 10.33 There is an isomorphism of Hilbert spacesH 2(D)→ H 2(RHP)

given by

f (z) �→
√

2

1+ s f
( s − 1

s + 1

)
(�s > 0). (10.55)

Proof The linear fractional transformation s �→ (s − 1)/(s + 1) is holomorphic on
RHP and gives a bijection betweenRHP and D with holomorphic inverse with the
map of orthonormal bases (zn)∞n=0 �→ (fn(s))

∞
n=0. By the Lemma 10.32, the map

∞∑

n=0

anz
n �→

∞∑

n=0

an
√

2
(s − 1)n

(s + 1)n+1 ((an) ∈ �2) (10.56)

gives an isomorphism of Hilbert spaces, which is equivalently expressed by the
formula (10.55). There is a change of variables s = iω and ω = tan(θ/2) so

s − 1

s + 1
= iω − 1

iω + 1
= i tan(θ/2)− 1

i tan(θ/2)+ 1
= −1+ tan2(θ/2)+ 2i tan(θ/2)

1+ tan2(θ/2)
= −e−iθ .

(10.57)

In addition to the change of variables, (10.55) involves a multiplicative factor. Note
that−e−iθ describes the unit circle once in the negative sense for 0 ≤ θ ≤ 2π . This
relates to our earlier comments about winding numbers for semicircular contours in
Sect. 5.1. 	


10.7 Paley–Wiener Theorem

Definition 10.34 Let L2(0,∞) be the space of Lebesgue measurable functions
f : (0,∞) → C such that

∫∞
0 |f (t)|2dt converges. (Continuous functions are

Lebesgue measurable, as are piecewise continuous functions and pointwise limits
of sequences of continuous functions.) The inner product is

〈f, g〉 =
∫ ∞

0
f (t)g(t) dt. (10.58)

In this case, the Cauchy–Schwarz inequality

∣
∣
∣

∫ ∞

0
f (t)g(t)dt

∣
∣
∣ ≤

( ∫ ∞

0
|f (t)|2dt

)1/2( ∫ ∞

0
|g(t)|2dt

)1/2
(10.59)
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follows from
∫ ∞

0

∫ ∞

0

∣
∣f (s)g(t) − f (t)g(s)∣∣2dsdt ≥ 0. (10.60)

A subset E of R is said to have Lebesgue measure zero if for all ε > 0 there
exists a sequence of bounded intervals (aj , bj ) such that E ⊆ ∪∞j=1(aj , bj ) and
∑∞
j=1(bj−aj ) < ε. In this context, we identify functions f1 and f2 if f1(t) = f2(t)

except on a set of Lebesgue measure zero. If f1 and f2 are both continuous and
f1(t) = f2(t) except on a set of Lebesgue measure zero, then f1(t) = f2(t) for
all t > 0. With this convention, there is no difficulty in interpreting the elements of
L2((0,∞);C). From results of measure theory, L2((0,∞);C) is complete.

Example 10.35 The function f (t) = t−1/4e−t is in L2((0,∞);C), although it
is unbounded at 0+. The function h(t) = H(t) − H(t − 2) also belongs to
L2((0,∞);C), although it is discontinuous at t = 2. The Laplace transforms of
these functions can be computed explicitly

f̂ (s) = �(3/4)

(s + 1)3/4
, ĥ(s) = 1− e−2s

s
(�s > 0). (10.61)

The Laplace transform can be defined for f ∈ L2((0,∞);C), and leads to an
isomorphism with the Hardy space on the left half-plane. This is expressed in the
following result which includes the Paley–Wiener theorem [49] and inversion for
the Laplace transform.

Theorem 10.36 (Paley–Wiener) Let f ∈ L2(0,∞) have Laplace transform
f̂ (s) = ∫∞

0 e−stf (t)dt .

(i) Then f̂ (s) defines a holomorphic function on the RHP;
(ii) if 〈f,√2e−tLn(2t)〉 = 0 for all n, then f = 0;

(iii) the Laplace transform is an isometry L2((0,∞); dt)→ L2(R; dω/(2π)), so
∫ ∞

0
|f (t)|2dt = 1

2π

∫ ∞

−∞
|f̂ (iω)|2dω; (10.62)

(iv) f̂ ∈ H 2, and every g ∈ H 2 arises as the Laplace transform ĥ some h ∈
L2(0,∞).

Proof

(i) With s = x + iy for x > 0, we use the Cauchy–Schwarz inequality to show

|f̂ (s)| ≤
∫ ∞

0
|f (t)e−st | dt ≤

( ∫ ∞

0
|f (t)|2dt

)1/2( ∫ ∞

0
e−2xtdt

)1/2

≤ 1√
2x

( ∫ ∞

0
|f (t)|2dt

)1/2
,
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hence the defining integral for the Laplace transform converges. By a similar
proof to Proposition 4.5, one shows that f̂ (s) is holomorphic with

df̂

ds
= −

∫ ∞

0
te−stf (t)dt (�s > 0); (10.63)

we do not assert that tf (t) is square integrable, but the integral here is still
convergent for �s > 0 since e−st is of exponential decay.

(ii) We observe that

dn

dsn
f̂ (s) = (−1)n

∫ ∞

0
f (t)tne−st dt, (10.64)

so

dn

dsn
f̂ (1) = (−1)n

∫ ∞

0
f (t)tne−t dt. (10.65)

Suppose that 〈f,√2e−tLn(2t)〉 = 0 for all n = 0, 1, . . . ; then 〈f, tne−t 〉 = 0
for all n, so f̂ (n)(1) = 0 for all n; hence f̂ (s) = 0 for all s by the identity
theorem. We deduce that

0 = f̂ (1+ iy) =
∫ ∞

0
f (t)e−t e−iytdt, (10.66)

so f (t)e−t is an integrable function on (0,∞) with zero Fourier transform,
hence is zero by the Fourier uniqueness theorem (4.94). For an alternative
approach, based upon Vitali’s completeness theorem, see [50, p 350].

(iii) By (i) and (ii), we can express an arbitrary f ∈ L2(0,∞) as an orthogonal
series

f (t) =
∞∑

n=0

an
√

2e−tLn(2t), (10.67)

where an = 〈f,
√

2e−tLn(2t)〉 and

∫ ∞

0
|f (t)|2dt =

∞∑

n=0

|an|2. (10.68)

Taking the Laplace transform, we have

f̂ (s) =
∞∑

n=0

an
√

2
(s − 1)n

(s + 1)n+1
(10.69)
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where

∫ ∞

−∞
|f̂ (iω)|2 dω

2π
=

∞∑

n=0

|an|2. (10.70)

(iv) By (iii) we see that f̂ ∈ H 2. Conversely, given g ∈ H 2, we introduce

bn =
〈
gn,
√

2
(s − 1)n

(s + 1)n+1

〉
(10.71)

so

g(s) =
∞∑

n=0

bn
√

2
(s − 1)n

(s + 1)n+1 (10.72)

where
∑∞
n=0 |bn|2 converges. Then g = ĥ, where

h(t) =
∞∑

n=0

bn
√

2e−tLn(2t), (10.73)

gives an element of L2 and

∫ ∞

0
|h(t)|2dt =

∞∑

n=0

|bn|2 =
∫ ∞

−∞
|g(iω)|2 dω

2π
(10.74)

as in (iii).
	


Example 10.37 Suppose that (A, 0, C, 0) is a stable SISO with initial state x0. Then
the output is y(t) = C exp(tA)x0 with Laplace transform Y (s) = C(sI − A)−1x0.
Then by Theorem 10.36,

∫ ∞

0

∣
∣C exp(tA)x0

∣
∣2dt = 1

2π

∫ ∞

−∞
∣
∣C(iωI − A)−1x0

∣
∣2dω.

This system has in effect zero input.

The discussion in the rest of this section is about nonzero inputs that are of finite
energy in the following sense.

Definition 10.38 (Energy) A signal u is said to have finite energy if u ∈
L2((0,∞);C).

Note that decaying signals such as (sin t)/t are of finite energy, whereas periodic
signals such as sinωt are not of finite energy. The signal represented by unit impulse
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δ0 is not of finite energy. To see this, consider fn(t) = nI[0,1/n](t) with rectangular
graph of height n on (0, 1/n) which has the property that

∫ ∞

0
fn(t)g(t)dt = n

∫ 1/n

0
g(t)dt → g(0) (n→∞) (10.75)

for all continuous functions g. In particular, we can take g(t) = eitx with g(0) = 1.
Note also that

∫∞
0 fn(t)

2dt = n → ∞ as n → ∞. We will see that this shows δ0
does not have finite energy.

The finite energy condition on signals is different from boundedness as in BIBO
stability. Nevertheless, BIBO stable systems satisfy the following property for finite
energy signals.

Theorem 10.39 Let (A,B,C,D) be a stable SISO, and suppose that the initial
state is zero. If the input is of finite energy, then the output is also of finite energy.

Proof The transfer function T (s) = D + C(sI − A)−1B is a rational function that
is stable, so T (s) has all its poles in LHP and T (s) ∈ S. Hence T (s) −D → 0 as
s → ∞ and there exists M such that |T (s)| ≤ M for all s such that �s ≥ 0. Now
let f (s) = ∫∞

0 e−stu(t)dt , where u is an input of finite energy. Then f (s) ∈ H 2 by
the Paley–Wiener theorem. Also, g(s) = T (s)f (s) is holomorphic on the RHP ,
and
∫ ∞
−∞

|g(x + iω)|2 dω
π
=

∫ ∞
−∞

|T (x + iω)f (x + iω)|2 dω
π
≤ M2

∫ ∞
−∞

|f (x + iω)|2 dω
π

(10.76)

for all x > 0, so g ∈ H 2. Then g(s) is the Laplace transform of the output y, so by
the converse direction (iv) of the Paley–Wiener theorem, y is also of finite energy
and

∫ ∞

0
|y(t)|2 dt ≤ M2

∫ ∞

0
|u(t)|2 dt. (10.77)

	

A stable rational SISO takes bounded inputs to bounded outputs, and finite energy
inputs to finite energy outputs.



10.8 Rational Filters 343

10.8 Rational Filters

Suppose that we have a linear system with input u ∈ L2(0,∞) and output y ∈
L2(0,∞). Then we introduce the Laplace transforms

U(s) =
∫ ∞

0
e−stu(t)dt ∈ H 2

Y (s) =
∫ ∞

0
e−sty(t)dt ∈ H 2 (10.78)

and we suppose that they are linked by a multiplication formula Y (s) = T (s)U(s).
Suppose that T is holomorphic for s ∈ RHP and T is bounded, so there exists
M > 0 such that |T (s)| ≤ M for all s ∈ RHP. The space of such functions is
called H∞. Then T (s)U(s) belongs to H 2 for all U ∈ H 2 The spaceH∞ forms an
algebra under pointwise multiplication of functions, andH∞ contains S. So we can
seek to develop control theory usingH∞ instead of S.

There is a factorization theory for H∞ functions that is based upon Beurling’s
notion of inner and outer functions [4]. The special feature of an outer function
R ∈ H 2 is that the closed linear span of {e−γ sR(s) : γ > 0} is all of H 2.
Observe that for f ∈ L2(0,∞), the image of {f (t − γ ) : γ > 0} under
the Laplace transform is {e−sγ f̂ (s) : γ > 0}. Wiener studied the properties of
{∑n

j=1 ajf (t−γj ) : aj ∈ C; γj > 0} in various problems in harmonic analysis. We
present a simplified discussion that covers only the case of stable rational functions,
and leave the interested reader to consult books such as [34] for a complete account
of the theory. Rational transfer functions are important since they are relatively easy
to calculate.

By Proposition 6.36, any rational function G(s) can be expressed as G(s) =
P(s)/Q(s) where P(s) and Q(s) are stable rational functions. Our factorization
theorem applies to P(s).

Proposition 10.40 Let P(s) be a stable rational function with zeros z1, . . . , zn in
RHP. Then

(i) P(s) belongs to H∞;
(ii) P(s) = B(s)R(s) where B(s) and R(s) are stable rational functions, with

B(s) =
n∏

j=1

s − zj
s + z̄j ; (10.79)

(iii) |B(s)| ≤ 1 for all s ∈ RHP , and |B(iω)| = 1 for all ω ∈ R;
(iv) R(s) has no zeros in RHP, R is bounded with |R(s)| ≤ supω∈R |R(iω)| for all

s ∈ RHP , where |R(iω)| = |P(iω)|, and

logR(s)

1+ s ∈ H 2. (10.80)
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(v) If P ∈ H 2 then R ∈ H 2 and the linear span of {e−γ sR(s) : γ > 0} is a dense
linear subspace of H 2.

Proof (i) We have P(s) = c + p(s)/q(s) for some c ∈ C where p(s) and q(s) are
polynomials with degp < deg q, and q(s) is stable. Hence P(s) → c as s → ∞.
By the maximum modulus principle [56], we deduce that |P(s)| is bounded on RHP
and attains its supremum on R ∪ {∞}, so sup{|P(s)| : �s > 0} = sup{|P(iω)| :
ω ∈ R}.

(ii), (iii) We define B(s) as above and observe that −z̄j is the reflection of zj in
the imaginary axis, so |s−zj | ≤ |s+ z̄j | for all s ∈ RHP , with equality for s = iω.
Hence B(s) is holomorphic on RHP with zeros at z1, . . . , zn, and B(s) is bounded
there with |B(s)| ≤ 1, where |B(iω)| = 1. Evidently B(s) is stable rational.

(iv) The function R(s) = P(s)/B(s) is also stable rational, since the zeros of
B(s) and R(s) cancel one another; hence R(s) has no zeros in RHP. (We note that
R(s) can have zeros on the imaginary axis, but that is not a problem.) As in (i), we
can apply the maximum modulus principle to R(s) to deduce that |R(s)| is bounded
on RHP and attains its supremum on R ∪ {∞}, so R ∈ H∞. By (iii), we have
|P(iω)| = |R(iω)||B(iω)| = |R(iω)|.

We can factorize

R(s) = a
∏p

j=1(s − iyj )
∏q

j=1(s − αj )∏r
j=1(s − βj )

(10.81)

where a ∈ C, p+q ≤ r , the zeros iyj are on the imaginary axis and αj , βj ∈ LHP .
Hence

logR(s)

1+ s = log a

1+ s +
p∑

j=1

log(s − iyj )
1+ s +

q∑

j=1

log(s − αj )
1+ s −

r∑

j=1

log(s − βj )
1+ s ,

(10.82)

and one can easily check that each summand gives a function in H 2.
(v) Suppose that F ∈ H 2 is a nonzero function that is orthogonal to all the

functions e−γ sR(s) in H 2, so

∫ ∞

−∞
F(iω)eiγωR(iω)

dω

2π
= 0 (γ > 0); (10.83)

then by multiplying by e−γ z and integrating with respect to γ ∈ (0,∞), we deduce
that

∫ ∞

−∞
F(iω)eiγωR(iω)

iω − z
dω

2π
= 0 (�z > 0). (10.84)



10.9 Shifts on L2 345

We express R(s) =∑r
j=1 aj/(s − βj ) in partial fractions where �βj < 0, so that

∫ ∞

−∞
F(iω)eiγω

iω − z
r∑

j=1

āj

−iω − β̄j
dω

2π
= 0 (�z > 0); (10.85)

then by the calculus of residues

F(z)

r∑

j=1

āj

z+ β̄j
−

r∑

j=1

F(−β̄j )āj
z+ β̄j

= 0, (10.86)

so

F(z) =
∑r
j=1 F(−β̄j )āj /(z + β̄j )
∑r
j=1 āj /(z+ β̄j )

. (10.87)

The numerator has poles at z = −β̄j ∈ RHP , but these are canceled by poles on the
denominator. There are also poles arising from the zeros of the denominator, namely
0 = ∑r

j=1 āj /(z + β̄j ), so R(−z̄) = 0; all the zeros of R are in the closure of the

LHP , so z is in the closure of RHP , contrary to the assumption that F ∈ H 2. 	

This B(s) is a finite Blaschke product, and gives an inner function. There are

sometimes known as all pass functions in the engineering literature, since the gain
is one at all frequencies. The function R(s) is an outer function, otherwise known
as minimum phase; see [13].

10.9 Shifts on L2

In this section, we consider transfer functions that are not rational.

Example 10.41 For τ > 0, the function T (s) = e−τs belongs to H∞, and on the
imaginary axis it reduces to T (iω) = e−iτω, where the gain is |e−iτω| = 1. This
transfer function represents a phase shift of −τω.

More generally, we can consider τj ≥ 0 and aj ∈ C, and a transfer function such
as

T (s) =
n∑

j=1

aje
−τj s (10.88)

which belongs to H∞.
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Definition 10.42

(i) As a notational convenience for f ∈ L2(0,∞) we write f (t) = 0 for t < 0.
Given τ > 0, the (forward or right) shift operator Sτ on L2(0,∞) is defined by
Sτf (t) = f (t − τ ) for f ∈ L2(0,∞).

(ii) The backward shift operator Aτ on L2(0,∞) is Aτf (t) = f (t + τ ).
At t > 0, it is plausible that one knows the values of f (s) for 0 < s < t , so that
Sτf (t) = f (t − τ ) involves known data. However, Aτf (t) = f (t + τ ) involves
future values of the signal, so may be inaccessible. In this interpretation, the forward
and backward shifts relate to different situations. Observe that e−s(t+τ ) = e−sτ e−st .
With �s > 0, f (t) = e−st belongs to L2(0,∞) and Aτf (t) = e−τsf (t), so f (t)
is an eigenvector that corresponds to eigenvalue e−sτ .

Proposition 10.43

(i) The shift is an isometric linear transformation of L2(0,∞) so ‖Sτ f ‖ = ‖f ‖
for all f ∈ L2(0,∞).

(ii) Under the Laplace transform, Sτ on L2(0,∞) corresponds to multiplication
on H 2 by e−τs .

(iii) The backward shift is a bounded linear transformation ofL2(0,∞) so ‖Aτ‖ =
1, and ‖Aτf ‖ → 0 as τ →∞ for all f ∈ L2(0,∞).

(iv) AτSτ = I , and SτAτ = I − P(0,τ ), where P(0,τ )f (t) = I(0,τ )(t)f (t);
(v) A′τ = Sτ and S′τ = Aτ .
Proof

(i) The operator Sτ is evidently linear, and the effect of Sτ on f is to shift the graph
of f to the right by τ , thus opening up a gap [0, τ ) on which f (t − τ ) = 0.

(ii) Under the Laplace transform

L(Sτ f )(s) =
∫ ∞

0
e−t sf (t − τ )dt = e−sτ

∫ ∞

0
e−usf (u)du = e−sτLf (s).

(10.89)

(iii) The effect of Aτ is to move [0,∞) to [τ,∞) while leaving the graph of f
fixed; thus the portion of the graph of f above [0, τ ) is discarded. We have

‖Aτf ‖2 =
∫ ∞

0
|f (t + τ )|2dt =

∫ ∞

τ

|f (u)|2du. (10.90)

We deduce that ‖Aτf ‖ ≤ ‖f ‖, and when f = I(τ,2τ ) we have equality. Also,
taking the limit as τ →∞, we see that ‖Aτf ‖ → 0.

(iv) This follows from carefully applying the defining formulas, noting that f (t −
τ ) = 0 for t < τ . In the product AτSτ we first shift the graph of f by τ to the
right, then move the axis to catch up, and the overall effect is to preserve the
graph. In the product SτAτ , we first shift the axis, then move the graph. We
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have SτAτf (t) = I[τ,∞)(t)f (t), since the part of the graph of f above [0, τ )
is irretrievably lost.

(v) We have

〈Aτf, g〉 =
∫ ∞

0
f (t + τ )ḡ(t)dt =

∫ ∞

0
f (u)ḡ(u− τ )du = 〈f, Sτ g〉.

(10.91)
	


Part (ii) has an important consequence. We have

L(h(t − τ ))(s) =
∫ ∞

0
h(x − τ )I(0,∞)(t − τ )e−st dt = e−sτL(h)(s) (10.92)

so that

L(h(t − τ ))(s)− L(h(t))(s)
τ

= e
−sτ − 1

τ
L(h)(s). (10.93)

The obvious move is to let τ → 0, as in differentiation, but we need to make sure
that the functions that emerge belong to the correct spaces. So we consider D =
{f ∈ H 2 : sf (s) ∈ H 2}, which is a linear subspace ofH 2. Also note that |f (iω)| ≤
1/(1+ω2)+ (1+ω2)|f (iω)|2, so

∫∞
−∞ |f (iω)|dω converges for all f ∈ D. Given

W > 0, we also note that

e−iωτ − 1

τ
+ iω = −iω

τ

∫ τ

0
(e−iωu − 1)du (10.94)

converges to 0 as τ → 0+ uniformly for ω ∈ [−W,W ]; also by estimating this
integral, we see that

∣
∣
∣
e−iωτ − 1

τ
+ iω

∣
∣
∣ ≤ 2|ω|; (10.95)

so by either the Dominated Convergence Theorem, or uniform convergence, we
deduce that

∫ ∞

−∞

∣
∣
∣
e−iωτ − 1

τ
+ iω

∣
∣
∣
2|f (iω)|2dω→ 0 (10.96)

as τ → 0+ . Hence

e−iωτ − 1

τ
f (iω)→ −iωf (iω) (10.97)
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in L2(iR), so (e−τs − 1)f (s)/τ → −sf (s) in H 2 as τ → 0 + . If h ∈ L2(0,∞)
has f = ĥ ∈ D, then h ∈ L2(0,∞) and

h(t − τ )− h(t)
τ

→−h′(t) (10.98)

in L2(0,∞) as τ → 0+.

Example 10.44 Delay differential equation
The standard (A,B,C,D) is a realistic model for processes that take place

almost instantaneously, such as electrical current and radio communications. Other
processes take place with some delay: medicines take a while to have effect,
customers pay bills slowly, all in good time. In such examples, we can consider
a delay-differential equation

dX

dt
=

n∑

j=1

AjX(t − τj )+
n∑

j=1

BjU(t − τj )

Y =
n∑

j=1

CjX(t − τj )+
n∑

j=1

DjU(t − τj )

where we have introduced delay times τj ≥ 0 and constant matrices Aj ,Bj , Cj
and Dj . The input U and state X are extended as functions to that U(t) = 0 and
X(t) = 0 for all t < 0. We introduce

[
A(s) B(s)

C(s) D(s)

]

=
[∑n

j=1 Aje
−τj s ∑n

j=1 Bj e
−τj s

∑n
j=1 Cje

−τj s ∑n
j=1Dje

−τj s

]

Then the Laplace transform of the delay-differential-equation is

sX̂(s) = A(s)X̂(s)+ B(s)Û (s)
Ŷ (s) = C(s)X̂(s)+D(s)Û (s),

so that

Ŷ (s) = (
D(s)+ C(s)(sI − A(s))−1B(s)

)
Û(s).

The entries of A(s), B(s), C(s) and D(s). all belong to H∞. There is a delicate
question as to when the entries of (sI − A(s))−1 also belong to H∞.
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10.10 The Telegraph Equation as a Linear System

Consider a long wire with position x > 0 along the wire, and let u(x, t) be the
electrical current at x at time t > 0. In particular, let f (t) be the signal at time t > 0
at the emitter, where x = 0. Let κ > 0 be a constant relating to the capacitance and
electrical resistance of the wire. Then the telegraph equation is the partial differential
equation

∂u

∂t
= κ ∂

2u

∂x2
(10.99)

with the initial condition u(x, 0) = 0, the boundary condition u(0, t) = f (t) and the
boundary condition at infinity u(x, t)→ 0 as x →∞. Then the Laplace transform
in the time variable satisfies

∫ ∞

0
e−st ∂u

∂t
dt = κ ∂

2

∂x2

∫ ∞

0
e−stu(x, t)dt, (10.100)

so by integrating by parts and invoking the initial condition, we obtain

s

∫ ∞

0
e−stu(x, t)dt = κ ∂

2

∂x2

∫ ∞

0
e−stu(x, t)dt; (10.101)

then
∫ ∞

0
e−stu(x, t)dt = Ae−x

√
s/κ + Bex

√
s/κ, (10.102)

and since u(x, t)→ 0 as x → ∞, we need B = 0, and A = ∫∞
0 e−stf (t)dt from

the boundary condition. Laplace calculated the integral [10, page 171]

∫ ∞

0
exp

(
− x2

4κt
− st

) dt

2t3/2
=
√
κπ

x
e−sx/κ, (10.103)

so
∫ ∞

0
e−stu(x, t)dt = A

∫ ∞

0

x

2
√
κπ
e−x2/(4κt)−st dt

t3/2
(10.104)

hence

u(x, t) =
∫ t

0

xe−x2/(4κτ)

2
√
κπτ 3

f (t − τ )dτ. (10.105)
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The telegraph (or heat) equation is discussed in the context of semi-group theory in
[2]. Here we introduce various Hilbert spaces with their inner products to describe
how the various operators may be defined. First, let

H0 = L2((0,∞);C) : 〈f, g〉 =
∫ ∞

0
f (x)g(x)dx (10.106)

or equivalently

H0 = L2((0,∞);C) : 〈f, g〉 = 1

2π

∫ ∞

−∞
f̂ (iω)ĝ(iω)dω. (10.107)

Next we introduce the space of f ∈ H with df/ds ∈ H , namely

H1 = {f ∈ L2((0,∞);C) : df/ds ∈ L2((0,∞);C)}

〈f, g〉1 =
∫ ∞

0
f (x)g(x)dx +

∫ ∞

0

df

dx

dg

dx
dx (10.108)

or equivalentlyH1 = {f ∈ L2((0,∞);C) : ωf̂ (iω) ∈ L2(R;C)}

〈f, g〉1 = 1

2π

∫ ∞

−∞
f̂ (iω)ĝ(iω)dω + 1

2π

∫ ∞

−∞
ω2f̂ (iω)ĝ(iω)dω. (10.109)

Clearly H1 is a linear subspace of H0, but H1 is not a closed linear subspace
of H0. The purpose of introducing H1 is to ensure that some useful operators are
bounded.

Lemma 10.45 The linear map C : H1 → C : f �→ f (0) is bounded.

Proof As in Proposition 4.27, we have

Cf = f (0) = 1

2π

∫ ∞

−∞
f̂ (iω)dω (10.110)

where by the Cauchy–Schwarz inequality

1

2π

∫ ∞

−∞
|f̂ (iω)|dω ≤

( 1

2π

∫ ∞

−∞
(1+ ω2)|f̂ (iω)|2dω

)1/2( 1

2π

∫ ∞

−∞
1

1+ ω2 dω
)1/2

(10.111)

so |Cf |2 ≤ 〈f, f 〉1/2.
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Next we introduce

H2 = {f ∈ L2((0,∞);C) : df/dx, d2f/dx2 ∈ L2((0,∞) : C)}

〈f, g〉2 =
∫ ∞

0
f (x)g(x)dx +

∫ ∞

0

df

dx

dg

dx
dx +

∫ ∞

0

d2f

dx2

d2g

dx2dx (10.112)

or equivalentlyH2 = {f ∈ L2((0,∞);C) : ω2f̂ (iω) ∈ L2(R : C)}

〈f, g〉2 = 1

2π

∫ ∞

−∞
f̂ (iω)ĝ(iω)dω + 1

2π

∫ ∞

−∞
ω2f̂ (iω)ĝ(iω)dω + 1

2π

∫ ∞

−∞
ω4f̂ (iω)ĝ(iω)dω.

(10.113)

here H2 is a linear subspace of H1, and the differential operator H2 → H0 g �→
d2g/ds2 is bounded.

Now we consider κ > 0 and Ag = κ d2g

ds2 . There is a linear system

dX

dt
= AX + Bu

y = CX

subject to the initial condition X0 = X(·, 0) = 0, where the input is an impulse at
t = 0 so Bu(t) = 0 for all t > 0 and we require y(t) = f (t), where f : [0,∞)→
C is a bounded and continuous function. This problem has a solution

X(x, t) =
∫ t

0

x exp(−x2/(4κτ))√
4πκτ 3

f (t − τ )dτ. (10.114)

Observe that

x exp(−x2/(4κτ))√
4πκτ 3

= −κ ∂
∂x

exp(−x2/(4κτ))√
πκτ

(10.115)

belongs to H2 since the exponential factor decays rapidly as x → ∞. Hence
we can interpret this linear system as a system with state space H0, with main
transformation A : H2 → H0 and output transformation C : H2 → C. The initial
condition is ill-defined since

∫ ∞

0

x2 exp(−x2/(2κτ))

4πκτ 3
dx →∞ (τ → 0+). (10.116)
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10.11 Exercises

Exercise 10.1 (Laguerre Shift)

(i) Let

Sf (x) = f (x)− 2
∫ x

0
e−(x−t )f (t)dt (f ∈ L2(0,∞)).

Show that the Laplace transform satisfies

LSf (s) = s − 1

s + 1
Lf (s) (�s > 0).

(ii) Recall the Laguerre polynomials from Example 8.14, and let hn(t) =√
2e−tLn(2t). Deduce that

Shn(t) = hn+1(t).

Exercise 10.2 Let the Laguerre polynomials of index 1 be

L(1)n (x) =
ex

n!x
dn

dxn

(
xn+1e−x

)
(n = 0, 1, . . . ). (10.117)

(i) Show that L(1)n (x) is a polynomial of degree n. Show also that the Laplace
transform of h(1)n (x) = xe−xL(1)n (2x) is

Lh(1)n (s) = (n+ 1)
(s − 1)n

(s + 1)n+2 . (10.118)

(ii) Deduce that

d

dt
h(1)n (t)+ h(1)n (t) = (n+ 1)e−tLn(2t). (10.119)

(iii) Calculate

∫ ∞

−∞
f (iω)

(−iω− 1)n

(−iω+ 1)n+2

dω

2π
(10.120)

for f ∈ H 2.
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Exercise 10.3 Recall the Laguerre polynomials from Example 8.14. Let hn(t) =√
2e−tLn(2t) and φ(t) = e−st for n = 0, 1, . . . , t > 0 and �s > 0. Show that

∫ ∞

0
φ(t + u)hn(u)du =

√
2e−st (s − 1)n

(s + 1)n+1 (t > 0) (10.121)

and deduce that

∫ ∞

0

∫ ∞

0
φ(s + u)hn(u)hm(t)dudt = 2

(s − 1)n+m

(s + 1)n+m+2 (10.122)

where the right-hand side gives a Hankel matrix

[
2
(s − 1)n+m

(s + 1)n+m+2

]∞
n,m=0

=
[ 2

n+m+ 1

∫ ∞

0
φ(t)h

(1)
n+m(t)dt

]∞
n,m=0

, (10.123)

where h(1)(t) = te−tL(1)n (2t).
Exercise 10.4 By [19, (8.977)], the Laguerre polynomials satisfy the addition rule

L(1)n (x + y) =
n∑

j=0

Lj(x)Ln−j (y) (x, y > 0; n = 0, 1, . . . ). (10.124)

Obtain a simple expression for the integral

∫ ∞

0
e−x−yL(1)n (2x + 2y)f (y)dy (10.125)

for f ∈ L2(0,∞).
Exercise 10.5 As in the Proposition 10.43, let Sτ be the multiplication operator
on H 2 that represents the shift on L2(0,∞), so Sτ f (s) = e−sτ f (s) for f ∈ H 2.
Calculate the Laplace transform in the τ > 0

L(Sτ f )(z) =
∫ ∞

0
e−τzSτ f (s)dτ (�z > 0), (10.126)

and interpret the result.

Exercise 10.6 (Shift on Hardy Space) For τ > 0 and f ∈ H 2, let Sτf (s) =
f (s + τ ).
(i) Derive the formula

f (s + τ ) =
∫ ∞

0
e−st−τ th(t)dt. (10.127)
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(ii) Deduce that Sτ is a bounded linear operator on H 2 such that

0 ≤ 〈Sτ f, f 〉 ≤ 〈f, f 〉 (f ∈ H 2).

Exercise 10.7 (Invertible Rational Filters) Let P(s) = B(s)R(s) be a factoriza-
tion as in the Proposition 10.40. Show that 1/R(s) is also stable rational, if and only
if:

(i) B(s) = 1;
(ii) R(s)→ a as s →∞ for some a ∈ C \ {0};

(iii) R(s) has no zeros in the imaginary axis {iω : ω ∈ R}.
This is the point where things become complicated for general H∞ filters; the
invertible ones are difficult to describe.

Exercise 10.8 (EVAD) Dorf and Bishop [12] propose a model for an EVAD device
for managing cardiovascular illness which has a plant G(s) = e−s and a controller
K(s) = a/(s(s + b)), where a, b > 0 are constants with indicative values a =
5, b = 10. For internal stability, we require

F = 1

1+KG
[

1 K

G KG

]

(10.128)

to have entries in H∞.

(i) Let f (s) = s(s+b)+ae−s, and consider the image of the semicircular contour
[−5i, 5i]⊕S5 under f . By applying the argument principle, determine a region
on which 1+KG has no zeros.

(ii) Find a and b such that the entries of F are in H∞ the space of bounded and
holomorphic functions on RHP.

(iii) Produce plots of the entries of F in the style of Nyquist contours.

Exercise 10.9 Find the Laplace transform of the backward shiftAτh, and show that
under suitable conditions

Aτh(t) − h(t)
τ

→ dh

dt

in L2(0,∞) as τ → 0.

Exercise 10.10 (A Finite-Rank Hankel Operator) Let w1, . . . , wn be distinct
points in D and let a1, . . . , an ∈ C. Define � : H 2 → H 2 by

�f (z) =
n∑

j=1

ajf (wj )kw̄j (z) (f ∈ H 2). (10.129)

(i) Show that �f = 0 if and only if f (wj ) = 0 for j = 1, . . . , n.
(ii) Show that the shift operator satisfies S′� = �S.
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(iii) Show that

〈�(z�), zm〉 =
n∑

j=1

ajw
�+m
j . (10.130)

This is a finite-rank Hankel operator in the frequency domain; compare Ex
6.17.

Exercise 10.11 Let λj ∈ RHP and aj ∈ C for j = 1, . . . , n. For f ∈ L2(0,∞),
let

�f (x) =
n∑

j=1

aj

∫ ∞

0
e−λj (x+y)f (y) dy, (x > 0). (10.131)

If f (y) = ∫∞
−∞ g(iω)eiωydω/(2π), show that �f has Laplace transform

L(�f )(s) =
n∑

j=1

ajg(λj )

λj + s . (10.132)

Exercise 10.12

(i) Show thatψ(t) = e−|t | sin t is integrable for t ∈ R, thatψ is once continuously
differentiable with bounded derivative and that ψ(nπ) = 0 for all n ∈ Z.

(ii) Let φ be as in Theorem 11.4 and sinc as in (11.6) Show that

φ(t) = a

π

∫ ∞

−∞
sinc(a(t − u))φ(u) du. (10.133)

(iii) Let

Tf (x) =
∫ a

−a
eixyf (y)

dy

2a
, T ′g(x) =

∫ a

−a
e−ixyg(y)dy

2a
;

show that

T ′Tf (x) =
∫ a

−a
sinc(a(x − u)) f (u)du

2a
(f ∈ L2([−a, a]; dx/(2a)).

(iv) Show that S(t) = sinc (at) satisfies the differential equation

t
d2S

dt2
+ 2

dS

dt
+ a2tS(t) = 0,

which is one of the Bessel family.
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Exercise 10.13 Define Bessel’s function of the first kind of integral order n by

Jn(x) =
∫ π

−π
exp(ix sinω − inω)dω

2π
. (10.134)

Let f (ω) = e−ix sinω for x ∈ R and ω ∈ [−π, π], and deduce a formula via the
sampling theorem 11.4 for the corresponding signal φ.

Exercise 10.14 Let B : H → H be a linear operator such that ‖B‖ ≤ 1. By
considering Exercise 3.9, show that there exist linear operators C and D on H such
that

U =
[
B D

−C B ′
]

H

H

such that U ′U = UU ′ = I on H ⊕H .



Chapter 11
Wireless Transmission and Wavelets

The final chapter considers two of the most important topics in modern signal
processing, namely wavelets and wireless transmissions. The origin of wavelets
lies in the work of Haar and Paley on orthogonal series of functions, and the Haar
wavelet was introduced as an orthonormal basis for L2[0, 1] with properties that
Paley realized were remarkable. The Haar system was interesting in its own right,
and was studied as a model of an orthonormal system which was apparently simpler
than Fourier series. The work of Haar and Paley started a course of study that led to
martingales and the sought-after results about Fourier series in the 1960s and 1970s.
It was in the 1980s that the study of wavelets really sprung to life, and completely
transformed signal processing. In this chapter we look at one wavelet, associated
with the sinc function, which is known as Shannon’s wavelet.

Basic models of radio communication involve a single transmitter broadcasting
to a single receiver. In modern wireless communication for mobile telephone
networks, there are many transmitters and many receivers, so a more complex model
of transmission is essential. We discuss the model due to Telatar [55], which has
been highly influential. The results of this chapter draw on ideas from previous
sections of the book, and convey the main points of the models in question. One
can extend the analysis by introducing more advanced mathematics and more
sophisticated computational tools, such as are discussed in the research literature.

11.1 Frequency Band Limited Functions and Sampling

It is often desirable or technically essential to consider signals such that the angular
frequencies are constrained to lie in a bounded interval. For a > 0, we introduce the
Hilbert space L2[−a, a] of square integrable complex functions f : [−a, a] → C
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with the inner product

〈f, g〉L2[−a,a] =
∫ a

−a
f (ω)g(ω)

dω

2a
, (11.1)

where we regard f (ω) as representing a signal with angular frequency ω ∈ [−a, a].
Then L2[−a, a] has complete orthonormal basis (eiπnω/a)∞n=−∞, so that

f (ω) =
∞∑

n=−∞
cne

iπnω/a (11.2)

where the Fourier coefficients are

cn =
∫ a

−a
f (ω)e−iπnω/a

dω

2a
(n ∈ Z), (11.3)

and they satisfy

∞∑

n=−∞
|cn|2 =

∫ a

−a
|f (ω)|2 dω

2a
. (11.4)

Definition 11.1 (Unnormalized Sinc Function) Consider f (ω) = I[−a,a](ω),
which has

sinc (at) =
∫ a

−a
eitω

dω

2a
= sin at

at
. (11.5)

With a = 1, we have the unnormalized sinc function, which in this book we
simply call sinc. With a = π we obtain sin(πt)/(πt), which is the normalized
sinc function; in signal processing and MATLAB, this is called sinc (Fig. 11.1).

Fig. 11.1 Normalized sinc
function
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Lemma 11.2 The unnormalized sinc function has the following properties:

(i) sinc (t) = sinc (−t) for all t ∈ R, so sinc is even;
(ii) sinc (0) = 1 and |sinc (t)| ≤ 1 for all t ∈ R;

(iii) sinc (t) is decreasing for 0 ≤ t ≤ π;
(iv) sinc(t)→ 0 as t →±∞, and

lim
T→∞

∫ T

−T
sinc (t)dt = π, (11.6)

(v) sinc is not (absolutely) integrable over R;
(vi) sinc (z) defines an entire function, with zeros at z = nπ for n ∈ Z \ {0}.
Proof

(i) Both t and sin t are odd functions, so their quotient is even.
(ii) The integrand satisfies |eitω| ≤ 1, which gives the bound on sinc.

(iii) Consider

d

dt

sin t

t
= t cos t − sin t

t2

which is clearly negative for π/2 ≤ t < π ; while for 0 < t < π/2 it is also
negative since t < tan t .

(iv) We have |sinc(t)| ≤ 1/|t|, so |sinc(t)| → 0 as |t| → ∞. The improper integral
was found by complex analysis in Lemma 4.24.

(v) We show that

∫ T

0

| sin t|
t
dt →∞ (T →∞). (11.7)

We can split the integral into integrals over intervals [nπ, (n + 1)π], where a
typical odd integral contributes

∫ (2n+1)π

2nπ

| sin t|
t
dt ≥ 1

(2n+ 1)π

∫ (2n+1)π

2nπ
sin t dt = 2

(2n+ 1)π
, (11.8)

where
∑∞
n=1 2/(2n+ 1)π diverges by comparison with the standard divergent

series
∑∞
n=1 1/n. The results (iv) and (v) show that sinc(t) converges to 0

slowly as t → ∞. This property also holds for some related functions in this
section.

(vi) The formula sinc(z) = (sin z)/z gives an entire function with convergent
power series

∑∞
n=0(−1)nz2n/(2n+ 1)!. The zeros of sin z = (eiz− e−iz)/(2i)

occur where e2iz = 1, namely at 2iz = 2nπi for n ∈ Z. At z = 0, the zeros on
the numerator and denominator of (sin z)/z cancel.
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Lemma 11.3 (Shift and Translation) Let f ∈ L2[−a, a] give signal φ(t) =∫ a
−a e

iωtf (ω)dω/(2a). Then eiωsf (ω) gives a function in L2[−a, a] with corre-
sponding signal φ(s + t) for s, t ∈ R.

Proof We have

φ(s + t) =
∫ a

−a
eiωs+iωt f (ω)dω

2a
. (11.9)

	

The following result describes the corresponding signal in the time domain.

Theorem 11.4 (Sampling Theorem) For f ∈ L2[−a, a], let

φ(z) =
∫ a

−a
f (ω)eiωz

dω

2a
(z ∈ C). (11.10)

(i) Then φ(z) is of exponential growth of growth rate at most a, so that

|φ(z)|2 ≤ sinh 2ay

2ay
‖f ‖2

L2[−a,a] (z = x + iy ∈ C); (11.11)

(ii) φ(z) is an entire function;
(iii) the energy of the signal φ is finite, so

∫ ∞

−∞
|φ(t)|2dt = π

2a2

∫ a

−a
|f (ω)|2dω; (11.12)

(iv) φ has an orthogonal expansion in terms of sinc functions, so

φ(t) =
∞∑

n=−∞
φ(πn/a)sinc (at − nπ); (11.13)

thus the sequence (φ(πn/a))∞n=−∞ determines all the values of φ(t) for t ∈ R.

Proof

(i) With x, y ∈ R, we have eiωz = eiωxe−ωy where the first factor is unimodular,
so by Cauchy–Schwarz inequality, we have

|φ(x + iy)|2 =
∣
∣
∣

∫ a

−a
eiωxe−ωyf (ω)dω

2a

∣
∣
∣
2

≤
∫ a

−a
e−2ωy dω

2a

∫ a

−a
|f (ω)|2 dω

2a

= sinh 2ay

2ay
‖f ‖2

L2[−a,a].
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Observe that (1/2) log sinh 2ay ∼ ay as y →∞, so a is the maximum growth
rate of φ(x + iy).

(ii) We can differentiate through the integral sign to obtain

dφ

dz
=

∫ a

−a
iωeiωzf (ω)

dω

2a
, (11.14)

which is justified by estimates such as in (i).
(iii) The function g(x) = f (x − a) for 0 < x < 2a and g(x) = 0 for x > 2a

has g ∈ L2(0,∞) with Laplace transform ĝ(ω) = 2ae−iωaφ(−ω), so we can
apply the Paley–Wiener theorem to g.

(iv) We multiply the series (11.2) by eiωt and integrate, and the term with index−n
involves

∫ a

−a
eiωt e−iπnω/a dω

2a
=

[ eitω−iπnω/a

2a(it − iπn/a)
]a

−a =
sin(at − nπ)
at − nπ . (11.15)

This produces the series

φ(t) =
∞∑

n=−∞
c−n

sin(at − πn)
at − πn , (11.16)

stated above. The Paley–Wiener theorem shows that the Fourier transform
operates as a linear isometry on L2[−a, a], so the orthonormal sequence
(einω)∞n=−∞ is mapped to an orthonormal sequence, and the series converges
since (cn) is square summable. The function φ is entire, so the value of φ at a
point such as πn/a is unambiguous; one checks that c−n = φ(πn/a), and

∞∑

n=−∞
|φ(πn/a)|2 =

∫ a

−a
|f (ω)|2 dω

2a
. (11.17)

Note that the sampling sequence (πn/a)∞n=−∞ depends upon a.
	


Remark 11.5

(i) By definition, a band limited function f lives on [−a, a]; such a function could
be continued to become a 2a-periodic function on R, but we choose not to make
this extension; instead we cut off the function outside [−a, a]. The signal φ(t)
is defined for t ∈ R and will not be periodic. Nevertheless, we use periodic
functions and the sum (11.2) to investigate the properties of φ(t). The results
of this section are related to those of Sect. 4.10, which specifically involved
periodic functions.

(ii) Condition (iv) is important in applications to music. Suppose that we know in
advance that the signal φ(z) is generated by an f (ω) with angular frequency
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ω ∈ [−a, a]; this [−a, a] is known as the range of frequencies. Then by finding
φ(πn/a) for n ∈ Z, we can determine the complete function φ(z). We do not
lose any information by sampling only at these values, and we do not gain any
more information by sampling more frequently. Then a/(2π) is known as the
Nyquist frequency.

Example 11.6 (Tent Function) We take

f (x) = a − x 0 < x < a;
a + x − a < x < 0

so that by integrating by parts we obtain

φ(t) =
∫ a

−a
eiωtf (ω)

dω

2a
=

∫ a

0
(a − ω) cosωt

dω

a
= 2 sin2 at/2

at2
;

and

∫ a

−a
f (ω)2

dω

2a
=

∫ a

0
(a − ω)2 dω

a
= a

2

3
.

The identity from the sampling formula is

a2

3
=

∫ a

−a
f (ω)2

dω

2a
=

∞∑

n=−∞
φ(nπ/a)2 =

∞∑

n=−∞

4 sin4 nπ/2

π4n4/a2

which involves different contributions from n = 0, n odd and n a non-zero even
integer, so we obtain

π4

12
= π

4

16
+ 2

∞∑

n=1

1

(2n− 1)4
,

which is equivalent to π4/90 =∑∞
n=1 1/n4.

Shannon’s Approximation by Finitely Many Samples
The sampling formula (11.13) does not itself give any quantitative estimate on how
well the sampling formula converges, so we describe a complement due to Shannon;
see [14]. We write φh(t) = φ(t +h) so that φh(t) =

∫ a
−a e

i(t+h)ωf (ω)dω/(2a). For
h > 0, the signal φh(t) runs ahead of φ(t); whereas for h < 0, the signal φh(t) lags
behind φ(t). We deduce that

PWa =
{
φ : φ(t) =

∫ a

−a
eitωf (ω)

dω

2a
; f ∈ L2[−a, a]

}
(11.18)
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is a linear subspace of L2(R;C) such that φ ∈ PWa ⇒ φh ∈ PWa for all h ∈ R.
The samples (φh(nπ/a))∞n=−∞ occur at points which are translates of the original
sampling points, and we can eliminate h by integrating the �2 sum in the sampling
formula over an interval

∫ π/a

0

∞∑

n=−∞

∣
∣φh(nπ/a)

∣
∣2dh =

∫ ∞

−∞
|φ(t)|2dt.

From the identity

φh(t) =
∞∑

n=−∞
φh(πn/a)sinc (at − nπ); (11.19)

we have

∫ ∞

−∞

∣
∣
∣φh(t)−

N∑

n=−N
φh(πn/a)sinc (at − nπ)

∣
∣
∣
2
dt = π

a

−N−1∑

n=−∞
+

∞∑

n=N+1

∣
∣φh(πn/a)

∣
∣2

(11.20)

so

a

π

∫ π/a

0

∫ ∞

−∞

∣
∣
∣φh(t)−

N∑

n=−N
φh(πn/a)sinc (at − nπ)

∣
∣
∣
2
dtdh =

∫ ∞

(N+1)π/a
+

∫ −Nπ/a

−∞
|φ(t)|2dt

(11.21)

where the right-hand side converges to zero as N →∞. We infer that for large N
and small |h|, the sum

N∑

n=−N
φh(πn/a)sinc (at − nπ) (11.22)

gives a useful approximation for φ(t). One can obtain more quantitative version of
this statement as in page 130 of [14].

Remark 11.7

(i) The series (11.13) is known as a cardinal series after Whittaker, or Shannon’s
interpolation formula. Our proof uses the special property of φ that it is the
inverse Fourier transform of f ∈ L2[−a, a]. The converse of this Theorem
is also true, but we omit the details which can be extracted from [34]. Our
formulation is intended to avoid Poisson summation, which can be difficult to
apply rigorously.



364 11 Wireless Transmission and Wavelets

(ii) The width of the band needs to be interpreted carefully. The formulas
2 cosωt = eiωt + e−iωt and 2i sinωt = eiωt − e−iωt show how one can
produce real waves with angular frequencies 0 ≤ ω ≤ a, so in this respect the
bandwidth is a.

Remark 11.8 (Digitizing Sound) Suppose for the sake of simplicity that we have a
musical instrument capable of producing a sound at a single pitch, as represented
by A sinωt where the (angular) frequency is 0 < ω < ∞. It is perceived that the
sounds at frequencies ω and 2ω are similar, and we say that they are an octave
apart. We then choose ω0 > 0, and call the interval [ω0, 2ω0] an octave. Music
is an analogue phenomenon, in the sense that one can take ω to be a continuous
variable; however, to build practical instruments and simplify musical notation it is
convenient to restrict the choice of frequencies we allow in the octave. Musicians
therefore divide the octave into 12 subintervals, and refer to the notes as a system of
semitones, for instance by using successive frequencies in the ratio 21/12 to give the
equally tempered scale. The choice of ω0, the choice of 12 and the precise mode of
dividing the octave are historical and cultural choices, as discussed in [7]. Once we
have selected these, we can convert music to a digital phenomenon, which is easier
to communicate. In the next section, we proceed to show how all the signals can be
described in terms of a single function under scaling and translation.

11.2 The Shannon Wavelet

The modern theory of wavelets fully exploits the scaling properties of families of
functions in signal processing. In [44], there is an accessible introduction to the
general theory, and here we focus upon a specific example relating to band limited
functions. In this section we consider�j = [−2j+1π,−2jπ)∪(2j π, 2j+1π]which
we regard as the range of angular frequencies for one octave; as j varies through Z

we have pairwise disjoint sets �j which correspond to all possible octaves. For
each�j we introduce the corresponding spaceWj of finite energy signals that have
frequencies in �j . We show that eachWj has a natural orthonormal basis, and that
the bases for differentWj are related by a scaling formula.

Exercise Show that the function

f (ω) = eiωI[−1,−1/2](ω)+ eiωI[1/2,1](ω) (11.23)

gives signal, with graph as in Fig. 11.2,

ψ(t) = sinc(t − 1)− (1/2)sinc((t − 1)/2). (11.24)

To begin the construction, we consider the intervals [−2jπ, 2jπ] for j ∈ Z,
which are commonly used in harmonic analysis. One can think of [−π, π] as the
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Fig. 11.2 Normalized
Shannon mother wavelet
2sincπ(2t − 1)− sincπ(t −
1/2)

basic interval, and then obtain all the other intervals by repeatedly doubling or
halving the interval by dilating about the centre 0 by powers of 2. The intervals
evidently satisfy

(i) they give an increasing sequence, so

· · · ⊂ [−2−2π, 2−2π ] ⊂ [−2−1π, 2−1π ] ⊂ [−20π, 20π ] ⊂ [−21π, 21π ] ⊂ . . .R;
(11.25)

(ii) ∩∞j=−∞[−2jπ, 2jπ] = {0}, and ∪∞j=−∞[−2jπ, 2jπ] = R;

(iii) ω ∈ [−2jπ, 2jπ] if and only if 2ω ∈ [−2j+1π, 2j+1π]; this is a scaling
property.

These properties of the [−2jπ, 2jπ] are reflected in the properties of the spaces
L2[2jπ, 2jπ], which give rise to band-limited functions where the frequency range
in [−2jπ, 2jπ] is changed by factors of 2. Under the Fourier transform, we have
spaces Vj , which we define by

Vj =
{
φ(t) =

∫ 2j π

−2j π
eiωtf (ω)

dω

2j+1π
: f ∈ L2[−2jπ, 2jπ]

}
. (11.26)

Proposition 11.9 The subspaces Vj satisfy:

(i) · · · ⊂ V2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R);
(ii) ∩∞j=−∞Vj = {0} and ∪∞j=−∞Vj is a dense linear subspace of L2(R);

(iii) φ(t) ∈ Vj if and only if
√

2φ(2t) ∈ Vj+1, and the map φ(t) �→ √
2φ(2t) is an

isometry;
(iv) φ(t) ∈ V0 if and only if φ(t − k) ∈ V0 for all k ∈ Z, known as Z-translation

invariance;
(v) V0 has an orthonormal basis (sinc(π(t − k)))∞k=−∞.

The effect of translation as in (iv) is to move the graph of φ(t) through steps of
length one to the left or right.
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Proof

(i) We can map L2[−2jπ, 2jπ] isometrically into L2[−2j+1π, 2j+1π] by

f (ω) �→ √
2f (ω)I[−2j π,2jπ](ω). (11.27)

Then (i) follows from the sampling theorem 11.4.
(ii) This can be deduced from the Paley–Wiener Theorem 10.36. The key point is

that for all f ∈ L2(R) we can introduce fj (ω) = I[−2j ,φ2j ](ω)f (ω) such that
fj ∈ L2(R) and

∫ ∞

−∞
|f (ω)− fj (ω)|2dω→ 0 (j →∞). (11.28)

(iii) From the definitions, we have

√
2φ(2t) = √2

∫ 2j π

−2j π
e2iωt f (ω)

dω

2j+1π
= √2

∫ 2j+1π

−2j+1π

eiωtf (ω/2)
dω

2j+2π
,

(11.29)

where 2
∫∞
−∞ |φ(2t)|2dt =

∫∞
−∞ |φ(t)|2dt.

(iv) This follows from the Lemma (11.9).
(v) This follows from the sampling theorem 11.4.

	

We have [2jπ, 2jπ] ⊂ [2j+1π, 2j+1π] and we introduce �j as the difference

between these sets. Let �j = [−2j+1π,−2jπ) ∪ (2jπ, 2j+1π] so that �j ∩
[−2jπ, 2jπ] = ∅ and�j ∪[−2jπ, 2jπ] = [−2j+1π, 2j+1π].One can think of�j
as representing the frequencies of sound in one musical octave. Then we can form a
disjoint union of sets

{0} ∪
∞⋃

j=−∞
�j = R. (11.30)

Remark 11.10 Proposition 11.9 shows that the subspaces Vj give a multiresolution
of L2(R), known as an MRA. For some alternative choices of MRA, suitable for
other applications, see [44] and [1].

Proposition 11.11 (Shannon’s Wavelet) Let the basic function be

ψ(t) = 2sinc(2πt − π)− sinc(πt − π/2). (11.31)

Then

(
2j/2ψ(2j t − k)

)∞
j,k=−∞ (11.32)
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gives a complete orthonormal basis for L2(R).

Proof We introduce the subspaceWj of L2(R) by

Wj =
{
φ(t) =

∫

�j

eiωtf (ω)
dω

2j+1π
: f ∈ L2(�j )

}
(j ∈ Z). (11.33)

First we consider W0. We can embed V0 isometrically in V1 by φ(t) �→ √
2φ(2t)

with range Ṽ0 and introduce the orthogonal complement W0 of Ṽ0 so that V1 =
Ṽ0 ⊕W0. Then

ψn(t) = 2sinc((2t − 2n− 1)π)− sinc((2t − 2n− 1)π)/2) (11.34)

gives an orthogonal basis (ψn)∞n=−∞ forW0.
We observe that (2−1/2I[−π,π](ω)einω)∞n=−∞ is orthonormal in L2(R), and

(2−1
I[−2π,2π](ω)einω/2)∞n=−∞

is orthonormal in L2(R). Further, one checks by calculation that (2−1/2I�0

(ω)ei(2n+1)ω/2)∞n=−∞ is orthonormal in L2(R); note that the indices 2n+ 1 here are
all odd. This suggests that we can embed spaces of functions by using odd and even
Fourier exponents. We observe that L2[−π, π] may be embedded isometrically as
a subspace of L2[−2π, 2π] via by taking g(ω) = ∑∞

k=−∞ bkeikω ∈ L2[−π, π]
and mapping this to

∑∞
k=−∞ bkei2kω/2 with ω ∈ [−2π, 2π], where the index 2k is

even, so that the orthogonal complement of the range in L2[−2π, 2π] is the space
of h(ω) = ∑∞

k=−∞ ckei(2k+1)ω/2 with ω ∈ [−2π, 2π] and
∑
k |ck|2 convergent,

giving the space with odd Fourier exponents.
Now we consider �0 instead of [−2π, 2π], and look at the odd indexed Fourier

components. We observe for f (ω) =∑∞
k=−∞ akei(2k+1)ω/2 in L2(�0) we have

ak =
∫

�0

f (ω)e−i(2k+1)ω/2dω

2π
(11.35)

hence the corresponding signal is

φ(t) =
∫

�0

eiωtf (ω)
dω

2π

=
∞∑

k=−∞
ak

∫ −π

−2π
+

∫ 2π

π

ei(2k+1)ω/2+iωt dω
2π

=
∞∑

k=−∞
ak

(
2sinc(π(2k + 1+ 2t)− sinc

π(2k + 1+ 2t)

2

)
. (11.36)
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The subspaces L2(�j ) are orthogonal subspaces of L2(R) since the �j are
pairwise disjoint, so by the Paley–Wiener theorem 10.36, the spaces Wj are
orthogonal in L2(R). We have

2j/2ψ(2j t − k) = 2j/2
∫

�0

ei(2
j t−k)ω−iω/2 dω

2π
= 2j/2

∫

�j

eitν−i(2k+1)2−jν dν

2j+1π

(11.37)

which shows that 2j/2ψ(2j t − k) are orthonormal for j, k ∈ Z. One can prove that
this system is complete in L2(R). 	

Remark 11.12 The functionψ is known as Shannon’s mother wavelet, such that the
dyadic scalings and integer translations of ψ give an orthonormal basis of L2(R).
This choice of wavelet is particularly well suited to digitization of sound, since

(i) the function ψ of (11.31) has a relatively simple formula;
(ii) the derivatives of ψ exist and are continuous;

(iii) the Fourier transform of ψ is of compact support.

The functions ψ belongs to L2(R); unfortunately, ψ is not integrable, since sinc is
not integrable, as we noted in Lemma 11.2.

11.3 Telatar’s Model of Wireless Communication

Consider a main line railway station, filled with travelers equipped with mobile
telephones. There are many transmitters on the various platforms, and numerous
receivers, and a background of unwanted radio signals from neighbouring buildings.
When a traveler seeks to call home to report on the forthcoming journey, the call may
be picked up by several receivers and degraded by the noise. We seek to model this
complicated situation to understand what is transmitted and received.

Suppose that there are t transmitting antennas and r receiving antennas, and let

• Y ∈ Cr×1 be the received signal;
• X ∈ Ct×1 be the transmitted signal;
• N ∈ Cr×1 be the noise
• H ∈ Mr×t (C) be the transmission matrix,

and suppose

Y = HX +N. (11.38)

Let H = [hjk] and observe that the component hjk measures how much the
kth transmitter sends to the j th receiver. This transmission is degraded by j th
component of the noise. More specifically, we assume that N is a Gaussian vector
of the form N = ((γj + iγ−j )/

√
2)rj=1, where (γj )rj=−r are mutually independent
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N(0, 1) Gaussian random variables. From the early days of probability theory,
Gaussian random variables have been used as standard models for errors and noise.
Note that UN has the same distribution as N for all unitary U ∈ Mr×r (C), so
the noise has no preferred coordinate direction. In the simplest case r = t and
H = Ir×r so that the kth transmitter communicates only with the kth receiver;
otherwise, there are nonzero entries of H for j �= k describing cross-talk between
transmitters and receivers with different indices. The latter situation is what we
describe in the following Lemma. Using Lemma 7.18, it is possible to replace all
the complex matrices and vectors with larger real matrices and vectors, but we will
persevere with the complex versions since the formulas are more compact.

Shannon observed that the logarithmic determinant in (11.39) is a crucial
quantity in deciding how much information can be transmitted through the network
and it is interpreted as a logarithmic capacity. The capacity of a communication link
measures the mutual information between transmitters and receivers.

Lemma 11.13 Suppose that H is constant and that the entries of X are random
variables with finite second moments that are independent of the entries of N .

(i) Then the matrices Q = EXX′ and R = EYY ′ are positive semi definite and
satisfy

R = I +HQH ′.

(ii) The functionQ �→ log det(I +HQH ′) is increasing on the set of positive semi
definite t × t matrices.

(iii) ForQ = τI , we have

log detR =
min{r,t}∑

j=1

log(1+ τσ 2
j ) (τ ≥ 0) (11.39)

where σj are the singular numbers of H as in Definition 7.19.

Proof

(i) First, we find that the noise has mean and variance

EN = 0, ENN ′ = I, (11.40)

by the independence assumptions. Next we observe that

〈Qξ, ξ〉 = E〈XX′ξ, ξ〉 = E〈X′ξ,X′ξ〉 = E‖X′ξ‖2 ≥ 0

for all ξ ∈ Ct×1, so Q is self-adjoint with all eigenvalues nonnegative.
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Then we compute

R = E
(
(HX + N)(X′H ′ +N ′))

= HEXX′H ′ + E(NX′)H ′ +HE(XN ′)+ E(NN ′)

= HQH ′ + I

where we have used the independence of X and N . One can check that R is
positive semidefinite as withQ.

(ii) We have

log detR = log det(I +HQH ′) = trace log(I +HQH ′).

We can express this as an integral as in Exercise 3.19

log detR = trace
∫ ∞

0

(
(I + τI)−1 − (I + τI +HQH ′)−1

)
dτ.

Now for 0 ≤ Q1 ≤ Q2, we have 0 ≤ HQ1H
′ ≤ HQ2H

′, so

−(I + τI)−1 ≤ −(I + τI +HQ1H
′)−1 ≤ −(I + τI +HQ2H

′)−1,

and from the integral we deduce that

0 ≤ log det(I +HQ1H
′) ≤ log det(I +HQ2H

′).

This shows thatQ �→ log det(I +HQH ′) is increasing.
(iii) We have rank(HH ′) = rank(H) ≤ min{r, t} by the rank-nullity theorem 2.2,

so there are at most min{r, t} nonzero singular numbers σj . With the specific
choice ofQ = τI , we have

log detR = log det(I + τHH ′) = log
min{r,t}∏

j=1

(1+ τσ 2
j ).

	

To make the model more realistic, it is necessary to widen the scope of

assumptions about H . In practical situations, it is difficult to know in detail how
much the kth transmitter can send to the j th receiver, so we assume this hjk
to be a random variable. In this way, H becomes a random matrix, which we
suppose independent of the random entries of X and N . The computation that
produced (11.39) remains valid, except that we now regard H as random, and
seek the expected value. When working with r × r matrices, it is often helpful
to rescale the trace by dividing by r , so that the scaled trace of the identity matrix
gives (1/r)traceIr×r = 1. Although the following result deals with an asymptotic
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distribution as R → ∞, the conclusions can be used for matrices of size about
64× 64, such as are used in applications. See page 93 of [43].

Proposition 11.14 Suppose that r = t and H = W/
√
r where W is a r × r

Gaussian Wigner matrix as in Definition 9.15. Then

E
1

r
log det(I + sW 2/r)→

∫ 4

0
log(1+ sy)

√
4− y
y

dy

2π
(r →∞) (11.41)

where the right-hand side is a holomorphic function of s ∈ C \ (−∞, 0] such that

d

ds

∫ 4

0
log(1+ sy)

√
4− y
y

dy

2π
= 2

2s + 1−√4s + 1
(s > 0). (11.42)

Proof For all continuous functions f : [−2, 2] → C, we have

E
1

r
tracef

( W√
r

)
→

∫ 2

−2
f (x)

√
4− x2 dx

2π
(r →∞)

by Theorems 9.17 and 9.11. The right-hand side is the semicircle law, so we can
consider σ to be a random eigenvalue in [−2, 2] subject to the semicircle law, then
we consider the law of σ 2, and the change of density that arises from y = x2. We
find that the limiting distribution of eigenvalues ofW 2/r satisfies

P[σ 2 ≤ y] = 1

2π

∫ √
y

−√y

√
4− τ 2dτ

so the probability density function of σ 2 is

d

dy
P[σ 2 ≤ y] =

√
4− y

2π
√
y

(0 < y < 4). (11.43)

Hence for all continuous functions g : [0, 4] → C, we have

E
1

r
traceg

(W 2

r

)
→

∫ 4

0
g(y)

√
4− y

2π
√
y
dy (r →∞).

In particular, we can take g(y) = log(1 + sy) for y ∈ [0, 4] and s ∈ C \ (−∞, 0]
and obtain (11.41).
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We can compute the derivative of this expression, as follows. Starting from the
formula

2

π

∫ 1

−1

√
1− x2

ζ − x dx = 2

ζ +√
ζ 2 − 1

(ζ ∈ C \ [−1, 1]),

which we derived in Example 9.16, we substitute x = y/2−1 and ζ = −1−1/(2s)
to obtain

1

2π

∫ 4

0

√
4y − y2

1+ sy dy = 2

2s + 1−√4s + 1
(s > 0),

hence

d

ds

∫ 4

0
log(1+ sy)

√
4− y
y

dy

2π
= 2

2s + 1−√4s + 1
(s > 0). (11.44)

	

This result can be extended in several ways. We can replace the Wigner matrixW

by a rectangular matrixH with Gaussian entries, and drop the assumption thatH is
symmetric. The Wishart matrix then arises fromHH ′, and is one of the fundamental
examples in random matrix theory. The probability density function in (11.43) is
one of the family of Pastur-Marchenko distributions which arise in the context of
the Wishart distribution. We refer the reader to [7], [43] or other books on random
matrix theory for further discussion of this topic. Orthogonal polynomials are a
useful tool for studying limit distributions of random matrices.

Example 11.15 One can easily rescale the probability density (11.43) so that it
becomes

w(x) = (2π)−1(x + 1)−1/2(1+ x)1/2 (x ∈ (−1, 1)).

The standard Jacobi polynomials P (1/2,−1/2
n (x) are orthogonal with respect to this

weight, and are normalized so that

P
(1/2,−1/2)
n (1) =

(
1/2+ n
n

)

.

Then y = P
(1/2,−1/2)
n (x) gives the only polynomial solution of the differential

equation

(1− x2)
d2y

dx2 − (1+ 2x)
dy

dx
+ n(n+ 1)y = 0.
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The three-term recurrence relation is

4n2(n−2)P (1/2,−1/2)
n (x) = 2n(2n−1)(2n−2)xP (1/2,−1/2)

n−1 (x)−n(2n−1)(2n−3)P (1/2,−1/2)
n−2 (x)

as in page 71 of [54].

11.4 Exercises

Exercise 11.1 Show by substitution that

∫ 4

0

√
4− y
y

dy

2π
= (2n)!
(n+ 1)(n!)2 (n = 0, 1, . . . ).

Exercise 11.2

(i) Let A and B be positive definite n × n matrices. Using Lemma 3.38 and
Theorem 3.20, show that there exists a positive definite

√
A such that (

√
A)2 =

A and

det(I + sAB) = det(I + s√AB√A).

(ii) Deduce that the eigenvalues of AB are positive. (It is not asserted that AB is
positive definite).
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Exercise 1.3 We write

dx

dt
= v

dv

dt
= − k

m
x + u

m
.

Then we introduce the state vector

X =
[
x

v

]

and introduce the coefficient matrices

A =
[

0 1
−k/m 0

]

, B =
[

0
1/m

]

, C = [
1 0

]
, D = 0.

Then

dX

dt
= AX + Bu

x = CX +Du.
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Exercise 2.5

(i) As in (2.51), let

A =
⎡

⎣
0 1 0
0 0 1
−7 −6 −5

⎤

⎦ , B =
⎡

⎣
0
0
1

⎤

⎦ , C = [
4 −3 2

]
, D = 0.

(ii) The eigenvalues of A are

eig(A) = −3.9259,−0.5391± ı1.2225;

all of these lie in the open left half plane, so the system is stable.

Exercise 2.12 We consider the augmented matrix for [sI − A | I ]
⎡

⎣
s − 1 −4 −10 | 1 0 0

0 s − 2 0 | 0 1 0
0 0 s − 3 | 0 0 1

⎤

⎦

so the row operations r1 �→ r1/(s − 1), r2 �→ r2/(s − 2) and r3 �→ r3/(s − 3) give

⎡

⎣
1 −4/(s − 1) −10/(s − 1) | 1/(s − 1) 0 0
0 1 0 | 0 1/(s − 2) 0
0 0 1 | 0 0 1/(s − 3)

⎤

⎦

then r1 �→ r1 + 4r2/(s − 1)+ 10r3/(s − 1), gives

⎡

⎣
1 0 0 | 1/(s − 1) 4/(s − 1)(s − 2) 10/(s − 1)(s − 3)
0 1 0 | 0 1/(s − 2) 0
0 0 1 | 0 0 1/(s − 3)

⎤

⎦

hence

(sI − A)−1 =
⎡

⎣
1/(s − 1) 4/(s − 1)(s − 2) 10/(s − 1)(s − 3)

0 1/(s − 2) 0
0 0 1/(s − 3)

⎤

⎦

Exercise 2.10 By polynomial long division we obtain

T (s) = 5+ 22s3 − 26s2 − 34s − 28

s4 − 3s3 + 4s2 + 7s + 6
.

Hence we choose
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A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
−6 −7 −4 3

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , C = [−28 −34 −26 22

]
, D = 5.

The numerical values for the eigenvalues of A are found to be

eig(A) = 2.1014± ı1.9797,−0.6014± ı0.5985.

Exercise 2.13 The solution follows the method of proof of Lemma 2.32. Consider

det(λI − A) = det

[
λ− 1 1
−3 λ− 5

]

= (λ− 1)(λ− 5)+ 3

= λ2 − 6λ+ 8

= (λ− 4)(λ− 2).

For λ = 2,

2I − A =
[

1 1
−3 −3

]

so we choose eigenvector

[
1
−1

]

;

for λ = 4

4I − A =
[

3 1
−3 −1

]

so we choose eigenvector

[
1
−3

]

.

Let

S =
[

1 1
−1 −3

]

,D =
[

2 0
0 4

]

;
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then AS = SD, so A = SDS−1, where

S−1 = −1

2

[−3 −1
1 1

]

;

hence

exp(tA) = S exp(tD)S−1

= −1

2

[
1 1
−1 −3

] [
e2t 0
0 e4t

] [−3 −1
1 1

]

= −1

2

[
1 1
−1 −3

] [−3e2t −e2t

e4t e4t

]

= 1

2

[
3e2t − e4t e2t − e4t

−3e2t + 3e4t −e2t + 3e4t

]

The eigenvectors of A are only unique up to non zero constant multiples, so there
are other valid choices available for S. Of course, the final answer exp(tA) =
S exp(tD)S−1 is unique.

Exercise 2.14 As in Proposition 2.12, we introduce the companion matrix

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
−2 −4 −1 −2

⎤

⎥
⎥
⎦

with numerical eigenvalues

eig(A) = −2.1877, 0.3516± ı1.2843,−0.5156.

Given the matrix A, the final step can be carried out in MATLAB using eig(A).

Exercise 2.16 The solution follows the method of Proposition 2.33. The idea is to
build solutions out of each eigenvector of A.

(i) By applying column and row operations, we have

det(λI − A) =
∣
∣
∣
∣
∣
∣

λ− 2 1 1
1 λ− 2 1
1 1 λ− 2

∣
∣
∣
∣
∣
∣

(c2 �→ c2 − c3)

=
∣
∣
∣
∣
∣
∣

λ− 2 0 1
1 λ− 3 1
1 −λ+ 3 λ− 2

∣
∣
∣
∣
∣
∣

(r2 �→ r2 − r1)
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=
∣
∣
∣
∣
∣
∣

λ− 2 0 1
3− λ λ− 3 0

1 −λ+ 3 λ− 2

∣
∣
∣
∣
∣
∣

(r3 �→ r3 + r2)

=
∣
∣
∣
∣
∣
∣

λ− 2 0 1
3− λ λ− 3 0
4− λ 0 λ− 2

∣
∣
∣
∣
∣
∣

= (λ− 3)

∣
∣
∣
∣
λ− 2 1
4− λ λ− 2

∣
∣
∣
∣

= (λ− 3)(λ2 − 3λ)

= λ(λ − 3)2.

so the eigenvalues are λ = 0, 3, 3, listed according to algebraic multiplicity.
We choose eigenvectors for the corresponding eigenvalues

λ = 0 : V0 = 1√
3

⎡

⎣
1
1
1

⎤

⎦ ; λ = 3 : V1 = 1√
2

⎡

⎣
1
−1
0

⎤

⎦ ; λ = 3 : V2 = 1√
6

⎡

⎣
1
1
−2

⎤

⎦ .

The choice of V0 is unique up to constant multiples; whereas we can choose
{V1, V2} to be any convenient basis for the eigenspace {V : AV = 3V }. The
above choice uses orthogonal vectors, but this is not an essential aspect of the
solution.

(ii) Note that when V is an eigenvector corresponding to eigenvalue λ of A, the
function Z(t) = eztV satisfies AZ = λZ and dZ/dt = zZ; so we choose
z = λ to get dZ/dt = AZ. The differential equation dx

dt
= 3x has general

solution x = ae3t while the differential equation dx
dt
= 0 has general solution

x = b. So we have

Z = aV0 + b1e
3tV1 + b2e

3tV2.

(iii) Note that when V is an eigenvector corresponding to eigenvalue λ of A, the
function Y (t) = ewtV satisfies AY = λY and d2Y/dt2 = w2Y ; so we choose
w2 = λ to get d2Y/dt2 = AY , so w = ±√λ. The differential equation
d2x
dt2
= 3x has general solution

x = c1e
t
√

3 + c2e
−t√3
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while the differential equation d2x

dt2
= 0 has general solution x = at+b. Hence

the required general solution is

W = at + b√
3

⎡

⎣
1
1
1

⎤

⎦+ c1e
t
√

3 + c2e
−t√3

√
2

⎡

⎣
1
−1
0

⎤

⎦+ d1e
t
√

3 + d2e
−t√3

√
6

⎡

⎣
1
1
−2

⎤

⎦

for real constants a, b, c1, c2, d1, d2.
(iv) In (ii) there are three constants, required to specify Z(0).

In (iii) There are six constants; three specifyW(0) and three specify (dW/dt)(0).
Equivalently, we can write the system as

d

dt

[
W

U

]

=
[

0 I
A 0

] [
W

U

]

where the column vector is 6× 1, so we need 6 independent constants.

Exercise 3.2 We compute the eigenvalues by MATLAB; specify the matrices by

>> A = [1, 1, 3; 2, 7, 5; 1, 8, 2]

>> B = [1, 1, 7; 9, 8, 4; 2, 2, 9]

>> C = [1, 1, 1, 1; 2, 7, 9, 4; 8, 1, 7, i; 2, 2i, 2, 4]

eig(A) = 11.8679,−0.0951,−1.7729;
eig(B) = 13.8334, 0.0886, 4.0780;
eig(C) = 11.6936 + 0.8093ı, 0.8875− 1.7730ı, 1.9024+ 0.8578ı, 4.5164+ 0.1059ı

and the eigenvalues of −A are the negatives of the eigenvalues of A, and so on.
Hence ±A,B and C have eigenvalues λ in the right half plane with �λ > 0, so are
unstable. However,−B and−C have all their eigenvalues in the open left half plane
with λ < 0, so are stable.

Exercise 3.5

(i) For X = column(xj )nj=1, We have

〈DX,X〉 =
n∑

j=1

κjx
2
j ,

and since κ1 ≥ κj ≥ κn, we deduce that
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κ1

n∑

j=1

x2
j ≥

n∑

j=1

κjx
2
j ≥ κn

n∑

j=1

x2
j ,

so

κ1‖X‖2 ≥ 〈DX,X〉 ≥ κn‖X‖2.

(ii) By the spectral theorem 3.20, we can introduce a real orthogonal matrix S, and
a diagonal matrix D as in (i) such that K = SDS−1, where S−1 = S�. Then

κ1〈X,X〉 ≥ 〈DX,X〉 ≥ κn〈X,X〉 (X ∈ R
n×1),

and, with X = S�Y for Y = SX, we have

κ1〈S�Y, S�Y 〉 ≥ 〈SDS�Y, Y 〉 ≥ κn〈S�Y, S�Y 〉 (Y ∈ R
n×1),

so

κ1〈Y, Y 〉 ≥ 〈KY, Y 〉 ≥ κn〈Y, Y 〉 (Y ∈ R
n×1),

hence the result.

Exercise 3.7

(i) Let X be an eigenvector corresponding to eigenvalue κ . Then the eigenvalue
equation κX = KX gives κ〈X,X〉 = 〈KX,X〉 > 0 since K is positive
definite. Also ‖X‖2 = 〈X,X〉 > 0, so κ > 0.

(ii) Let the eigenvalues be κ1, . . . , κn. By the spectral theorem 3.20 for real
symmetric matrices, there exists an orthogonal matrix S such that K = SDS′,
where D is the diagonal matrix

D =

⎡

⎢
⎢
⎢
⎢
⎣

κ1 0 . . . 0

0 κ2 0
...

...
. . .
. . . 0

0 . . . 0 κn

⎤

⎥
⎥
⎥
⎥
⎦
.

Then

detK = detD = κ1κ2 . . . κn > 0,

trace(K) = traceD = κ1 + κ2 + · · · + κn > 0.

Alternatively, note that the usual basis vectors ej (j = 1, . . . , n) for Cn give
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trace(K) =
n∑

j=1

〈Kej , ej 〉 > 0

by the definition of trace and the assumption that K is positive definite.
(iii) For all X �= 0, we have Y = SX �= 0 since S is invertible, so

〈S′KSX, 〉 = 〈KSX, SX〉 = 〈KY, Y 〉 > 0,

hence S′KS is positive definite.
(iv) Let S = exp(A). Then exp(−A) exp(A) = I , so S is invertible, and

S′ =
(
I + A+ A

2

2! +
A3

3! + . . .
)′

=
(
I + A′ + (A

′)2

2! + (A
′)3

3! + . . .
)

= exp(A′),

hence exp(A′)K exp(A) = S′KS is positive definite by (i).
(v) Let Y �= 0 be a vector. Then

〈(K + L)Y, Y 〉 = 〈KY, Y 〉 + 〈LY, Y 〉 > 0

so K + L is positive definite.
[Beware that the eigenvalues of K + L are related to the eigenvalues of

K and L in a complicated way; we cannot just add eigenvalues of K to
eigenvalues of L and get eigenvalues of K + L. Also the minors of K + L
are related to those of K and L is a complicated way.]

Exercise 3.21

(i) Note that V is a subset of Cn×1 and for λ, aj , bj ∈ C we have

λ

n−1∑

j=0

ajA
jB =

n−1∑

j=0

λajA
jB;

and

n−1∑

j=0

ajA
jB +

n−1∑

j=0

bjA
jB =

n−1∑

j=0

(aj + bj )AjB.

Hence V is a linear subspace of Cn×1.
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(ii) First note that V = {0}, if and only if B = 0. If V has dimension one, then
V = {a0B : a0 ∈ C} and AB ∈ V so AB = a0B for some a0 ∈ C; hence B
is an eigenvector of A. Conversely, if B is an eigenvector, so that AB = λB,
then AjB = λjB, so

n−1∑

j=0

ajA
jB =

n−1∑

j=0

ajλ
jB

and V evidently has dimension one.
(iii) We need to check that LA maps V to itself, and the main problem is with

LAA
n. By the Cayley–Hamilton theorem, χA(A) = 0, so

An = trace(A)An−1 − · · · + (−1)n+1(detA)I ;

so a typical X ∈ V has the form

X =
n−1∑

j=0

ajA
jB

has

LAX = AX

= A
n−1∑

j=0

ajA
jB

=
n−2∑

j=0

ajA
j+1B + an−1A

nB

=
n−2∑

j=0

ajA
j+1B + an−1

(
trace(A)An−1B − · · · + (−1)n+1(detA)B

)
,

so the first sum involves Aj+1 with j + 1 ≤ n − 1 and the other powers of A
are Ak with k ≤ n− 1; hence AX ∈ V for all X ∈ V , so LA maps V to itself.

(iv) MATLAB gives

Q =

⎡

⎢
⎢
⎣

1 −16.5 −126 −1673
−5 8.5 −141.5 −1676
−0.5 −27 −224.5 −1732.5

3 15.5 81 −111.5

⎤

⎥
⎥
⎦

which has rank 4.
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>> A = [1, 3, 5, 0; 0, 1, 9, 6; 1, 1, 4,−7; 2, 2, 1, 8]

>> B = [1; −5; −0.5; 3]

>> C = A ∗ B

>> D = A ∗ C

>> E = A ∗D

>> Q = [B,C,D,E]

>> rank(Q)

Alternatively, one can find

>> det (Q) = −1.2664e+ 07

so detQ �= 0, henceQ is invertible and has full rank 4.

Exercise 4.1

(i) The Laplace transform can be found by integration by parts, as in

∫ R

0
e−st cos 2ωt dt =

[e−st cos 2ωt

−s
]R

0
− 2ω

s

∫ R

0
e−st sin 2ωt dt

= 1

s
− e

−sR cos 2ωR

s
+

[2ωe−st sin 2ωt

s2

]R

0

− 4ω2

s2

∫ R

0
e−st cos 2ωt dt,

so that

(
1+ 4ω2

s2

) ∫ R

0
e−st cos 2ωt dt = 1

s
− e

−sR cos 2ωR

s
+ 2ωe−sR sin 2ωR

s2 ,

so letting R →∞, we have e−sR cos 2ωR → 0 and e−sR sin 2ωR→ 0 for all
s > 0, so

∫ ∞

0
e−st cos 2ωt dt = s

s2 + 4ω2 .

(ii) We have cos 2ωt = 1− 2 sin2 ωt , so
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Y (s) =
∫ ∞

0
s−st sin2 ωt dt

= 1

2

∫ ∞

0
e−st (1− cos 2ωt) dt

= 1

2

∫ ∞

0
e−st dt − 1

2

∫ ∞

0
e−st cos 2ωt dt

= 1

2s
− s

2(s2 + 4ω2)

= 2ω2

s(s2 + 4ω2)
(s > 0).

Exercise 4.2 The Laplace transform is

sY − 7Y = 2

4+ s2 ,

so that

Y (s) = 2

(s − 7)(s2 + 4)
.

The partial fractions have the form

Y (s) = As + B
s2 + 4

+ C

s − 7
,

and we compute the undetermined coefficients by using

2 = (As + B)(s − 6)+ C(s2 + 4),

so

s2 : 0 = A+ C
s : 0 = −7A+ B
1 : 2 = −7B + 4C
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so that A = −2/53, C = 2/53 and B = −14/53. Hence

Y (s) = −2

53

s

(s2 + 4)
+ −7

53

2

(s2 + 4)
+ 2

53

1

(s − 7)
,

so by uniqueness of Laplace transforms

y(t) = −2

53
cos 2t − 7

53
sin 2t + 2

53
e7t .

Exercise 4.19 By the triangle inequality

|f ∗ h(t)| =
∣
∣
∣

∫ t

0
h(t − s)f (s) ds

∣
∣
∣

≤
∫ t

0
|h(t − s)||f (s)|ds

≤M
∫ t

0
|f (s)| ds

≤M
∫ ∞

0
|f (s)| ds (t > 0);

hence f ∗ h is bounded.

Exercise 4.21 In L2[0, 2] we have an orthonormal basis (eπint /
√

2)∞n=−∞, and the
Fourier coefficients of t − 1 are

a0 =
∫ 2

0
(t − 1)

dt√
2
= 0;

an =
∫ 2

0
(t − 1)

e−πintdt√
2

=
[ (t − 1)e−πint

−πin√2

]2

0
+

∫ 2

0

e−πint

−πin√2
dt

= e−2πin

−πin√2
− 1

πin
√

2

= −
√

2

πin
(n ∈ Z \ {0};
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while the log series gives

0∑

n=−∞

−eπint
πin

+
∞∑

n=0

−eπint
πin

= 1

πi
log

1

1− e−πit −
1

πi
log

1

1− eπit

= 1

πi
log

1− eπit
1− e−πit

= 1

πi
log eπi(t−1)

= t − 1

hence we have an orthogonal series

t − 1 =
∑

n∈Z\{0}

i

πn
eπint (t ∈ (0, 2)).

Exercise 4.22 The error function is

erf (t) = 2√
π

∫ t

0
e−x2

dx

= 2√
π

∞∑

n=0

(−1)nt2n+1

(2n+ 1)n! .

The inverse Laplace transform of erf (1/s) is

g(t) = L−1(erf(1/s); t)

= 2√
π

∫

C

∞∑

n=0

(−1)ns−(2n+1)est

(2n+ 1)n!
ds

2πi

= 2√
π

∞∑

n=0

∫

C

(−1)ns−(2n+1)est

(2n+ 1)n!
ds

2πi

= 2√
π

∞∑

n=0

(−1)nt2n

n!(2n+ 1)! .
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Now we take the Laplace transform of g(
√
t), obtaining

∫ ∞

0
g(
√
t)e−stdt = 2√

π

∫ ∞

0

∞∑

n=0

(−1)ntne−st

n!(2n+ 1)! dt

= 2√
π

∞∑

n=0

∫ ∞

0

(−1)ntne−st

n!(2n+ 1)! dt

= 2√
π

∞∑

n=0

(−1)n

(2n+ 1)!sn+1

= 2√
π

1√
s

sin
1√
s
.

Exercise 5.1

(i) The Laplace transform of the differential equation is

s2Y (s)+ 6sY (s)+ Y (s) = −3sU(s)+ U(s),

so

Y (s) = −3s + 1

s2 + 6s + 1
U(s),

so the transfer function is

T (s) = −3s + 1

s2 + 6s + 1
.

Hence the frequency response function is

T (iω) = −3iω+ 1

1− ω2 + 6iω

1− ω2 − 6iω

1− ω2 − 6iω

= 1− 19ω2 − 9iω + 3iω3

(1− ω2)2 + 36ω2 .

(ii) Hence the gain is

�(ω) = |T (ıω)| =
√

1+ 9ω2
√
(1− ω2)2 + 36ω2

,



12 Solutions to Selected Exercises 389

while the phase shift φ satisfies

tanφ = 3ω3 − 9ω

1− 19ω2 .

so

φ = tan−1 3ω3 − 9ω

1− 19ω2 .

Exercise 6.2

(i) Note that K is invertible if and only if detK = PX + YQ �= 0, and then

[
P Q

−Y X
]−1

= 1

PY +QX
[
X −Q
Y P

]

;

but we still need to consider whether the entries of the right-hand side are
actually polynomials. We have I = KK−1 so 1 = detK detK−1.

If K−1 has polynomial entries, then detK and detK−1 are both polynomi-
als, so

degree(detK)+ degree(detK−1) = 0

so degree(detK) = 0 and detK = κ , for some κ �= 0, that is PY +XQ = κ .
Conversely, if PX + QY = κ , then K is invertible, and the entries are

polynomials.
(ii) Recall from the Euclidean algorithm that P andQ have highest common factor

1 if and only if PX + QY = 1 for some polynomials X,Y , or equivalently
PX +QY = κ for some κ �= 0 with κ ∈ C.

(iii) When P(s) and Q(s) have no common complex zero, then P(s) and Q(s)
have highest common factor 1, so there exist polynomialsX,Y such that PX+
QY = 1, and this gives the requiredK .

(iv) By the Euclidean algorithm, we have

1 = s − 2

12

(
s2 + 2s − 3

)+ −s + 3

12

(
s2 + 3s + 2

)
,

so we have

K =
[
s2 + 2s − 3 s2 + 3s + 2
s − 3 s − 2

]

with detK = 12, so K−1 has polynomial entries.
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The choice ofK is not unique; indeed, one can add polynomial multiples of
the first row to the second without changing the determinant. One can do the
Euclidean algorithm by hand. Alternatively, use the MATLAB instructions:

>> syms s

>> P = s2 + 2 ∗ s − 3

>> Q = s2 + 3 ∗ s + 2

>> [g,X, Y ] = gcd(P,Q)

Exercise 6.5 Descartes’s Rule of Signs

(i) Here σ = 1, so r = 1.
(ii) Here σ = 5, so r = 1, 3 or 5.

(iii) The roots are −4.1642, 0.3914,−1.2271; which confirms that r = 1.
A ponderous solution is to introduce

C =
⎡

⎣
0 1 0
0 0 1
2 −3 −5

⎤

⎦

and then compute eig(C).
(iv) The roots are 5.8580, 0.8029 ± ı0.4265,−0.0829 ± ı1.0466,−0.8644,

−0.4336; so r = 1.

Exercise 6.8 We introduce s = (1− λ)/λ and write

G(s) = s
2 + s + 1

s2 − 2

= (1− λ)
2/λ2 + (1− λ)/λ + 1

(1− λ)2/λ2 − 2

= (1− λ)
2 + λ(1− λ)+ λ2

(1− λ)2 − 2λ2

= λ2 − λ+ 1

−λ2 − 2λ+ 1
,

so we write

−λ2 − 2λ+ 1 = −(λ2 − λ+ 1)− 3λ+ 2
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where

λ2 − λ+ 1 = (−λ/3+ 1/9)(−3λ+ 2)+ 7/9

so that

7/9 = λ2 − λ+ 1− (−λ/3+ 1/9)(−3λ+ 2)

= λ2 − λ+ 1− (−λ/3+ 1/9)((−λ2 − 2λ+ 1)+ (λ2 − λ+ 1))

= (8/9+ λ/3)(λ2 − λ+ 1)+ (λ/3 − λ/9)(−λ2 − 2λ+ 1)

so that

1 =
(3λ+ 8

7

)(
λ2 − λ+ 1

)
+

(3λ− 1

7

)(
− λ2 − 2λ+ 1

)

and substituting λ = 1/(s + 1), we obtain

1 =
(3+ 8(1+ s)

7(1+ s)
)( 1

(1+ s)2−
1

1+ s+1
)
+
(3− (1+ s)

7(1+ s)
)( −1

(1+ s)2−
2

1+ s+1
)

which shows thatG is the quotient of coprime functions in S, as in

G(s) =
1

(1+s)2 − 1
1+s + 1

−1
(1+s)2 − 2

1+s + 1
.

One can do this by hand. Alternatively, use MATLAB.

>> syms x

>> P = x2 − x + 1

>> Q = x2 + 2 ∗ x − 1

>> [g,M,N] = gcd(P,Q)

This gives polynomialsM and N such that 1 = PM +QN .

Exercise 7.2

(i) We have

−A− A′ =
⎡

⎣
2 4 4
4 10 3
4 3 14

⎤

⎦
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which is real symmetric, but det(−A − A′) = −26, hence −A − A′ is not
positive definite.

Alternatively, one can find

eig(−A− A′) = 17.5295, 8.6421,−0.1716.

(ii) We have

eig(A) = −0.1093,−8.6706,−4.2201

eig(A′) = −0.1093,−8.6706,−4.2201

which are all in the open left half plane, so there exists a solution to AK + KA′ =
−I , with K positive definite, by Corollary 7.5. MATLAB gives

K =
⎡

⎣
4.5158 −1.7607 −0.1648
−1.7607 0.7974 0.0342
−0.1648 0.0342 0.0852

⎤

⎦ .

The required MATLAB command is

>> K = lyap(A, I)

or equivalently

>> K = lyap(A,A′, I )

The solution in terms of factions is given by inputting
>> format rational
To solve this by the Sylvester’s equation, we observe that K = K ′, so we can

write

−AK −KA′ = I

as

⎡

⎣
1 2 3
2 5 1
1 2 7

⎤

⎦

⎡

⎣
a b c

b d e

c e f

⎤

⎦+
⎡

⎣
a b c

b d e

c e f

⎤

⎦

⎡

⎣
1 2 1
2 5 2
3 1 7

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

so we have six linear equations for the six unknowns a, b, c, d, e, f ; considering
the terms on or above the leading diagonal we write these equations in the matrix
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format
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 4 6 0 0 0
2 6 1 2 3 0
1 2 8 0 2 3
0 4 0 10 2 0
0 1 2 2 12 1
0 0 2 0 4 14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a

b

c

d

e

f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which one can solve by linear algebra to obtain a unique solution for the six
unknowns a, b, c, d, e, f ; this gives

K = 1

15680

⎡

⎣
70808 −27608 −2584
−27608 12504 536
−2584 536 1336

⎤

⎦ ;

finally, one checks that K is positive definite. Either one can invoke Corollary 7.5,
or note that K has eigenvalues 5.222, 0.1183 and 00576, all positive; or one can
compute the principal minors of K as

70808/15680, 123181568/156802, 240/6743;

so K is positive definite. All this can be carried out in exact arithmetic by hand;
however, the calculation is tedious.

Exercise 8.12 Prolate Spheroidal Wave Functions Differentiating through the
integral sign, we have

(
(1− x2)

d2

dx2 − 2x
d

dx
− λ2x2

) ∫ 1

−1
eiλxyf (y)dy

=
∫ 1

−1

(
− (1− x2)λ2y2 − 2iλxy − λ2x2)eiλxf (y)dy

=
∫ 1

−1
(λ2x2y2 − λ2y2 − λ2x2 − 2iλxy)eiλxyf (y)dy

which we can compare with the following identities, which occur by integration by
parts

∫ 1

−1
eiλx

(
(1− y2)

d2

dy2 − 2y
d

dy
− λ2y2

)
f (y)dy

=
∫ 1

−1
eiλxy

( d

dy

(
(1− y2)

df

dy

)− λ2y2f (y)dy
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=
∫ 1

−1
eiλxy

(
− (1− y2)iλx

df

dy
− λ2y2f (y)

)
dy +

[
eiλxy(1− y2)

df

dy

]1

−1

=
∫ 1

−1

( d

dy

(
(1− y2)eiλxy

)
iλxf (y)− λ2y2eiλxyf (y)

)
dy

=
∫ 1

−1

(
(−2iλxy − λ2x2(1− y2)− λ2y2)eiλxyf (y)dy

=
∫ 1

−1

(− 2iλxy − λ2x2 + λ2x2y2 − λ2y2)eiλxyf (y)dy,

so we find that KUf = UKf .

Exercise 10.12 (ii) We have

∫ ∞

−∞
eiωzsinc a(u− z) dz

2π
= e

iωu

2a
I(−a,a)(ω),

so with φ as in Theorem 11.4,

a

π

∫ ∞

−∞
φ(z)sinc a(u− z) dz = a

π

∫ ∞

−∞

∫ a

−a
f (ω)eiωz

dω

2a
sinc a(u− z) dz

= a

π

∫ a

−a
f (ω)

∫ ∞

−∞
eiωzsinc a(u− z) dzdω

2a

=
∫ a

−a
f (ω)

eiωu

2a
I(−a,a)(ω)dω

= φ(u).

(iii) Continuing with the notation of Exercise 8.12, we write

Ug(x) =
∫ 1

−1
eiλxyg(y)dy, U ′g(x) =

∫ 1

−1
e−iλxyg(y)dy

for λ ∈ R. Then by substitution, we have

U ′Ug(x) =
∫ 1

−1
e−iλxzUg(z)dz

=
∫ 1

−1
e−iλxz

∫ 1

−1
eiλyzg(y)dy
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so regrouping the terms and changing the order of integration, we have

U ′Ug(x) =
∫ 1

−1

∫ 1

−1
eiλz(x−y)dzg(y)dy

=
∫ 1

−1

[ eiλz(x−y)

iλ(x − y)
]1

−1
g(y)dy

=
∫ 1

−1

2 sinλ(x − y)
λ(x − y) g(y)dy

= 2
∫ 1

−1
sinc(λ(x − y)) g(y)dy.

Now let λ = a, and f (az) = g(z); then

Tf (x) =
∫ a

−a
eixyf (y)

dy

2a
=

∫ 1

−1
eixazf (az)

dz

2
= 1

2
Ug(x).

Exercise 10.1

(i) We note that the integral is a convolution of f with e−t , so we have

LSf (s) = Lf (s)− 2

1+ sLf (s) =
s − 1

s + 1
Lf (s).

(ii) We can choose f0(s) =
√

2e−t with Lf0(s) =
√

2/(1 + s), and generate the
sequence (fn) by the recurrence relation fn+1(s) = Sfn(t), so that

Lfn(s) =
√

2(s − 1)n

(s + 1)n+1
,

which we recognize as the Laplace transforms of the given functions hn(t). The
result follows by uniqueness of Laplace transforms.



Glossary of Linear Systems Terminology

(A,B,C,D) the standard continuous-time linear system determined by constant
matrices of matching size

amplitude height of the crest above the average level, regarded as a wave;
BIBO bounded input and bounded output system;
Bode plot plot of log gain and phase against angular frequency ω;
Closed loop system with feedback loop;
differentiator operator of differentiation with respect to time t;
frequency domain linear system in terms of ω, where s = iω;
frequency response function transfer function T (s) when s = iω and ω ∈ R;
gain (or amplitude gain) modulus of the transfer function;
integrator operation of integration with respect to time t , from t = 0;
JCF Jordan canonical form of square matrix;
L̂ Laplace transform of L;
LHP Open left half-plane {s ∈ C : �s < 0};
MIMO multiple input and multiple output linear system;
Nyquist plot graph in complex plane of T (iω) for −∞ < ω <∞;
Open loop system without feedback;
phase (or phase shift) argument of the transfer function;
resolvent of square matrix A is (sI − A)−1;
RHP open right half-plane {s ∈ C : �s > 0};
s-domain linear system in terms of Laplace transform variable s;
SFL simple feedback loop system;
SISO single input and single output linear system;
state-space model linear system in terms of functions of time t;
summing junction operator for adding signals;
t time, with t ∈ (0,∞);
tap operator for making a signal go along two routes;
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398 Glossary of Linear Systems Terminology

transfer function T (s) multiplies the Laplace transform of the input to get the
Laplace transform of the output;

unit impulse function δ0 the unit point mass at time t = 0, also known as Dirac
delta function;

ω angular frequency, often abbreviated to ‘frequency’.



Appendix A
MATLAB Commands for Matrices

>> x=3, t=2 [this assigns values x = 3 and t = 2.
>>x*t [multiply x and t]
>>x+t [add x and t]
>>x/t [divide x by t]
>> x (̂-1.5) [raises x to the power−1.5]
>>2*((x+t)̂ 3) [computes 2(x + t)3]
>> pi [π area of disc of unit radius]
>>j [i complex number]
>>exp (3); [creates e3]
>>A=[5,7; 9,-2], B=[1,2,3;4,5,6] builds the matrices

A =
[

5 7
9 −2

]

, B =
[

1 2 3
4 5 6

]

>>inv(A) [computes the inverse matrix of A]
>>det(A) [computes the determinant of A]
>> trace(A) [computes the trace of A]
>>B’ [computes the adjoint (conjugate transpose) B ′ of B]
>>B.’ [computes the transpose B� of B]
>> rref(A) [finds the reduced echelon form of A]
>> rank(A) [finds the rank of A]
>>poly(A) [finds the coefficients of the characteristic polynomial of square matrix

A]
>>eig(A) [finds the eigenvalues of square matrix A, in a list]
>> jordan(A) [finds the Jordan canonical form of A]
>>[W,D]=eig(A) [gives a matrix W with columns that are eigenvectors of A and

diagonal matrix D]
>> Â 2 [computes the matrix product A2]
>>A.̂ 2 [creates matrix by squaring each entry of A; note dot]
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400 A MATLAB Commands for Matrices

>>A*B [calculates the matrix product AB]
>>expm(A) [calculates the matrix exponential of A]
>>exp(A) [calculates the matrix formed by taking the exponential of each entry of
A]

>>syms x [introduces algebraic variable x]
>>Q=lyap(A,P) [given positive definite P and squareA, solvesAQ+QA′ = −P ]
>> X=lyap(A,B,C) [solves AX + XB = −C]
>> t=−100:0.1:100 [introduces the vector [−100,−100+0.1,. . . ,100]]
>> y=(i*t+1).̂(−1) [creates a vector with entries y=1/(it+1); the dot indicates that

the operations are applies to each entry at a time]
>> plot(y) [plots the imaginary part of y versus the real part of y]
>> [r,q]=polynomialReduce(P,Q) [polynomial long division to find remainder and

quotient in P = Qq + r]
>> angle (z) [computes the argument of the complex number z]
>> abs (z) [computes the modulus (absolute value) of complex number z]
>> laplace((t2)*exp(2*t)) [computes the Laplace transform of t2e2t , and gives

values in a variable s]
>> nyquist(T) [plots the Nyquist locus of a given real rational function]
>> bode(T) [created the Bode pole of a real rational function] Beware: nyquist and

bode have difficulties with complex coefficients.
>> subs(G,t,s) [substitutes expression s for t in the expression G, for algebraic

variables]
>> [g,c,d]=gcd(a,b) [computes the greatest common divisor of a and b and

expresses the gcd as ac+ bd]



Appendix B
SciLab Matrix Operations

SciLab is a simplified version of MATLAB, with a similar syntax; it cannot do much
symbolic manipulation. Some commands are:

−− > coff(A) [for a square matrix A, computes matrix of cofactors adj(sI − A)]
−− > [N,d]=coff(A) [for a square matrix A, computes N = adj(sI − A) and
d = det(sI − A), so N/d = (sI − A)−1]

−− > i=complex(0,1) [defines the complex number i]
−− > det(A) [computes the determinant of a square matrix A]
−− > eye(3,3) [gives the 3× 3 identity matrix I3]
−− >expm(A) [calculates the matrix exponential of a square A]
−− > [gcd, U]=bezout(p,q) [gcd gives greatest common divisor of polynomials p

and q , and first column of U gives polynomials a, b such that gcd=ap+bq]
−− > inv(A) [computes the inverse of a square matrix A]
−− > [X]=lyap(A,C,‘c’) [computes X satisfyingX′ ∗A+A∗X = C for symmetric
C; note that SciLab uses a different sign convention from MATLAB]

−− > plot(real(P),imag(P)) [used for Nyquist plots]
−− > s=poly(0,‘s’) [gives an algebraic variable]
−− > [r,q]=pdiv(P,Q) [gives quotient q and remainder r for P=Qq+r in polynomi-

als]
−− > [radius angle]=polar(z) [gives [r θ ] where z = reiθ ]
−− > rank(A) [computes the rank of a matrix A]
−− > rref (A) [computes the row reduced echelon form of a matrix A]
−− > spec (A) [computes the spectrum (eigenvalues) of a square matrix A]
−− > [R,D]=spec (A) [for a square matrix A, computes the eigenvectors in R and

eigenvalues in diagonal matrixD ]
−− > trace(A) [computes the trace of a square matrix A]
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Index

A
Abelian theorem (for Laplace transforms), 117
Adding, inverting and multiplying transfer

functions, 237
Adjoint (conjugate transpose) of matrix, 399
Adjoint of operator, 326
Adjugate (transpose of matrix of cofactors),

14, 40
Algebraic characterizations of stability,

173–219
Algebraic description of the stability problem,

151
Algebraic multiplicity of eigenvalue, 21, 33,

52, 226, 301, 379
All pass filter, 161
Almost periodic function, 248
Almost stable linear systems, 226–230
Amplifier, 2, 5, 6, 42, 43, 143, 144, 175, 215
Amplitude modulation (AM), 128
Argument of complex number, 400
Argument principle, 143, 162, 181, 354
ARMA process, 289

B
Bandwidth, 364
Bessel filter, 255, 285
Bessel functions of integral order, 209–213,

285
Bessel’s differential equation, 210
Bessel’s functions, 133, 356
Beurling invariant subspace, 330, 343
BIBO stability in terms of eigenvalues,

155–156
Binomial theorem, 132, 210, 281

Black’s amplifier, 5, 175
Blaschke product, 161, 345
Block diagrams, vii, 2–3, 10, 110, 172
Block matrices, x, 36, 37, 52, 56, 60, 62, 83,

85, 90, 201, 234, 242, 326, 327
Bode plot, 145, 147, 148, 170
Bounded-input bounded-output (BIBO), 139,

151–159, 170, 192, 342
Bromwich’s contour, 133, 205, 212

C
Canonical model, 333–335
Capacity, 369
Cardano’s solution of cubic, 178
Cardinal sine function, 124
Carleman integral, 284
Cauchy–Binet formula, 218
Cauchy–Schwarz inequality, 17–23, 71, 320,

321, 326, 338, 339, 350, 360
Cauchy transform, viii, 277, 279, 284, 289,

292–300, 303, 308–310, 312, 314
Cayley–Hamilton theorem, 79, 83, 92, 183,

223, 383
Cayley transform, 70, 288
Characteristic polynomials, 14–16, 38, 52, 53,

76, 80, 107, 158, 159, 200, 223, 300,
301, 399

Chebyshev filter, 263, 264, 284
Chebyshev polynomials, viii, 212, 255,

262–264, 267, 271, 279, 280, 284
Chebyshev’s inequality, 307
Chebyshev weight, 279
Closed loop, 3, 174
Cofactors, 14, 38, 40, 401
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Companion matrix, 9, 15, 41, 42, 61, 80
Complementary function, 151, 154
Completeness, 188, 269, 271, 287, 322, 340
Congruent in ring, 230
Congruent matrices, 230
Contour, viii, 103, 111, 113, 114, 116, 133,

134, 139–145, 159, 160, 162–164,
166, 171, 204, 205, 208, 211, 212,
279, 297, 303, 317, 318, 336–338,
354

Contraction, 70
Controllability Gramian, 79, 252
Controllability Gramian for continuous time,

252
Controllable systems, 80
Controllable systems and observable systems,

79, 80, 227, 228, 230
Controller, 165, 174–177, 179, 180, 182, 192,

194–196, 202, 215, 241, 354
Convolution, 101–102, 105, 109, 117, 120,

137, 395
Coprime, 184, 190–192, 194, 201–204, 216,

391
Coprime factorization in the stable rational

functions, 190–192
Correspondence between discrete and

continuous time linear systems,
259–262, 333

Cross product, 47–48
Cumulants, 171–172
Cyclic group, 244, 248

D
Damped harmonic oscillator, 7–8, 32, 150,

152, 153
Degree of polynomial, 14, 38, 55, 61, 116, 183,

208, 218, 269, 272, 285, 352
Delay differential equation, 348
Descartes’s rule of signs, 215, 390
Determinant expansion, 199
Determinant formula, 38, 41, 61, 76–77, 198
Determinant formula for realization, 61
Diagonable matrices, 25–26
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Sylvester’s positive definite criteria, 223

T
Tap, 3, 6, 42, 143, 144
Tauberian theorem (for Laplace transforms),

117
Telegraph equation, 135, 136, 349–351
Tent function, 137, 362
Three-term recurrence relation, 255, 271–278,

373
Time domain, 27, 96, 123, 156, 213, 219, 360
Toda’s equation, 286

Transfer function for a discrete-time linear
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