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Preface

The book is about the mathematics of linear systems, particularly continuous time
autonomous linear systems with finite-dimensional state space. These cover an
interesting range of applications in science and engineering and are basic to the
study of more complex systems. The material is at a level suitable for a third or
fourth year undergraduate student in a UK university. We assume that the reader is
familiar with calculus, linear algebra and basic complex analysis and develop these
ideas further within the particular context of linear systems.

Chapter 1 is about how to describe linear systems by differential equation,
block diagrams and linear algebra. One of the attractions of linear systems is that
they can be discussed in several different ways. Chapter 2 begins the systematic
development of the theory, where methods of linear algebra are used to describe
linear systems and compute transfer functions. The purpose of transfer functions
is deferred until Chap.4, where they are introduced in parallel via the Laplace
transform. In Chap. 2, we use only basic linear algebra, while in chapter three more
advanced techniques are introduced. In most cases, the results are proved in detail,
and there are indications about how the mathematical questions can be posed in a
form suitable for calculation via MATLAB. A crucial aspect of linear systems theory
is its adaptability to treat systems of very high dimension, for which computers are
essential. Some readers may wish to defer the final few sections of Chap.3 until
later. More generally, some sections of the book are more challenging than others,
and readers can pass over some results if they find them difficult.

In Chap.4, we give a conventional discussion of the Laplace transform for
functions on (0, co) with basic applications to differential equations. Inversion of
Laplace transforms is a complicated topic, and in this book we give some special
cases such as Heaviside’s expansion theorem before addressing the general case in
Chap. 6; this is consistent with the historical development of the subject. Methods of

vii
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complex analysis are mainly deferred until Chap. 5. We also cover the Fourier cosine
transform and obtain an inversion formula for the L' cosine transform. The Fourier
transform is essential for applications to signal processing, which are pursued in
Chap. 10.

In Chaps. 5, 6, and 7, we consider three approaches to the stability problem.
Chapter 5 uses methods of complex analysis and geometric function theory to help
us visualize the transfer function in terms of its Nyquist contour. In Chap. 6, we
present algebraic approaches which are algorithmic and can be carried out in exact
arithmetic without approximation. Then in Chap. 7 we use linear algebra in a manner
that is especially suited to large matrices. All of these approaches are most effective
when they are implemented with the aid of computers, and for large systems,
computers are essential. Although these approaches are separated into distinct
chapters, the difference between them should not be overstated. They are different
routes towards the same goal and the same problem can be expressed in different
but equivalent ways in terms of Laplace transforms, polynomials or matrices. Also,
some families of transcendental functions such as the Bessel functions can be
conveniently described in terms of algebraic differential rings.

In Chap.8, we consider orthogonal polynomials. This topic is often taught
alongside numerical analysis, as examples in the theory of differential equations or
as an application of Hilbert space theory. In this book, we emphasize that sequences
of orthogonal polynomials can be generated efficiently using discrete time linear
systems, which make use of the three term recurrence relation. In applications to
signal processing, it is common to use examples such as the Chebyshev polynomials
to create filters, and these are particularly well suited to our approach. The chapter
covers some of the other classical orthogonal polynomials, such as the Laguerre
system, which we later use to prove fundamental results about Fourier integrals.

Chapter 9 is concerned with Green’s functions, in the sense of Cauchy transforms
of an integrable weight on a bounded real interval. This has obvious applications to
orthogonal polynomials and moments, and some less obvious application to random
linear processes. Some of these results describe fundamental examples in random
matrix theory such as the semicircle law. There are diverse applications, such as the
famous May-Wigner law in mathematical biology, which demonstrate how useful
linear systems are in treating complex problems in many branches of science.

The results of the first nine chapters mainly apply to linear systems with finite
dimensional state spaces and the finite matrices that operate on them. In Chap. 10,
we introduce Hilbert space with a view to describing some infinite-dimensional
linear systems. As soon as one attained the generality of Hilbert space, one
realizes the need to have suitably adapted tools with which to carry out explicit
computations. For this reason, we introduce Hardy space on the right half-plane
with its orthonormal basis derived from the Laguerre functions. The intended
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application of these is to signal processing, and in Chap. 11 we include famous
results such as Shannon’s sampling theorem for band limited functions. Although
the historical development had an interlude of several decades, it is now natural
to follow this directly with the Shannon wavelet basis for L. The book concludes
with a discussion of Telatar’s model of wireless transmission, which is often called
‘single user MIMO’. This is an important instance where random matrix theory
enters into linear systems and suggests areas for further study.

Chapters 1 and 2 are essential for understanding the rest of the book. Then
readers who are mainly interesting in linear algebra can progress to Chaps. 3 and 7.
Chapters 4 and 5 feature Laplace transforms and do not depend on the more
advanced tools from linear algebra. Chapters 8 and 9 are best read together, and
these feed naturally into Chap. 10. The final Chap. 11 requires Chaps. 9 and 10. The
following diagram indicates this logical dependence.

There are many aspects of control theory that we do not discuss in this
book. Reliability, cost of manufacture, usability and tuning of components are all
important topics that we leave to books that emphasize engineering.

This book is based on lectures for a third-year module at Lancaster University
for mathematics students and several projects for students in mathematics, physics
and environmental science. I am grateful to these students for helpful comments on
the course materials which progressively improved the module. The module also
benefited from a helpful review by my colleagues Nadia Mazza and David Towers,
who persuaded me to incorporate projects into the module assessment and enabled
students to work on more extended exercises. Lucinda Hadley’s PhD thesis on
wireless communication suggested some of the contemporary topics. I am grateful
to Remi Lodh of Springer who helped guide the project. A former student Yufei Li
proofread the manuscript and eradicated several errors.
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Linear algebra

‘ 2 Solving by matrices

<—{ 1 Linear systems description }—»‘ 4 Laplace transforms

3 Eigenvalues, block matrices 6 Algebraic stability ‘«—{ 5 Frequency response, stability

7 Stability via linear algebra 8 Discrete-time

9 Green’s functions 10 Hilbert spaces

11 Wireless and wavelets

After studying this book, we hope that the reader is confidently prepared to
pursue the topic via I E E E journals or applications to engineering problems.

Lancaster, UK Gordon Blower
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Chapter 1 m)
Linear Systems and Their Description Shethie

In linear systems, we consider a machine made up of several components, which are
connected together. We take ¢ > 0 to be continuous time and consider the evolution
of the system through time. The machine has an input u = u(t), and output y = y(¢)
and the internal state of the machine is described by a state x = x(¢), and we take
u, x,y to be vector-valued functions of 7. The state of a system is a set of variables
whose values, together with the input and the equations describing the dynamics,
will describe the future state and output of the system. Generally, we want to know
how y(¢) depends upon u(t). The component parts of the machine are represented
by various linear operators, which leads to the terminology ‘linear system’. In this
book, we consider a special class of linear systems that we can analyze by means of
linear algebra. When studying a linear system, it is important to have:

» general results which enable us to classify and describe a significant class of
linear systems;

* specific methods for solving these linear systems;

e results that are in a form that allows effective and explicit computation of
solutions, usually using computers.

In this book, we achieve these criteria for (A, B, C, D) systems.

1.1 Linear Systems and Their Description

Let C be the field of complex numbers, let V and W be vector spaces over C, so
Af +ug e Viorall f,g € Vand A, u € C. (We use C since the results of basic
linear algebra about square matrices work best for C, and we also use some results
from complex analysis.) Time is t > 0. Amap L : V — W is called linear if

L + pug) = ALf + nlLg. 1.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1
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2 1 Linear Systems and Their Description

Example 1.1 The following give the basic examples of linear maps and their
diagrammatic representation:

V = W = {continuously differentiable functions f : [0, co) — C}.

Notation (Operations)

1. [(i)] Differentiator Lf = %/ symbolized by [d/d1];

2. [(ii)] Integrator Lf (x) = [y f(t)dt, symbolized as [ [1;

3. [(iii)] an amplifier acts by multiplication by a € C, symbolized as [a];

4. [(iv)] a matrix multiplier acts by multiplication on the left by a matrix A on a
column vector v as in v = Av, symbolized by [A];

5. [(v)] Multiplicationby h € V, Lf (t) = h(t) f (¢t) symbolized as [A];

6. [(vi)] Evaluation at ty, f — f(fo) symbolized as [§,].

Definition 1.2 (Diagrams) Let V be the space of infinitely differentiable functions
f :(0,00) - C.Letu € V be theinput, y € V be the output. A diagram is a graph
built up from vertices u, y and others chosen from

(w3 1601, . ta/arn. 1 [ 1.1a1. 141}

which are connected by directed edges, drawn as arrows. The following apply.

(1) uisthe inputand y is the output. The vertices u and y have degree one; whereas
all other vertices have degree two or three with one or two arrows pointing into
the vertex, and one or two pointing out.

(2) The graph is simple, so there are no multiple edges, and no vertex is directly
connected to itself by some edge. All the vertices lie on some directed path
consisting of consecutive arrows from u to y.

(3) If the diagram contains a circuit, then we say that there is feedback.

(4) If the diagram does not contain a circuit, then the system is ‘open’ or ‘straight
through’.

Block Diagrams
1. [(1)] Summing junction @ has y = u1 + u».

ui mulJruz
\_/

uz
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2. [(i1)] Tap e splits an input u into two copies of u (the effect of a tap is like
voltage at an electrical junction, not like water flow in a plumbing).

Example 1.3 We can build up more complicated systems as in

du
=3 2 6u. 1.2
y /M—l— dt+ u (1.2)

3u 3 u

N

2du/d
O 2 2u d/dt e <+>

1.2 Feedback

Linear systems have two basic types, namely open or closed loop.

Open Loop Here the input « is subject to linear operations and produces an output
y. For example

a4+ 13
v =a@ + 3 0. (1.3)

Some machines are open loop, for instance rockets, or primitive turbines.

Closed Loop or Feedback Systems Here we take the input, subject it to linear
operations, and also take the output, feed it back into the system, apply linear
operations to the output and then add the modified input and the modified output.
Most modern alliances involve some feedback or control systems. For instance, car
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engines, wind turbines involve feedback systems to ensure that their rate of rotation
is under control. For example
d?y
dt?

== [y=s[ut][u (1.5)

Here we take the output y, integrate y twice, and add to the twice integrated input
J [ u and the once integrated input multiplied by —b. Later, we’ll use feedback to
stabilize linear systems.

u
+cy=u—->b

" (1.4)

can be written as

O—oO

O R

Example 1.4 (Negative Feedback) Feedback can occur by force of nature. A cyclist
pedals harder, hence goes faster, but the faster the cyclist goes, the greater the
air resistance. Let m be the mass of the cyclist, v the velocity, k a constant of
proportionality, and u the force imparted on the pedals. Then by Newton’s second
law of motion,

W _ s (1.6)
mdt——v u .

which we can express as a feedback system

—k 1
v = /v+ /u, (L.7)
m m
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and the sign of —k/m indicates negative feedback.

— —k/m —)

G

— Um O i

Positive feedback occurs in the following examples, naturally or by design.

Example 1.5 (Bird Populations) Let x be the number of birds on an isolated island,
say puffins on Ailsa Craig. The birth rate of birds is proportional to the number of
birds, and birds can come and go by flying to other nesting sites at rate u, so, for
some k > 0,

d
d): = kx + 4. (1.8)

Example 1.6 (Turbocharger) A car engine has a turbocharger. This consists of a
simple gas turbine driven by the exhaust outlet, connected by a shaft to a turbine
which forces air into the inlet manifold. The faster the engine revolves, the more
exhaust it produces, so the turbine forces more air into the engine, so the engine
goes faster and so on.

Most practical devices of this kind also incorporate some negative feedback so
that they do not damage themselves or their users.

Example 1.7 (Black’s Amplifier) Let 0 < 0 < 1. The output y is fed back into
the input u, after multiplication by 6, so y = 0y + u, hence y = u/(1 — 0) is an
amplified version of the input. This will also amplify any noise, so is not practical
by itself as an amplifier.

Note that the summing junction lies to the left of the tap in this diagram. The
loop is characteristic of block diagrams of feedback systems.

| 0 4—0

Oy

(O

G
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1.3 Linear Differential Equations

Let ¢ be the independent variable. By combining amplifiers, summing junctions and
differentiators, we can construct linear differential operators

dnf dnflf
LE@) = an®) o +ani (@) ) e a0 (0); (1.9)
the number of derivatives n is the order of L; the a(¢) are the coefficient (functions).
When the a; are constants, we talk about a linear differential operator with constant
coefficients. A linear equation of order n is

an dn—l
a® T a0 T+ a0 f0 =), (1.10)
where a, (), ..., aop(t), u(t) are given and f (¢) is to be found.

Proposition 1.8 The differential equation

dy d"u d™u
n o +---4apy = b g + b1 Jym—1 + oo+ bou(t) (1.11)

with constant coefficients can be realized as a feedback system with input u and out-
put y involving taps, amplifiers, summing junctions, integrators and differentiators.

Proof When a, # 0, we integrate n times and divide by a,, to get

_ () b (n) gm b (n)
y:_a” lfy_..._aof y+ ’"/ ”+---+ O[ u. (1.12)
an ay ay dtm ap

Then it is straightforward to realize the system.
The left half of the diagram is an open loop system

by d™u by d™ly by
X = a, dim + a4, dim-1 + +anu,

whereas the right-half is a feedback system

d'y a1 d"ly agp
e =X,
dth + a, dr—1 Tt any

B an—1d" 1y ap )
= [ (T e ),

with n integrations. O

or
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Differential Equations as Feedback Systems
The ellipses (dots) in the diagram indicate omitted terms.

| o o= :
GO OA= K
- & | 4 %@ (P = ]
R OO {7 o~

=

b,
L E Y

S
T
SN
O

1.4 Damped Harmonic Oscillator

Damped harmonic oscillators are important, because they (i) arise in various
physical systems such as a mass on a spring or electrical systems such as inductor
and capacitor circuits; and (ii) they exhibit the effects that describe more general
linear systems.

4 L 0
”A@I*IH&@L

S

Let ¢ be time and y displacement from rest of a mass on a spring. The velocity
is dy/dt and acceleration d”y/dt>, the mass is driven by an external driving force
u(t). The equation is

d’y

dy
dr? —i—ﬁdt +yy=u (1.13)

where B and y are constants; usually y > 0 and 8 > 0. This models the suspension
of a car moving along a road. Here u(¢) represents the force imparted on the car by
the road; the suspension involves a spring which gives a restoring force —yy, while
the shock absorbers give a damping force —Bdy/dt. We can write this as a feedback
system, using the formula
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tfoeef freffe o

Example 1.9 (Matrix Form of the Damped Harmonic Oscillator) We introduce a
new state variable v, the velocity, so dy/dt = v. Then we have a pair of equations
dy/dt = vanddv/dt = —Bv — yy +u. We put these together in a matrix equation

X:P] (1.15)
v
0 1 0
A= B=| 1|, c=[10], D=0 1.16
[—y-—ﬁ} [J [ 0] (110

so the matrix form of the differential equation is

dx
. =AX+ Bu (1.17)
y=CX+ Du (1.18)

We often choose input u(t) = e = cos(wt) + i sin(wt), with angular frequency
w to model a periodic input force.

1.5 Reduction of Order of Linear ODE

Lemma 1.10 The linear ordinary differential equation

dny dn—ly
+ a}’l*l(t) dl‘"_l

g ++g0(l‘)y([) = u(t), (119)

may be expressed as the matrix system

dX
=AX+ B 1.20
it + Bu (1.20)

where X is (n x 1), Ais (n x n) and B is (n x 1).

Thus we replace a n'" order differential equation with one independent variable
with a first order differential equation with a (n x 1) vector independent variable.
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Proof We express the differential equation in terms of matrices. Let

- y 0
v dy./dt B O
1y ja! )
0 1 0
a=| 00 (1.21)
| —ap —ay ... —an—1
so the differential equation is
dX
P AX + Bu. (1.22)

O

Example 1.11 (Constant Coefficient Case) The advantages of Lemma 1.10 are
that first order differential equations are apparently easier to solve than n'” order
equation, and we can use linear algebra on the matrix A; see the discussion below.
Suppose that the a; are constant, or equivalently A is constant; then the system is
said to have constant coefficients, and the differential equation can be expressed as
the feedback system

X=A/X+B/U. (1.23)
Definition 1.12 (Companion Matrix) Leta,_1,a,—2, ..., a0 € C. Then the (n x
n) matrix
0 1 0
—ap —ai ... —ap—1

is called a companion matrix for a,_1, ..., ag (note the signs of the a;).
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1.6 Exercises

Exercise 1.1 Express the following differential and integral equations as block
diagrams

d2
i) y=4 u+3/u+6u;

dr?
.. d?y du
(ii) y+4dt2=2dt+7/u.

Exercise 1.2

(i) Express the following coupled differential equations as a block diagram, where
u is the input, y is the output, x is a state variable, and a, b, c and d are
constants:

X
= bu,
dt ax + bu

dy

dt =cx +du.

(i) Express the following coupled differential and integral equations as a block
diagram, where u1 and u; are the inputs, y is the output, x is a state variable,
and a, ¢, by, by, di and d, are constants:

dx

= b bouy,
dt ax + biuy + bruy
dy

= d druy.
dt cx +diuy + drur

Exercise 1.3 A simple harmonic oscillator satisfies

d*x

mdt2 +kx =u,

where ¢ is time, and k and m are positive constants. By introducing an extra state
variable v = dx /dt, write this as a first order system of differential equations.



Chapter 2 m)
Solving Linear Systems by Matrix s
Theory

2.1 Matrix Terminology

Let V and W be finite-dimensional complex vector spaces, and suppose that V has
basis {e; : j =1,...,n}and W has basis {f; : j =1, ..., m}. We generally write
vectors as columns, so

V]

. . . 1

v:Zvje]w—) : =[vi;vp;...;v,] € TP
j=1 )
Un

AmapT : V — W is defined to be a linear transformation if 7 (Av + pw) =
ATv + uTw for all v,w € V and A, u € C. We write T(e;) = Z?=1 Tk fj
for k = 1,...n where the coefficients Tj; € C are uniquely determined, and thus
we associate T with the m x n complex matrix [Tjr]j=1,...m;k=1,..n. Conversely,
any such m x n complex matrix determines a unique linear transformation 7" with
respect to the specified bases via this formula, and Tv = > 7_; > ¢_ Tjxvk f in
the preceding notation.

Definition 2.1

(1) Therangeof T is {w € W : w = Tv, v € V} which is otherwise known as the
image of T'. This is a vector space with dimension called the rank of 7', denoted
by rank(7);

(i) The null space of T is null(7') = {v € V : Tv = 0}, which is a vector space of
dimension called the nullity of T, denoted by nullity (7).
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Theorem 2.2 The rank and nullity of a linear transformation T : V — W between
finite-dimensional vector spaces satisfy

rank(T) + nullity(T) = dimension(V). 2.1

Proof See [6] page 213. O
Definition 2.3
(1) The elementary row operations on a complex matrix are:

(i) interchanging two rows;
(i1) multiplying one row by a nonzero scalar in C;
(iii) adding a complex multiple of one row to another row.

(2) Matrices S and T are row equivalent when S can be transformed to 7' by some
finite sequence of elementary row operations.
(3) A matrix is in echelon form when

Oap * % * %
00 0ap %= 2.2)
000000

has row leaders a; and a that are non-zero, all the entries directly below a row
leader are all zero, row leaders appear to the right of the row leaders of rows
above them, and zero rows are at the bottom of the matrix. A matrix in echelon
form is moreover in reduced echelon form when the row leaders are all 1, and
the entries directly above row leaders are all zero, as in

01%0x*x%
0001 %x|. 2.3)
000000

Lemma 2.4 (Rank of a Matrix) For Xi,..., X, € C"<1 the following quantities
are equal:

(i) the dimension of the vector space U spanned by X1, ..., X,;
(ii) the number of linearly independent columns in the m x n matrix T =
(X1 ... Xul;

(iii) the number of linearly independent rows in T ;
(iv) the number of nonzero rows in any row-equivalent echelon form of T.

Proof See [6]. |

The rank can be computed in MATLAB and Scilab using rank(T). Alternatively,
by row-reducing the matrix [T ] to echelon form by elementary row operations, one
can find a basis for the range of T, and thus compute rank(7") via Lemma 2.4 (iv).
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Definition 2.5 (Transpose) Let T € M,x,(C) be a matrix with n rows, m
columns and entry #;x is row j and column k. Then the transpose of T is TT €
My %, (C) is the matrix with m rows, n columns and entry # ; in row j and
column k.

We suppose in particular that m = n, and we choose the same basis {e; : j =

1,...,n} for V and W, and naturally write V = W. Then we prefer the notation
A : V. — V for the linear transformation of V, and the n x n complex matrix
that represents this linear transformation with respect to {e; : j = 1,...,n}.

Observe that by Theorem 2.2, null(A) = {0} if and only if rank(A) = n.
Under these equivalent conditions, A has an inverse transformation A~ such that
AA~! = A=1A = I. This inverse matrix may be expressed in terms of determinants
via Proposition 2.7.

Determinants In this book, we give only a brief sketch of the theory, mainly to
establish notation, and refer the reader to [60] or [8] for a fuller account in the same
spirit. We begin with the 2 x 2 case

ab
det =

Then we obtain large determinants by expanding in terms of smaller ones. To obtain
the determinant of

ab
cd

‘ =ad — bc (a,b,c,d € C). 2.4

ap a2 a3
A= |az ax ax (2.5)
asy asz asjz
observe the chess-board of signs
+ -+
-+, (2.6)
+ -+

pick one column, say the second, then multiply out with signs from the chess-board

ail ais
asp ass

azy az3
asp ass

5 ail ais
az1 azs

detA = —apn +an 2.7

where the 2 x 2 determinants exclude the row and column of their coefficient, and
can be computed by the formula (2.4).
Definition 2.6 (Adjugate)

(i) The n x n sign chessboard is the matrix that has (j, k) entry given by (=1J +k
for j,k=1,...,n.
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(i1) The determinant of_ the submatrix of A that excludes row j and column %,
multiplied by (—1)/ +k s called the cofactor A jk of aji, so

n
detA =) ajAj (2.8)
j=1

is the expansion by column k forall k =1, ..., n.

(iii) The adjugate matrix adj(A) is the transpose of the matrix [A jx] of cofactors.
(In some books, our adjugate is called the adjoint, but we use this terms for
something else in Definition 2.15.)

(iv) A square matrix [a;, k]’}’ k— 18 said to be lower triangular if all the entries above
the leading diagonal are zero, ,soa;; =Oforall1 < j <k <n.

Proposition 2.7

(i) For all square matrices A adj(A) = (det A)I.
(ii) The determinant of a lower triangular matrix equals the product of the entries
on the leading diagonal, so detlaj ] = ay 1022 ... an p.

Proof

(i) A square matrix with a repeated row has zero determinant, so » i _; ajk A jm =
0 for k # m, which gives the off-diagonal entries of A adj(A) to be zero. For
the diagonal entries, we use the definition of the cofactor.

(i) One can check this by repeatedly expanding by the first row of the determinant.
0O

Definition 2.8 A square matrix A is unimodular if detA = 1. (We use a more
restrictive definition than some authors who permit +-1.)

2.2 Characteristic Polynomial

Definition 2.9 A complex polynomial p(s) is monic and of degree n if it has the
form p(s) = s" + a,_15" "' + - - - + a for coefficients aj eC.

Definition 2.10 (Characteristic Polynomial) The characteristic polynomial of a
(n x n) complex matrix A is x4 (X) = det(Al — A), where I is the (n x n) identity
matrix.

Some books on linear algebra c4 (1) = det(A —A[I). The definition used in this book
is standard in control theory. Also

xa(h) = det(hl — A) = A" — A" Mrace(A) + - - - + (—=1)" det A, (2.9)

S0 x4 (A) is a monic polynomial of degree n.
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Lemma 2.11 Ifdet(s] — A) # 0, then sI — A is invertible and

(sI — A)~' = (det(sI — A) ladj(sI — A). (2.10)

Proof This follows directly from Proposition 2.7 applied to s/ — A. O

This (2.10) may or may not be an appropriate formula for computing the inverse,
depending on n. It does tell us that s/ — A is invertible, except at finitely many
values of 5. Often (sI — A)~! is called the resolvent of A.

Proposition 2.12 (Characteristic Polynomials of Companion Matrix) The char-
acteristic polynomial of the companion matrix A is

det ] — Ay = A" 4+ a, A" 4 4 arh + ap. 2.11)

Thus any monic complex polynomial arises as the characteristic polynomial of some
complex matrix.

Proof We prove this by induction on n. Let P, be the statement that the above
identity holds for some positive integer n. Then P is trivially true. Assume that the
identity holds for 1, ..., n — 1 and consider P,. We expand the determinant by the
first column, and obtain

A =10
det(A] — A.) = det 0 a1
ap aj ... A+ ap—q
A =10 -1 0 0 ...
= Adet 0 2 —1 + (=1)" g det » -0
o . 0 .
a ay ... A+ ap— 0 ... » —1
(2.12)

so we use the induction hypothesis to deal with the first determinant, and observe
that the second is lower triangular, so by Proposition 2.7 (ii)

detl — A) = A0Vt au M2 4 -+ ah+a)) +ao
=AM 4 ap A+ A A+ a. (2.13)

Given any monic complex polynomial p(A) of degree n, we choose the n x n
companion matrix with entries from the coefficients of p(}) which has characteristic
polynomial p(}). O
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Example 2.13 Proposition 2.12 is an existence result, not a uniqueness theorem.

The matrices
01 00
00 00

both have characteristic polynomial s2, although they are not similar.

Example 2.14 The polynomial f(s) = s* + s> 4+ 20s% + 400s + 200 is the
characteristic polynomial of

0 1 0 0
A=| O 0O 10 (2.14)
0 0 0 1

—200 —400 —20 -1

Numerical results show that f(s) = 0 has two roots —6.5527 and —0.5130 in
(—00,0) and a pair complex conjugate roots 3.0329 ¥ i7.0922 in the right half-
plane {s € C : %is > 0}. In Sect. 2.8 onwards, we describe polynomials with all
their roots in the open left half-plane as stable. Therefore, f (s) is unstable, although
all its coefficients are positive.

2.3 Norm of a Vector

In this section we use complex conjugates, so z = x +iy € C hasz = x — iy for
x,y €R, 50 |z]® = zZ = x> + y%. We write iz = x and 3z = y.

Definition 2.15 (Adjoint)

(i) For a column z = col[zj]'}:1 e O, we take 7/ = row[Zj]’}:l e Clxn,

(ii)) We define the adjoint of a n x m complex matrix T = [¢;¢] to be the n x m
matrix 7" = [#;], found by interchanging the rows and columns and taking the
complex conjugate of each entry.

Remark 2.16

(i) Here we employ the MATLAB notation 7" for adjoint. For real matrices T the
adjoint coincides with the transpose TT7,s0o T’ = T7. In this case, our notation
is consistent with [8]. For derivatives in the sense of calculus, we use df/dz.

(i) In some books, the adjoint is called the Hermitian conjugate or conjugate
transpose and the notation used is A*. Note that in MATLAB A % B is the usual
product of the matrices A and B, with no transposition or conjugation involved.
In physics, a common notation is A, although often a different definition is
used for the inner product.
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Let V = C"*!, the complex vector space of column vectors. The standard inner
product on V is defined for

21 w1
7= , w = N
Zn Wy
by
Z1 n
Gwy=wz=[w... 0] | 1 | =)z, (2.15)
Zn j=1

equivalently written z = column(;/)’;:1 w= column(wj)’;:1 by
n
(w)y=w'z=Y zjw;. (2.16)
j=1

Then (z,z) = Y |zjl% 50 (z,2) > 0, with (z,2) =0 = z = 0;
(z+u,w) = (z, w) + (u, w) (2.17)

Az, w) = Az, w), (z,w) = {(w,z). (2.18)

2.4 Cauchy-Schwarz Inequality

On V the standard norm is the Euclidean norm for z = column(zj)’}:1

n 172
Iyl = (X 1f) =G 0" = o' (2.19)
j=1

Proposition 2.17 (Cauchy-Schwarz Inequality)
(i) All z, w € V satisfy

[z, w)| < llzlllwl], (2.20)
(ii) and the triangle inequality

lz+wll < llzll + lwll. (2.21)
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Proof

(i) Recall that a nonzero complex number ¢ has a polar decomposition ¢ = se?,

where § € (—m,w]lands = [¢] > 0;s0 e 7 =5 > 0.If (z, w) = 0,
then (i) is clearly true. Otherwise, there exists u € C such that uz = 1 and
u(z, w) = |(z, w)|. Now we have a real quadratic in the real variable ¢ which is
non negative

0 < ltw + uzl|> = (tw + uz, tw + uz)
=12 (w, w) + 1(w, uz) + (uz, tw) + (uz, uz)

=2 |wl?* + 2t(z, w)| + [1zI|*. (2.22)

We cannot have a pair of distinct real roots, since y = 2wl + 2t|(z, w)| +
lzl? is a parabola that does not cross the 7-axis. Hence this quadratic has
discriminant b2 — 4ac < 0, so

4z, w)* < 4zl w]>. (2.23)
(i1) By (i) we have
|Iz+w||2 =(z4+w,z+ w)
=(z,2) + (z, w) + (w, 2) + (w, w)
= [lzlI* + 2% (z, w) + [Jw]
< Iz + 2lizlllw] + lw]?
= (Ilzll + lhwll). (2.24)

O

Definition 2.18 (Matrix Norm) Suppose that A € M, ,(C). Then A operates on
the space V = C*D of column vectorsso A : V — V :v > Av by multiplication
on the left. Then the matrix norm of A is

Al = sup{l|Av]| : v € V: v] < 1}. (2.25)

The supremum in this definition can be calculated in various ways, depending upon
the specific form of A, as in Proposition 2.19 and Lemma 2.21.

Proposition 2.19

(i) For a square diagonal matrix D with diagonal entries A1, . .., Ay, the norm is

ID| = max{|A;|:j=1,...,n}. (2.26)
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(ii) Let A have columns A = [A1, Az, ..., Aynl, and let column A; € C™ ! have
norm ||Aj . Then | Al < (37—, 1A 112
Proof

(i) Let (e;)’;_, be the usual orthonormal basis of C™!and v = > i—1vjej, s0
vl = = lv;j|?)!/2. Then Dv = YioiviDej =3"_jvjkjej, 50

n n
1DVIP = o P < max (1 7 v = max [uPol®. (2.27)
j=1 j=1

We can achieve equality in this inequality by considering the largest |Ax|, and
selecting v = e.

(ii) Here we have Av = 27:1 vjAe; = Z?:l v;jAj, so by the triangle inequality,

n n n
1/2 172
lavl = > szl = (32 1) (X 1402) (2.28)
j=1 j=1 j=1
where the last step follows by Cauchy-Schwarz, so
" 1/2
lavl = (o 1a51%) el (2.29)
j=1
o

Remark 2.20 This inequality (ii) of Proposition 2.19 show that the norm of any
finite matrix is finite. With j’h column A; = [a;]j_, we can consider A =
[A] ... A,] with

s = (3 tas?)" = (S 1a2) " (2:30)
j=1

Jik=1

which defines the Hilbert-Schmidt norm ||A||gs of A. This is straightforward to
calculate, but generally gives an overestimate on [|A|.
Lemma 2.21 (Properties of the Norm of a Matrix) The matrix norm satisfies, for
A, B € Myx, (C),

@) A+ Bl <A+ IBl; @) l2All = [A[lIA] r €0 (2.31)

(iii) AB| < |AIIBI, Gv) A=Al () [A]*=[lAA]|.
(2.32)
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Proof
(i) Letv € V have ||v]| < 1. We have

(A + B)v|l = [[Av + Bv|| < [[Av|| + || Bvl| < [[All + [ Bl (2.33)

so |A+ Bl < Al + [IBIl.

(ii) We have [[(AA)v]| = [A[|Av], so [|AA[l = |A[[|A]].

(iii)) We observe that ||A|| = inf{t : ||Aw]|| < t|lw] : Yw € V}. Then with w = Bv,
we have

ICAB)v| < Al Bvll < [AIBIHvI, (2.34)

so [[AB]l < [|AlllIB-
(iv) First observe that
Al = sup{Ri(Ax, y) : x| = |yl = 1}
= sup{R(x, A'y) : |Ix| = llyll = 1} = | A"]. (2.35)

(v) We choose x # 0 so that ||[Ax|| = ||A|l||x]|, then
A2 x| = (Ax, Ax) = (A'Ax, x) < [[A'A[lIx]? < 1AI% X, (2.36)

so we have equality throughout.
O

Definition 2.22 (Polynomial Functions of a Matrix) Let A be a n x n complex
matrix. As in basic linear algebra we form polynomials in A. Let [ be the n x n
identity matrix. We can form A, A2, A3, .. by matrix multiplication, and hence
given g(z) = a,z™ + - - - 4+ ap we build polynomials

g(A) = awA™ + a1 A"+t agl (2.37)

for complex coefficients a ;. We regard A0 = I, the identity matrix.

Definition 2.23 (Eigenvalue Equation) An eigenvector is a non zero solution v of
Av = Av (2.38)

where A € C is the corresponding eigenvalue. This (2.38) is called the eigenvalue
equation.

Lemma 2.24 The eigenvalues of n x n complex matrix A are the roots of the
characteristic equation

xa() =0. (2.39)
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Proof Recall that det(s] — A) = x4(s). By the Fundamental Theorem of Algebra
[6], there are n complex roots, counted according to algebraic multiplicity. When
xAa(X) = 0, the matrix A/ — A is not invertible, so by the rank-nullity theorem 2.2
there exists v € V, with v # 0 and Av = Av and A is an eigenvalue. Conversely, if
there exists v 0 and A € C such that Av = Av, then Al — A is not invertible, so
xa(d) =0. m

Definition 2.25 (Spectrum) The spectrum spec(A) of an n x n complex matrix A
is the set of A € C such that A/ — A does not have an inverse.

Remark 2.26

(i) The square matrix Al — A is invertible if and only if the nullspace of A — A
equals {0}, by the rank-nullity theorem 2.2. Hence the spectrum is the set of all
the eigenvalues of A.

(ii)) By the Lemma 2.24, the spectrum of A has at least one element and at most
n elements. Often one lists roots of polynomial equations according to their
algebraic multiplicity, so that the roots of (s — A)? are listed as A, A. In
this sense, there are n eigenvalues, listed according to algebraic multiplicity.
However, with eigenvalues, we also need to consider the eigenvalue equation
(2.38) as well as the characteristic equation (2.39).

(iii) The geometric multiplicity of A is the number of linearly independent solutions
of Av = Lv. Now by a slight extension of this Lemma 2.24 , one can show that

1 < (geometric multiplicity) < (algebraic multiplicity).

Lemma 2.27 (Similarity to a Diagonal Matrix) For a complex n x n matrix A,
the following are equivalent:

(i) There exists an invertible matrix S such that S"VAS is a diagonal matrix;
(ii) there exist n linearly independent eigenvectors of A;
(iii) there exists a basis of C" that consists of eigenvectors of A.

Proof (iii) = (i) Let X; # 0be an x 1 columns forming a basis of C" such that
AXj=A;X;,andlet S = [X X ... X,]; then the X; are linearly independent by
assumption and hence S has column rank n. Hence S is invertible. Now let

A0 0 ...
p=| 0720 (2.40)
0...0 Ay

and note the chain of identities

AS=A[Xi ... X,] =[AX1 ... AX,]
C A

=[mX1 ... mXn]=[X1...X,]D=SD (2.41)
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where S is invertible, so A = SDS!. a

Proposition 2.28 (Functions of a Matrix) Suppose that A has n distinct eigenval-

ues A, ..., Ay. Then there exists an invertible n x n matrix S such that
gk) 0 0
gA) =S 9 g QZ) .0 s (2.42)
6 .. O. g(k;l)

for all complex polynomials g(A).
Soon we’ll extend this to the functions g(x) = exp(tx) and g(x) = 1/(s — x).

Proof The eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent, hence form a basis of C", so we can introduce S as in the Lemma 2.27. Then

A?>=8SDS7'sps~! = sp?*s~! (2.43)
and so on so,
g(A) = awA™ + am_1 A"+t agl
= S(@mD™ + apm D" '+ 4 ag)S™! = Sg(D)S7!, (2.44)

and we can easily check that g(D) is as above. |

Theorem 2.29 (Cayley-Hamilton) Ler A be a n x n complex matrix with charac-
teristic polynomial x4 (s). Then

xa(A) = 0. (2.45)

Proof See [6]. O

Complex Exponential
For z € C write z = 9z + i3z where iz is the real part and Jz is the imaginary
part. We define

22 2
exp(z) =e*=1+z+ _ +_ +..., (2.46)
2! 3!
which converges for all z € C. We have exp(z + w) = exp(z)exp(w) and

(d/dz) exp(z) = exp(z). Also, e/ = cos6 + i sin6 has |e!’| = 1. Hence e* has
modulus |¢?| = "% and argument arg e* = Jz. In contemporary English, argument
is often used to mean a dispute; it also means legal case; in mathematics, the term
applies to the angle in the polar decomposition of a complex number. The latter is
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denoted arg, or Arg, especially when the values is taken in (—m, w]. MATLAB uses
angle for argument, while engineers often use phase.
In some applications, we also need

cosh(x +iy) = coshx cosy + i sinh x sin y. 247

2.5 Matrix Exponential exp(A) or expm (A)

Definition 2.30 For any n x n complex matrix A, we define the matrix exponential
by

A? Am
exp(A) =1+ A+ + -+ +....
2! m!

The MATLAB command expm (A) gives this series for a square complex matrix
A; whereas the command exp(A) gives the matrix arising from the exponential
function applied to the entries of A individually, which is a quite different function.

Proposition 2.31 (Wedderburn)

(i) For any A € M, x,(C), the exponential series converges, and | exp(A)| <
Al
ellal,

(ii) exp(zA)exp(wA) = exp((z + w)A) forall z, w € C;
(iii) exp(zA) has inverse exp(—zA) for all z € C;
(iv) Let A be an eigenvalue of A. Then e is an eigenvalue of exp(z A).

(v)

j exp(zA) = Aexp(zA). (2.48)
Z

Proof

(i) Note that for a matrix X the entries X j satisfy X j; = (Xeg, e;) so | X x| <
IX]||. Also, by Lemma 2.21

IAZ] < A2, ..., [A™] < [IA]™, (2.49)
SO
A? A™M
pm(AD)=T+A+  +..-+ (2.50)
2! m!

satisfy
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A A - A" < o 1Al 2.51
1P (4) = it )||_H(k+1), RE EID DNl
j=k+1
where el4l = 37 ) ||A||7/j! converges. Hence each entry of p,,(A) con-
verges as m — 00, giving exp(A) as the limit.
(i1) We write
P (2A) pm(wA) = Z Z (2.52)
j=0 k=0
and compare with
2m s r_s
(Z+w)rAr Sw TSA”
Pam((z + w)A) = Z = Z Z (2.53)

1(r — §)!
= sli(r —s)!

where p,,(zA) — exp(zA), pm(wA) — exp(wA), and py, ((z + w)A) —
exp((z + w)A), so exp((z + w)A) = exp(zA) exp(wA).
(iii) Observe that, by (ii)

exp(zA) exp(—zA) = I = exp(—zA) exp(zA) (2.54)

(iv) Letv € V satisfy v £ 0 and Av = Av. Then

Jpj i
exp(z A = Z LAY Z EATY _ oy, (2.55)

j=0 ’ j=0
(v) We consider (ii), and obtain as 7 — 0

exp((z + h)A) — exp(zA)

exp(hA) — 1
; )

h
hA?  Rh2A3
+ .. )

=exp(zA)<A+ o1 + 31

= exp(zA)(

— exp(zA)A.

2.6 Exponential of a Diagonable Matrix
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Lemma 2.32 Suppose that A has n distinct eigenvalues A1, ..., A,. Then there
exists an invertible n x n matrix S such that

et 0 0
expta) =5 | ° fm 'O s (2.56)
0 ... 0
Proof Introduce the matrix § = [X| X2 ... X,] with columns given by the

eigenvectors of A, hence the X ; are linearly independent and § has rank n. Hence §
is an invertible # x n matrix such that A = SDS~! where D is diagonal with entries
M, ..., An. Hence exp(tA) = Sexp(tD)S_l. |

Exponentials of Diagonable Matrices

[ Proposition 2.33] Suppose that A has distinct eigenvalues A j such that R\ ; < k
forall j =1, ..., n,all the eigenvalues lie in the closed left half-plane {\ : XA < k}
which consists of the points in the complex plane that lie on or to the left of the
vertical line {A : XX = k}.

1. [(i)] Then the general solution of il}f =AXis X = 27:1 aje)‘f’Xj, where
X is an eigenvector corresponding to ) and aj € C are arbitrary.

2. [(ii)] There exists M such that || exp(tA)|| < Me*! (t =0).

3. [(iii)] In particular, suppose that R\ < O for all j = 1,...,n. Then there

exists M such that || exp(tA)|| < M (r=0).
Proof

(i) Checking the solution: For arbitrary Xg € C", we observe that X(t) =
exp(tA)Xo satisfies dX(¢)/dt = AX(t) and X(0) = Xp. We can write

Xo =a1 X1+ -+ a,X, for some a; € Csince {X1, X2, ..., X,} is a basis
for C". Also, exp(tA)X; = e)‘fth, s0 X (1) = Z;’-Zl aje)‘f’Xj is the general
solution.

(ii)) Checking the bounds: Consider

P | B 71 etz
0 e* 0 ... &) e'*2z,
. =] . (2.57)
o ... 0 :
0o ...... e || z, ethnz,
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where |e'*i| = e'™*i < ¢! forall + > 0, hence

n n
lee’)‘fz]‘l2 < 62”(2|Zj|2 (2.58)
j=1 j=1

so |l exp(tD)z|| < e'|z|); hence

e 0 ...
lexee < ISH| | o . o | |1s7"
0 ...eMn
<SS jmax le™i] < SIS~ le™. (2.59)

2.7 Solving MIMO (A, B, C, D)

Definition 2.34 (SISO) Let A, B, C, D be constant complex matrices with shapes:
A (nxn); B (mx1); C (xn); D (1x1). (2.60)

Then the continuous time linear system with one input, n states and one output is

dX
= AX + Bu
dt
y=CX+ Du (2.61)

Here ¢ is time, u is the input, X is the state, and y is the output. We call the system
single-input single-output or SISO.

Example 2.35

(1) An electrical fan is a SISO system. The input is electricity, and the output is
moving air. The states can involve the speed of rotation, voltage, current and so
on.

(i) A wind turbine has input moving air and output electricity.

Given B € C"™! and C € C'*", we can build various linear operations.

(i) CB is simply a complex number;
(ii) b+ Bb gives a linear map C — C"*!;
(iii) Y + CY gives a linear map C"*! — C;
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(iv) Y +— BCY gives a linear map C"*! — C"*!, determined by the matrix
BC € M, +,(C) which has rank one if B, C # 0.

Definition 2.36 (MIMO (A,B,C,D)) Let A, B, C, D be constant complex matrices
with shapes: A (n xn); B (n xk); C (m xn); D (m x k). Then the continuous-time
linear system with k inputs, n states and m outputs is

dX
= AX + BU,
dt
Y=CX+ DU. (2.62)

Here U e C**! is the input, X € C"*! is the state, and ¥ € C"™*! is the output,
which all depend upon ¢. The matrices are:

e A=state matrix (main transformation);

* B=input matrix (input transformation);

e (= output matrix;

e D=straight through matrix (external transformation).

This data gives the multiple-input multiple-output system (A, B, C, D), called
MIMO.

The following diagram gives the standard form of MIMO, which is the main
object of study in this book.

— 4 —0
AX X
o O 0 O
U
o 5 DU

Describing MIMO (A,B,C,D)
The system (A, B, C, D) is a state model and the variables are in the time domain,
in the sense that they are functions of ¢.

1. [()] If k = 1, then we say the system is single input; if m = 1, then the system
is single output. If k = m = 1, then the system is SISO.

2. [GD] If £ > 1, then we say the system is multi input; if m2 > 1 then the system
is multi output.
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3. [(i)] If K > 1 and m > 1, then we call the system MIMO. (SISO is a special
case of MIMO)

We write MIMO as a rectangular (n + k) x (n + m) block array with sizes

[A Bi| |:nxn nxk:|. (2.63)

CD mxnm Xk

Example 2.37 (Domestic MIMO)

(i) A washing machine is a MIMO system. The inputs are cold water, soap
powder, and electricity; whereas the outputs are hot soapy water, cold rinsing
water and hot air. The state of the washing machine can be complicated, and
relate to the rotation of the drum, temperature of various components, washing
cycles and so on.

(i1) A domestic central heating system is a MIMO system with inputs gas, cold air,
electricity and cold water; whereas the outputs are hot air and hot water.

(iii) Mobile telephone networks are MIMO systems. There are multiple trans-
mitting antennas, and multiple receiving antennas, as we discuss in Proposi-
tion 11.14 about single user MIMO. Massive MIMO is a further example to
model 5G wireless transmission. In a given district, there may be 64 receivers,
and 64 transmitters; so we need a matrix A of size 64 x 64, and signals may be
split up into many component parts. This explains the terminology ‘massive’.

Example 2.38 (MIMO Transposed) Let A, B,C, D be complex matrices with
shapes A (n x n); B (n x k); C (m x n); D (m X k) Recall
(mxn)yxmxn)x nxk)=mxk) (2.64)

Then (AT, CT, BT, DT) also gives a linear system

AT CT nXnnxm

BT DT kxnkxm
where det(s/—A ") = det(s/—A). The properties of the system and its transpose are
thus closely related, and sometimes one can easily obtain properties of one from the

other. We will exploit this idea in our discussion of controllability and observability
in section 3.12.

Example 2.39 The following system has two inputs, one state variable and one
output

dx
=ax + biuy + bruy
dt

y =cx +diuy + dauy
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and can be represented the diagram below.

| a .—O
U=T[uy;usz] ax x y
biuy + bouy X cx
D1 [b1.b2] 4.@ I ) . *,GD
U
diuy + d-
O [d\, d2] e O

There are three issues involved in solving any differential equation:

* existence, that is, showing there is some solution;
* uniqueness, that is, showing that there is at most one solution;
* finding a useful expression for the solution.

The following theorem achieves all of these and is the fundamental result for solving
(A, B, C, D) systems throughout this book.

Theorem 2.40 (Solution of Basic ODE) Suppose that A is a constant (n X n)
matrix and that BU (t) is a (n x k) matrix with continuous functions [0, co) — C
as entries. Then for any constant (n x k) complex matrix X, the (n x k) matrix
function

t
X(t) =exp(tA)Xo + / exp((t —s)A)BU (s)ds (2.65)
0

satisfies the matrix differential equation

dx
, =AX+BU (2.66)

with initial value

X (0) = Xop.

Proof Uniqueness: We suppose that a solution exists, and find a formula for the
solution. Write the ODE in the standard form of a first order linear ODE

dX

—AX =BU 2.67
dt (2.67)
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so the integrating factor is exp(—tA), and

ax
exp(—tA) a exp(—tA)AX = exp(—tA)BU

d
it (exp(—tA)X) = exp(—tA)BU,
so we integrate to get the unique solution of this differential equation

t
[exp(—wA)X]é:/ exp(—wA)BU (w)dw
0

t
exp(—tA)X (1) —exp(0) X (0) = / exp(—wA)BU (w)dw
0
so we can solve for X and obtain

t
X(t) — exp(tA)Xo = / exp((t — w)A)BU (w)dw
0

13
=exp(tA)f exp(—wA)BU (w)dw.
0

Existence: To check the proposed solution works, let t = 0 to get X (0) = Xp.
Then we apply standard results of calculus, and work on one entry of the matrix at
a time. So by the fundamental theorem of calculus,

t
X(t) =exp(tA)Xo + exp(tA) / exp(—wA)BU (w)dw (2.68)
0
is a differentiable function of ¢, with derivative

d 13
th = Aexp(tA)Xo +exp(0)BU (t) + Aexp(tA) / exp(—wA)BU (w) dw
0

=AX+ BU.

O

Corollary 2.41 (Solution of MIMO) For any initial condition Xo and any contin-
uous input U, the solution of (A,B,C,D) is

t
Y(@) = Cexp(tA)Xo + / Cexp((t —v)A)BU(v)dv + DU(1). (2.69)
0
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Proof From Theorem 2.40, we take

t
X(t) =exp(tA)Xo + / exp((t —v)A)BU (v) dv (2.70)
0
and then
Y#)=CX(@)+ DU(1). (2.71)
O

Terminology Concerning Solutions
The terminology of Differential Equations reappears in linear systems. Consider the
inhomogeneous differential equation

D.¢
L, =AX+BU®. (2.72)

1. [(@)] Let T; = exp(tA), which satisfies T; (A X + nYo) = AT, Xo + nT; Yo, also
Tl‘JrU = T[Tv and

T —1

LA a0, (2.73)

2. [(i1)] The expression X (t) = T; X with X¢ arbitrary is known as the comple-
mentary function, since it satisfies the homogeneous differential equation

dX
= AX

dt
X(0) = Xo.

3. [(iii)] The term X; = fé exp((t — v)A)BU (v) dv is a particular integral of the
inhomogeneous differential equation

dX
= AX+ BU
dt
X(0)=0.

4. [(iv)] The general solution of the inhomogeneous equation is the complemen-
tary function plus a particular integral, so

t
X, =T, Xo +/ exp((t — v)A)BU (v) dv (2.74)
0

satisfies
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dX
= AX+ BU
dt

X(0) = Xop.
5. [(v)] We consider the unit impulse U (v) = §p(vp) in (iii), and observe that
X, =0 (t < vg)
=T,yB ( > vo)
gives a solution of

D.¢
| =AX+BU (> 0)

X(0)=0.

This initial value problem must be interpreted with great care, since the
differential equation now involves a measure.

Example 2.42 (Damped Harmonic Oscillator) Suppose that 8,y > 0. Then the
damped harmonic oscillator is

d%x ~|—,de n _
dr? ar VT
dx
x(0) = xo, dt (0) = vo. (2.75)

Here we regard the variable x as the output, and we aim to find x for a given input
u. We can regard this as the linear system specified by

0 1 0
A= ,B = ,C=|10[,D=0. 2.76
[—V—ﬂ} H [10] (2.70)
Then
—1
-l |8 -1 _ 1 s+pB1
Gr=4) _[VS‘F,B} _S2+,35+)/[—V S]. @77

In later discussion, we use the transfer matrix (2.93), which is defined by

1

T(s)=D+C(sI —A)"'B= )
(5) ( ) 2t psy

(2.78)

First suppose that 82 — 4y # 0. Then we have eigenvalues for A at the roots of
s2 + Bs 4+ y = 0, namely
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_ BEVE -4y

A: 9
* 2

(2.79)

which are distinct since 82 — 4y # 0. The corresponding eigenvalues are

Ayt [)»IJJ , A [)\li| , (2.80)

so we introduce the invertible matrix

1 1
S = , 2.81
[)\+ )»—:| @80
so that
Ar O 1
A=S S 2.82
ked 282)

Hence we have

0] o
exp(tA) = [60 em}S 1

1 1qre+ o [ A =1
=Ll Ao 5]

)\._ek+t _ A‘+e)n7l e)nfl _ e}n+t
)\._)\._,_(E)Urt _ ek,t) )\'_ek,t _ )\.+€A+t

=0 =) [

SO

t
x(1) = Cexp(tA) [iﬂ + / Cexp ((t — 1)A)Bu(v)dt
0

)\,e)‘” _ )\+€)"t e)\,t _ eut t e)\,(tfr) _ e)\+(t71:)
_ %o+ v + f u(x)dr.
Ao — Ay Ao — Ay 0 Ao — Ay
Now suppose that 82 = 4y. Then we have an eigenvalue A = —f/2 with

algebraic multiplicity two, so we introduce an eigenvector V such that AV = AV
and W such that AW — AW = V; then with S = [V, W], we have

[0 1 (1 =1/A7 o [0 1/a
A_[—Azz)\]s_[x 0 ]S _[—)\ 1] (2.83)

so that



34 2 Solving Linear Systems by Matrix Theory

e [
s AS_[O)J (2.84)

has the form of a Jordan block. From the exponential series, we have

exp (t |:g )1;| ) =eMexp ( |:8 (t)} ) =M [(1) i:| (2.85)

which gives

eMitet (1 = xrt)e? teM
exp(tA)_S[O eM:|S =" e e | (2.86)

Hence we obtain
t
x(1) = Cexp(tA) [ﬂ +/ Cexp ((r — T)A)Bu(r)dt
0 0

t
= (1 = ane*xg + te* vy +/ (t — )" Du(r) dr.
0

2.8 Rational Functions

In this section we summarize some terminology about complex rational functions
that we use repeatedly later on; see [6] page 55. Let s be an algebraic indeterminate
(variable), let C[s] the space of complex polynomials in s. Let g(s) and A(s) be
complex polynomials, with /(s) not the zero polynomial. Then

_8(s)

o=y

is said to be a rational function. The set of all complex rational functions in s is
denoted C(s), with the usual operations of multiplication, addition, division and
differentiation.

Definition 2.43

(i) If the degree of g(s) is less than or equal to the degree of h(s), then f(s) is
said to be proper rational. If the degree of g(s) is strictly less than the degree
of h(s), then f(s) is said to be strictly proper. We write C(s), for the proper
rational functions and C(s)¢ for the strictly proper rational functions.

(i) For a nonzero rational function f = g/ h, one can define
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deg f = degg —degh. (2.87)

Then f is proper if and only if deg /' < 0. A rational function is strictly
proper if and only if deg f < O.
(iii) A zero of g is so € C such that g(sg) = 0; this is otherwise called a root of
g(s) =0.

Suppose that g(s) and A(s) have no common factors other than constants. Then
zeros of g(s) give zeros of f(s); while zeros of h(s) give poles of f(s). One can
feed a rational function into MATLAB by way of the coefficients. For example

RO 253 —is2+6s+5

FO) = ) = 354 1752 — s + 3

(2.88)

is a strictly proper rational function, which can be entered into MATLAB code as
>> f=1f([2-i65].[307 —43])

with numerator before denominator and starting with the leading coefficients; there
is no need for commas. The abbreviation ¢ f is for transfer function, specifically a
continuous-time transfer function of the type we consider in the first seven chapters.
One can then find numerical values for the zeros and poles via

>> zero(f)

>>  pole(f)

MATLAB diagrams indicate poles with crosses x and zeros with small circles o.

MATLAB operations sometimes do not work properly when there are complex
coefficients.

To give zeros and poles equivalent status, it is convenient to work with the
Riemann sphere C U {oo}. Then one can regard g(s) as having zeros at zy, ..., 2,
and a pole of order n at co. This allows us to keep track of zeros and poles when
we make invertible rational changes of variable such as s = (z — 1)/(z + 1), which
takes oo > 1.

Definition 2.44

(i) A rational function is stable if it is proper and all the poles arein LHP = {s :
Ns < 0}. We write RHP = {s € C: Ns > 0} for the right half plane.

(ii) The notation F(s) = O(1 /sk) as s — oo means that there exist r, M > 0 such
that | F(s)| < M|s|* for all s € C such that |s| > r.
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Example 2.45

(1) The rational function 1/(1 + s) is stable. The importance of such functions in
linear systems will be considered in Chaps. 5 and 6.

(i) We have (s + 1)/(s — 2)> = 0(1/s%) as s — o0. One can show that a rational
function is proper if F(s) = O(1) as s — 00, and strictly proper if F(s) =
O(l/s)ass — oo.

2.9 Block Matrices

Let S, U, V and W be complex vector spaces. Then we can form the direct sum

S@V:é:{[ﬂ:ue&vev] (2.89)

with the operations

g |:u:| |:)\u:| ’ |:u1:| |:u2:| I:ul u2:| ’ (290
v AV 1] 1) v + v2
and inner product

<[M1} , [”2} > = (uy, u2) + (v, v2) (uy,uzr € S;v1,v12€ V, 1 e C).
U1 v
2.91)

We write L(U, S) for the space of linear transformations B : U — S. Then for
A e L(S,S),B e LU,S),C e L(S,W)and D € L(U, W) we form the linear
transformation

AB| S S AB||u Au + Bv
D> : = (2.92)
cCD| U W CD]||v Cu+ Dv
known as a block matrix or block transformation. Block matrices of appropriate
sizes matrices can be added and multiplied. The MATLAB command for the matrix
in (2.92)is[A, B; C, D].

In the context of linear systems, U is called the input space, S is the state space
and W the output space.
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2.10 The Transfer Function of (A, B, C, D)

Definition 2.46 (Transfer Function) The transfer matrix function of MIMO sys-
tem (A, B, C, D) is

T(s)=D+C(sI —A)~'B. (2.93)

Lemma 2.47 The transfer function may be found by exact arithmetic over C(s) by
elementary row operation.

Proof We show that if s/ — A is invertible, then the following block matrices are
row equivalent over C(s):

—1
[A —sI B} ~ [1 (A—sI) B] (2.94)
cC D 0 T(s)

(i) Suppose that s/ — A is invertible. Use multiplication on the left to show that the
matrices

— _ ol
A—sl B and 1 (A —slI) B_1 (2.95)
cC D 0D+ C(sI —A)~'B
_ ol
are row equivalent. We multiply on the left by [(A SI) (I)i|’ obtaining
A—sIBl.. [IA-sD'B
o O PR A
. I 0 .
now we multiply on the left by crl obtaining
A—sIB]l.. [I ((A-=sD™'B
[ C D:| I:OD—C(A—sI)_lB:| (297)

hence the result. We observe that 7'(s) can thus be computed exactly by matrix
multiplication and elementary row operations, which involve rational arithmetic.
O

We follow this with some determinant calculations. Note that

10
det [_ c J =1 (2.98)
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by Proposition 2.7 since the matrix is triangular with ones on the diagonal. Also, by
the row reductions in the proof of the Lemma2.47, we have

—1 -1
det [(A —s) o} det [A—sl B} et [1 (A—sD~'B } 2.99)

0 I C D 0D—-CA—-sD'B
SO
det(A — sT)~" det [A ;” g} = det(D + C(sI — A)"'B). (2.100)

When D is a 1 x 1 matrix, as in a SISO, we can reduce this formula to a
determinant formula for the transfer function

A—sl B
Cc D
Proposition 2.48 (Transfer Function) The transfer function T (s) = D + C(sI —

A)"'B of a SISO system is a proper rational function, and all the poles are
eigenvalues of A.

det(A —sI)~! det[ } =D+ C(sI — A 'B. (2.101)

Proof The characteristic polynomial det(s/ — A) has degree n, and leading term s”.
A cofactor of sI — A is the determinant of a (n — 1) x (n — 1) submatrix of s/ — A
and hence is a polynomial of degree less than or equal to n — 1. Now

(s1 — A)~" =det(s] — A)"'adj(sI — A) (2.102)

where adj(sI — A) is the transpose of the matrix of cofactors. Hence the entries of
(sI — A)~! are strictly proper rational functions. The eigenvalues of A are precisely
the zeros of det(s/ — A), hence are the only possible poles of entries of (sI —
A)_l. Since C, B and D are constant matrices, they do not introduce any more
factors involving s, so T (s) is a proper rational function. It is not asserted that all
eigenvalues of A lead to poles of 7 (s), since there may be cancellation. O

Corollary 2.49 (The Transfer Function of MIMO (A, B, C, D)) The transfer
Sfunction of a MIMO is a (m x k) matrix of proper rational functions, and all the
poles are eigenvalues of A.

Proof This follows from the proof of Proposition 2.48. O

In Sect. 6.12 we use invariant factors to refine this result, and give a condition under
which we can cancel out some of the poles, and reduce the denominator in the
transfer function.

Remark 2.50 Let V7 and V, be complex vector spaces. A map L : Vi — V> is said
to be affine if

LOX+ (A —-AY)=ALx)+ A —-1L) (X, Y eV
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and A € C. Let (A, B, C, D) be a linear system with transfer function 7 (s) =
D + C(sI — A)~!B. Then the following are affine maps

(1) Mpuxk(C) = Mpyxi(C(s)) : D= T(s);
(i) Myxk(C) = Myxi(C(s)) : B T(s);
(111) men((c) g mek((C(S)) Cr—> T(S)

We cannot make any such simple statement about A — T (s), since (s — A~ =
adj(s! — A)/det(s] — A) depends upon the entries of A in a complicated manner.

2.11 Realization with a SISO

Next we consider the converse of the Proposition 2.48. Realization means devising
a linear system with a given transfer function; we think of this as building a gadget
with desired effect. The arrows in the diagram point from data in the source box to

data in the destination box, indicating that such a choice is possible.

Z€ros

poles

T(s)= D+ p(s)q(s) (C,D) (4,B,C,D)
q(s) = det(s] — A) A
Proposition 2.51 The general strictly proper rational function
n—1_  _j
—o0ViS
re= > o (2.103)
st iCgays!
is the transfer function of the SISO (A, B, C, D), where
0O 1 0. 0 0
0 0 1 0 0
. B=|: (2.104)
1 0
1
—0) —O&1 ... ... —0p—1_
C=[wy...va], D=0 (2.105)
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Proof We require to prove T'(s) = C(sI — A)le . Recall that
(s1 — A)~" =det(s] — A)"'adj(sI — A) (2.106)

where the adjugate is the transpose of the matrix of cofactors. The coefficients o
appear in the denominator, but not in the numerator. Also adj(s/ — A) B equals the
last column of adj(s/ — A), so by transposition, adj(s/ — A) B equals the final row
of the matrix of cofactors of s/ — A, where

s =1 0 ... 0 ]
0 s —1 . 0
sI—A= |1 . . . : (2.107)
s —1
Lo o1 ... ap—2 8 +ap—1]

We compute these one after another, and find that the o; do not appear in these
cofactors.

Cofactors: Recall that the determinant of an upper or lower triangular matrix
equals the product of the diagonal entries. The cofactor of the entry ¢ in place
(n, 1) is

-10...0
D tder| S TN 0oy
0 ... s —1

The cofactor of the entry « in place (n, 2) is

s 0 . 0
(—1)"2 det 0-1".0 =5 (2.108)
0... 0 —1

and so until the cofactor of the entry s + «,,—1 in place (n, n) is

det = (2.109)
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SO
1
)
Cadij(sI —A)B=[yo y1 ... Yu_1]
sn72
Snfl
=y0+yls_|_..._|_yn_1sn_1. (2110)

Note that A is a companion matrix, so by Proposition 2.12,

1

det(s] — A) =s" +ap_15" + -+ a1s + ap. (2.111)
Hence
Cadj(sI — A)B
) = &2 j(s )
det(sI — A)
n—1
_ v+vis+--+ vn-1s . 2.112)
s" gy st
O

Proposition 2.51 is an existence theorem, not a uniqueness theorem about the
choice of (A, B, C,0). In the next chapter we give a slight extension of this
result, Proposition 3.15, which applies to stable rational functions and includes a
determinant formula for 7 (s).

Example 2.52 To realize

252 435+ 1

T =
() s3 4652 +8s—2

(2.113)

as the transfer function of a SISO.
MATLAB calls this a continuous-time transfer function, and one can introduce
this example as

>>  T=tf([231].[168 2]
As in Proposition 2.51, we introduce
01 0
A=100 1
2

0
,B=|0|.C=[132].D=0. (2.114)
-8 -6 1
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which can be realized as a feedback linear system without differentiators. In
MATLAB, or similar, one can check that T (s) = C(sI — A)’IB.
Checking the solution: Here

s —1 0
sI—A=|[0 s -1 |; (2.115)
-2 8 s+6

computing only the relevant entries, we have

kokok
adj(s] — A) T = | x * (2.116)
s s2
* % 1 0
Cadj(sI —A)B=[132]|*x* s | |0
% % 52 1
=1+ 3s + 2s°. (2.117)
Since A is a companion matrix, we have
det(s] — A) = s> + 65>+ 85 — 2 (2.118)
SO
Cadj(sI —A)B 1+ 3s+2s?

T(s) = (2.119)

det(s] —A)  s3+6s2+8s—2’

as required.

MIMO as a Feedback System, Without Differentiators

Differentiators are sometimes regarded as bad components to have in a linear system
since they can introduce noise. Integrators are preferable, since they depend upon
the long term history of system. So it is advantageous to produce linear systems
without differentiators.

Proposition 2.53 The MIMO system (A, B, C, D) can be realized as a feedback
system involving taps, matrix amplifiers, summing junctions and integrators, but no
differentiators.

Proof We write

d
X =AX+ BU
dt
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in the form

X:A/X—i—B/U

and realize this as a feedback with [ and the matrix amplifiers A and B.
Then we take U and X as inputs into the system

Y = CX + DU. (2.120)

O

Remark 2.54 1f in MIMO we replace the integrator f by multiplication by 1/s we
obtain

X = (1/s)AX + (1/s)BU
Y =CcX+ DU (2.121)

with solution
Y=(D+CsI-A)"'BU. (2.122)

The theoretical justification of this is the Laplace transform, as in the proof of
Theorem 4.21.

Example 2.55 Consider the second-order differential equation

d*x

i =AX+U (2.123)

where X,U € C"™! and A € M,,(C). This is equivalent to the first order

differential equation
d [X 07X 0
= , 2.124
dt [V} [A 0] [V} " [U} @129

so we consider the MIMO linear system

(B (I)} : m [10], 0)’ (2.125)

where

sI =17 21— A" (521 — A)~!
—A sl THAGH = AT s(sPT - AT
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so the transfer function is

T(s) = (s> — A)~L. (2.126)
2.12 Exercises
Exercise 2.1 Let
145 100
A=(621|, I=]010/{, (2.127)
178 001
12
B=|74|, Cc= 027, D= 35. (2.128)
- 143 67

Compute the matrix transfer function

T(s)=C(I—A)"'B+D (2.129)
either by hand or using suitable computer software. Here s is an algebraic variable
(indeterminate).
Exercise 2.2 Show from the definition 2.30 that

exp (t [O _1}) - [CO” _Si‘”} (t €R). (2.130)

10 sint cost

This example show that the exponential of a real matrix can have negative entries.
The conditions on A that ensure exp(tA) has nonnegative entries are discussed in
section 9.9 and [48].

Exercise 2.3 Let A be an x n complex matrix and let 7, = exp(tA) for ¢ € R.

(i) Show thatT; = T/ forallt € R, if and only if A = A’
(ii) Show that 7; is unitary, so 7, = Tt_1 if and only if A" = —A, so A is skew.
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Exercise 2.4 Let A be a complex (n x n) matrix with distinct eigenvalues

A, ..., Ay. Show that there exists an invertible matrix S such that
o 0 0
1 0 '
sI—A'=8§ s=h2 s!
0
0 0 SJA,,

forall s # A1, ..., Ay,
Exercise 2.5

(1) Find a SISO system that has transfer function

252 —3s+4

T = .
() §s3+5s2+65+7

(i1) Find approximate numerical values for the eigenvalues of A.
Exercise 2.6 Let A be the matrix

0010

0001

ab00
cd00

(i) Find det A.
(ii) Use reduction of determinants to find det(s/ — A).

Exercise 2.7 Find a SISO system (A, B, C, D) that has transfer function

253 452 —55+1

T(s) = .
) st — 653+ 552+ 45 +2

(2.131)

(2.132)

(2.133)

(2.134)

Exercise 2.8 Let (A, B, C, D) be a SISO with transfer function 7. Show that
(AT, cT,BT, D) is also a SISO with transfer function 7', where here AT denotes

the transpose of A.
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Exercise 2.9 Leta, b, d € R and consider
ab
A= .

(i) Show that (A€, &) > O for all £ € R?, if and only if a, d, ad — b > 0.
(ii) Show that if the conditions of (i) hold, then

(det A)'/? < 27 race(A) < ||A|| < trace(A).

Exercise 2.10 Find a SISO system (A, B, C, D) that has transfer function

554+ 753 —6s2+5+2

T(s) = ,
) s —3s3 4452 +75+6

(2.135)

and find numerical values for the eigenvalues of A. Start by dividing numerator by
denominator.

Exercise 2.11 Let A be areal (3 x 3) matrix.

(i) Show that det(s/ — A) has either (a) three real zeros, or (b) one real root and a
pair of complex conjugate zeros.
(i) Show that, in both cases (a) and (b), A has a real eigenvector.

Exercise 2.12 Let

1410
A=1020|. (2.136)
003

Find (sI — A)~', where s is an algebraic variable.

Exercise 2.13 Let

1 -1
A= ; 2.137
B C.137)
find an invertible matrix S and a diagonal matrix D such that

A=SDS L. (2.138)

Hence or otherwise find exp(fA), where ¢ is a real variable.

Exercise 2.14 Find a matrix A such that s* + 253 + s2 4 4s + 2 is the characteristic
polynomial of A. Then find the eigenvalues of A numerically.
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Exercise 2.15

(i) Let A be the 3 x 3 complex matrix

Oab
A=(00c]. (2.139)
000

Find A% and A3, and deduce that the matrix exp(tA) has entries which are
quadratic in ¢.
(i) Let B be a strictly upper triangular 3 x 3 complex matrix

Obl,z bl,n
00 b3 ...

B=|. . (2.140)
00 ... 0

Show that B" = 0, and deduce that exp(¢ B) has entries which are polynomials
int of degree < n — 1.

Exercise 2.16 (i) Find the eigenvalues and eigenvectors V of
2 —1-1
A=1-12 —1}|. (2.141)
-1-12

(ii) By considering expressions of the form Z(¢) = ¢'*V, find the general solution

to
dzZ
=AZ. (2.142)
dt
(iii) By considering expressions of the form Y () = 'V, find the general solution
to
d* =AY (2.143)
a2 ’

This is a model for three identical particles on a common circular track,
connected by elastic springs.

(iv) State how many independent constants your solutions to (ii) and (iii) involve,
and explain why this is the correct number in each case.

Exercise 2.17 (Cross Product) Some books on mechanics use the cross product
X x U if X,U € R3, as in vector calculus. This exercises expresses the cross
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product in matrix terms. Let

S
<
=

9
e
N

so that
bz —cy
Ax X =|cx—az
ay — bx
We write
0 — b
La=| ¢ 0 —a (2.144)
—b a O

and similarly for the other vectors.

(i) Showthat LyX = Ax Xand LsLy — LyLs = Laxy.

(i) Show that L 4 has eigenvalues 0, =i w where w? =a? +b* + 2.
(iii)) Show that exp(L4) = p(L 4) for some quadratic polynomial p.
(iv) By considering the eigenvalues, deduce that for A # 0,

sin w 1 —cosw
exp(La) =L+ " "La+ . Li. (2.145)

w

Exercise 2.18 Let A be a n x n complex matrix with some of the following
properties: (i) upper triangular; (ii) diagonal; (iii) real entries; (iv) nonnegative
entries; (v) positive entries. In each case, (i)—(v), show that exp(A) also has this
property.

Exercise 2.19 Let B € C"*! and C € C*", 50 that BC € M), (C) has rank one.
Find det(I,, + a BC), and find the inverse of I, + « BC when it exists for « € C.

Exercise 2.20 Let Aj, A € M, ,,(C). Show that
sy — A~ = (sl — A) ™ + (I, — AD) ' (Ag — A (sT, — Ap) ™!
for typical s € C and deduce that

rank((sl, — A2) ™' — (sI, — A))7") = rank(4; — A)).
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Exercise 2.21 (Spectral Factorization) Let P(s) and Q(s) be polynomials with
real coefficients which are even so that P(s) = P(—s) and Q(s) = Q(—s) and
suppose that P and Q have no zeros on iR and that the degree of P(s) is less than
or equal to the degree of Q(s).

(i) Show that F(s) = P(s)/Q(s) is even, so F(s) = F(—s), F(iw) is real for
all w € R and that F(s) is proper. Let ay, ..., a, be the zeros of P that in the left
half-plane, and by, . . ., by, be the zeros of Q that are in the left half-plane; then let

n
(s +aj)
G(s) = n’]n 1 J )
[ioiGs+b))
Show that G (s) is stable and free from zeros in RHP, and
F(s) =CG(s)G(—s)

for some constant C.



Chapter 3 m)
Eigenvalues and Block Decompositions of  uix
Matrices

In Chap. 2, we introduced the fundamental MIMO system (A, B, C, D) and solved
it by the matrix exponential functions. For matrices A that are similar to diagonal
matrices, we computed exp(tA). However, this does not address the typical case,
and in this chapter we introduce Jordan decompositions to deal with multiple
eigenvalues by splitting matrices into smaller blocks. The norm of exp(t A) is related
to the position of the eigenvalues of A even when A is not similar to a diagonal
matrix, as the results of this chapter show. We also consider positive definite
matrices, which will turn out to be important in later chapters as an alternative
method for controlling the size of matrix exponentials. We also look at ways of
decomposing the state space. Chapters 4 and 5 can be read independently of Chap. 3,
so readers mainly interested in differential equations can proceed to there.

3.1 The Transfer Function of Similar SISOs (A, B, C, D)

Lemma 3.1 Let X1 = (A, B, C, D) be a linear system with transfer function T (s),
where A is an x n complex matrix. Then for any invertible n x n complex matrix S,
the linear system ¥ = (S7'AS, S7'B, CS, D) also has transfer function T (s).

Proof We simply compute the new transfer function
D+CSsI—S'AS)T'STIB=D+C(sI — A 'B=T(). (3.1

O

This result suggests that one can simplify the original linear system by reducing
the main transformation A to S~'AS with a specific form. The similarity S is
otherwise described by choosing a basis for C"*! other than the standard basis
{e1, ..., en}, so that the new basis is adapted to the matrix A. In particular, in the
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next section we consider Jordan decomposition of A, then in Sect. 3.3 we consider
the implications for the resolvent (s — AL

3.2 Jordan Blocks

A k x k Jordan block with eigenvalue A € C is the matrix

A1 0 ...07
OAr 1 0.
Gy =]70 """ 0 (3.2)
.0 1
00 ...0 A_
H0) =M, ho) = [g ﬂ (3.3)
A10
Js(AMD)=]10xr1 3.4
00X

Jordan canonical form (Jordan normal form)

(i) Let A be an entry on the leading diagonal of a square matrix A such that all the
other entries in the same column as A are 0. Observe if A is in row j, then the
column vector with 1 in row j and O elsewhere is an eigenvector corresponding
to eigenvalue L. Hence A is an eigenvalue of A.

(i1) In a Jordan block, all the entries down the leading diagonal are equal to some
A, all the entries in the diagonal above the leading diagonal are 1, and all other
entries are zero. By (i), A is an eigenvalue of the Jordan block.

(iii)) We put Jordan blocks of various sizes into a block matrix, so that the blocks
on the block diagonal are Jordan blocks. Then all the entries below the leading
diagonal are zero; all the entries in the diagonal directly above the leading
diagonal are O or 1, and all the entries above this diagonal are all zero.

Definition 3.2 (Eigenvalue Terminology)

(1) Each eigenvalue A ; has algebraic multiplicity n j, where n; is the largest power
of (z — A ;) that divides the characteristic polynomial of A.

(ii) For each eigenvalue 2, there is an eigenvector v;. Let E(A;) = {v : Av =
Ajv} be the eigenspace. The geometric multiplicity of A ; is the dimension of
E(Aj).
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(iii) For each A ;, the geometric multiplicity is the number of Jordan blocks that
involve 1 ;, so the geometric multiplicity is less than or equal to the algebraic
multiplicity.

(iv) When a Jordan block has shape k x k, where k > 1, it has both eigenvectors
and generalized eigenvectors. A generalized eigenvector is v # 0 such that
(AjI —A)"v=0forsomem =2,...,k.

Example 3.3 Consider the matrix A that is given by

21 L. 0
0 2

L2510, ..

: 021

A= .0 02 ... (3.5)
2*
2*

: 3%

[0 ... 3* |

in which zeros outside the Jordan blocks on the diagonal are mostly omitted. Here
the eigenvalues are marked 2* and 3*; these are the only entries in their own column;
the eigenspaces are E(2) of dimension 4 since there are four blocks involving
eigenvalue 2, and E(3) of dimension 2 since there are two blocks involving
eigenvalue 3. The eigenvalues are 2, 2, 2, 2, 3, 3 and the corresponding eigenvectors
are ey, e3, eg, €7, eg, e9.The matrix A has Jordan blocks

L)@ 2@ 1(2) S 12 & J13) @ J1(3) (3.6)

and A has shape 9 x 9since 2+3+ 14 141+ 1 = 9; the characteristic polynomial
is

xa(s) = (s —2)7(s — 3)? 3.7)

which is given by the product of the diagonal terms of s/ — A and has roots
2,2,2,2,2,2,2,3, 3; the minimal polynomial is

m(s) = (s —2)°(s — 3) (3.8)

since the largest block involving eigenvalue 2 is J3(2) and the largest with
eigenvalue 3 is J1 (3).
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Remark 3.4 Computing eigenvalues

(i) One way to compute eigenvalues is to solve the characteristic equation (2.39),
either algebraically or numerically. Computers can employ some special
algorithms to find approximate values for eigenvalues.

(i) For complex matrices up to and including size 4 x 4, it is possible to compute
the Jordan canonical form by using algebraic results as in Sect. 6.3 on stable
cubics. However, computing JCF by hand is a bore.

(i) In any method, multiple eigenvalues are a technical challenge. MATLAB has
a command jordan for finding the JCF.

(iv) However, computers find it easy to check whether matrices are positive definite
as in Theorem 3.23, so researchers have found clever ways to use linear matrix
inequalities instead of computing eigenvalues.

(v) Given n x n complex matrices Aj and A, we can compute a Jordan canonical
form for A; and a Jordan canonical form for A,. However, the bases and
similarity matrices that we choose for A; and A, might not be related to one
another in any simple way. The topic of simultaneous reduction of matrices
is complicated, and various results discussed in [28]. In some applications to
linear systems, it is possible to avoid this problem by using results such as
Proposition 7.10.

Theorem 3.5 (Jordan Canonical Form) Let A be an (n X n) complex matrix.
Then there exist S an invertible n x n complex matrix, a partition of n inton =
ki +ky+ -+ krand kj x k; Jordan blocks ka (Aj) where ) is some eigenvalue
of A, such that A is similar to the sum of Jordan blocks

Jg1) 0 ... 0
0 Jup) O ... L
A=S ) ] N (3.9)
: 0 0
0 cee 0 Ik ()
Proof See [20] page 183. O

3.3 Exponentials and Eigenvalues of Complex Matrices

Lemma 3.6 Let A be a (n x n) complex matrix with eigenvalues A;, where
max; NA; < B for some real B.

(i) Then the entries of exp(tA) are complex linear combinations of tXe'*i for
integersk =0,1,...,n — L.
(ii) There exists M such that

llexp(tA)| < MeP' (¢ > 0). (3.10)
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The condition %A; < B means that the point A ; lies strictly to the left of the
vertical line in the complex plane through 8 on the real axis.

Proof Reducing to Jordan blocks: From the Jordan canonical form 3.5, we have

exp(tJk, (A1) 0 ... 0
0 exp(tJi, (A2)) 0 .. 1
exp(tA) =S . ] S, (3.11)
: 0 i 0
0 0 exp(tJi, (1))

so we consider a typical block Ji (1). Now

A0 ... ... 0 010...0
or 0 ... 001 O ...
JW=|:0". " |[+]:0". 0 (3.12)
: .0 : o
0O ... 0Ax 0O ...0 0
which we write as
Je(A\) = Al + Ng (3.13)

where Ny is strictly upper triangular, and I and N; commute, so the exponential of
a Jordan block is

exp(tJx (L)) = exp(tAly) exp(t Ny). (3.14)
Now N,f = 0, so we have a polynomial of degree k — 1 < n
exp(tNg) = I + tNg + -+ I* NGk — 1) (3.15)
and | exp(A)| = ¢'™*, hence we obtain the bound

! ||Nk||k_l>

exp iGNl < e™ (14 1INkl + -+ + k- 1!

(3.16)

Hence

r
lexp(t Al < SIS~ Z ll exp( Ji; (Al
j=1
k —1 Z”

Nl
< ISHs~ 1||Z A Z
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Now choose ¢ > 0 such that )id; + ¢ < 8.
For all + > 0, we have

. t+£2t2+ +82te+ >8£te
TOTET o = 0

so 1t < £1ef! /e, Observe that rfe~*! is bounded for all t > 0, also e/ < Ple—¢!

SO

r kiz ‘nNk I
M =sup (eSS 1Y ) (3.17)
t>0 _
j=1 ¢=0
is finite. Hence
lexp(A)| < MePT (1 > 0). (3.18)
O

The following result gives conditions under which solutions grow.

Proposition 3.7 (Growth of Solutions) Let A be a n X n complex matrix and
consider

dX

dr 0 0 (3.19)

where the initial value Xo € C"*! is to be chosen.

(i) Suppose that A has an eigenvalue A such that R > 0. Then there exists a
solution that grows at exponential rate R, so | X (1)|| < Me™ forallt > 0
for some M > 0.

(ii) Suppose that A has an eigenvalue A of geometric multiplicity k > 1 such that
NRA = 0. Then there exists a solution that grows at polynomial rate k — 1, so
I1X(| <M1 +t*=) forall t > 0 for some M > 0.

Proof

(1) Let V be an eigenvector corresponding to eigenvalue A, and with Xo = V
introduce the solution X (f) = exp(tA)V. Then X () = 'V satisfies | X| =
e ||V ||, hence grows exponentially at rate ;A > 0.

(ii) Here A is similar to a Jordan block matrix that contains a Jordan block Jx (1) =
My + N, where

M= (3.20)
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and N,’: = 0. Then

tk*lNkfl
exp(tJi (X)) = exp(tAly) exp(tNi) = e’l(lk + N+ -+ k'k ,
(321
so the exists an invertible matrix S such that
. . k—1
ISIIS™ Il exp(A) || > |S™" exp(tA)S|| = [ exp(t Sk W) = e
(3.22)

Hence we can choose X to produce a growing solution.

This result does not assert that every solution grows, only that some initial
conditions produce growing solutions. the result does not apply to the situation
in which A has eigenvalues of geometric multiplicity one on the imaginary axis
RA = 0. To address this subtle case, we introduce the notion of resonance in
Chap. 5. O

3.4 Exponentials and the Resolvent

Definition 3.8 (Resolvent) Let A be n x n complex matrix with set of eigenvalues
o ={Aj;j =1,...,n}. Here o is called the spectrum, C \ o is the resolvent set,
and the matrix function R(s) = (sI — A)~' on C \ o is called the resolvent.

Proposition 3.9

(i) (Resolvent identity) The resolvent R(s) = (sI — A)~! satisfies
R(s) — R(A) = (A —s)R(s)R()). (3.23)

(ii) Also R(s) is a differentiable function such that

st(s) = —R(s)?

when s is not an eigenvalue of A.
Proof
(i) We have

M—A=(I—A)+0—s)I
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which we multiply on the left by R(A) = (A\] — A)~! and multiply on the right
by R(s) = (sI — A)~! to give

R(s) = R(\) + (A — s)RODR(s).

(ii)) When s is not an eigenvalue, R(}) is a continuous function of A on an open
neighbourhood of s. We deduce from (i) that

R(s) —R() _
o, =-ROR®

— —R($)? (A —9),
so R(s) is complex differentiable.
O

There are various formulas for the resolvent, including the following one which
links the exponential to the resolvent.

Proposition 3.10 (Resolvent Formula) Let A be an (n x n) complex matrix such
that || exp(tA)|| < MeP! for all t > O Then for Rs > B, the matrix sI — A is
invertible with inverse

(sI — A = /oo e exp(tA)dt. (3.24)
0

Proof We have

(sI — A)exp(t(A —sI)) = —jt exp(t(A — sI)) (3.25)
SO
R R d
f (sI — A)exp(t(A —sI))dt = / — 4, SPU(A = sD)dr (3.26)
0 0

so by Fundamental Theorem of Calculus

R
(sI — A)/ exp(t(A — sI))dt = [ — exp(1(A — s1))](’f =1 —expR(A —sI);
0
(3.27)

where

llexp R(A — sD)|| = ||exp RA||le k| < MPR-RYs (3.28)
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where 8 — Ms < 0, so by the assumption on s, we can take the limit as R — oo to
obtain

(sI —A) /OO exp(t(A —sI))dt = 1. (3.29)
0

Hence s1 — A is invertible. O

The following diagram gives the basic MATLAB commands for computing
these.

expm
tA exp(tA4)
mv lap

(sI — A~ !

Proposition 3.11 (Spectral Radius Formula) Let p = limsup,_, ., [|A"[|'/".

(i) Suppose thats € C has |s| > p. Then

o0 An
R(s) = Z s (3.30)
n=0

converges and satisfies R(s)(sI — A) = (s — A)R(s) = I.
(ii) The spectrum of A is contained in the closed disc {). € C : |A| < p}.

Proof

(i) The n'" term in the series has norm || A”||/|s|"*! where

At p

lim sup D/ = g

n—oo |S

<1 (3.31)
hence the series converges by the n'” root test. Let

11 1, 1 5 1
Ru(s)= I+ A+ A2+ Ad4...4 A (3.32)
S ) S S )
SO

1
SRy(s) — ARy(s) =1 — A", (3.33)
A
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so R, (s) — R(s) asn — oo, where (sI — A)R(s) = I. Likewise R(s)(sI —
A)=1.

(i) The series for R(s) converges whenever |s| > p, and gives an inverse for s/ —A.
Hence det(s/ — A) # 0, and s cannot be an eigenvalue of A. Conversely if v
is an eigenvector corresponding to eigenvalue A, then ||[A"v| = |A|*||v], so
limsup,,_, o [|A"[|"/" > |A], 50 p > [A].

O

3.5 Schur Complements

Definition 3.12 (Schur Complements) Given an invertible n x n matrix A, the
Schur complement of A in the block matrix

AB
[ c D} (3.34)

is D — CA™!'B. For D square and invertible, the Schur complement of D is A —
BD"!C.

Example 3.13 The Schur complement of A — s/ in

A—sI B
3.35
] (335)
is the transfer function
T(s)=D—C(A—sI)"'B=D+C(sI — A)~'B. (3.36)

For the next two results, we specialize to the shape

A B nxnnxk
U= . 3.37
[C D] |:k xnk x k:| (3-37)
Lemma 3.14 Suppose that A is invertible. Then
det [2 g } = det(A) det(D — CA™'B). (3.38)

Proof One can show that

[C D} B [CA—l 1} [0 D— CA—lg] [0 ] } (3.39)
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and one deduces the required result form taking the determinant of these matrix
products. The final matrix is upper triangular with 1 on the leading diagonal, hence
has determinant 1; the first matrix on right-hand side is lower triangular with 1 on
leading diagonal, hence has determinant 1. O

Proposition 3.15 (A Determinant Formula for Realization by SISO) Ler
T(s) = D+ p(s)/q(s) be a proper rational function, where q(s) is a monic
polynomial and p(s) is a complex polynomial of degree less than q(s). Then
T(s) can be realized as the transfer function of a SISO (A, B,C, D), so
T(s) =D+ C(sI — A)~'B, where

* A is a companion matrix with final row given by the coefficients of q (s) after the
leading coefficient, reversed in order and with minus signs;

e Bisthe column[0;...;0;1];

* C is a row vector given by the coefficients of p(s), reversed in order;

e DisgivenbyT(s) — Dass — oo.

In particular, with A, B, C as above and D € C,

A—slI B
det
CcC D
T(s) =
det[A — s1]

Proof This follows by combining the Example 3.13 and the Lemma 3.14. For a
SISO, the entry D is a scalar. O

Proposition 3.16 Suppose that A and D — CA™'B are invertible. Then U is
invertible with inverse

|:A Bi|_l B [A‘l +A'B(D—CA~'B)"lCA™! —A~'B(D — CA‘IB)‘I}

CcCD —(D—-CA™'B)"lca™! (D—-CA™'B)~!
(3.40)
Proof To motivate this formula, we carry out elementary row operations on
AB|IO0
V= , 3.41
|:C D|0 Ii| ( )

and thus find the inverse of U. An elementary row operation on V amounts to
multiplying V' on the left by an invertible matrix E to form E'V.
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Since A is invertible, we have row equivalences

AB|I10] [1A'BIATTO
CD|O0I C D | 01
I A7'B | A7l o0
~ 3.42
[OD—CA‘lB|—CA‘1 1} (342)

It is now clear that the 2 x 2 block matrix is invertible if and only if D — CA™!'B is
invertible, in which case we have

I A7'B | Al 0
Vo~ —1py—lpa—1 —1py—1
0 I |—-(D-CA'B)y'ca ' (D-CA'B)
_[ro1Aa'+ A B(D—CcAT'B)IcAT —ATIB(D - CATIB)!
01| —(D—-CA™'B)"lca™! (D—-CA~'B)~! ’
(3.43)

so the inverse is the right block, namely

[A B}l B [Al + A 'B(D-CA 'B)"'CA™! —A~'B(D - CAIB)I}
cD| — —(D—-CA'B)"IcA! (D—-CA~'B)! ‘
(3.44)

O

3.6 Self-adjoint Matrices

We write z = (Zj)?zl and w = (wj)?:p and introduce the inner product (z, w) =
_1 zjw;. With linear operators T : — the adjoint has 7"’ : —
?1]_] With li p T:C" C" the adjoint has T’ : C" cm

and is characterized by the identity

(Tv,w) = (v, T'w) weC"weCh (3.45)

for the standard inner product. For many purposes, (3.45) is the most helpful way to
think about the adjoint, instead of the matricial definition 2.15. In particular, one sees
that for n x n matrices A and B, the adjoint reverses the order in matrix products,
so (AB) = B’A’.

Lemma 3.17 Let A € M,,,,(C).

(i) If (AX, X) =0forall X € C", then A = 0.
(ii) A= A"ifandonly if (AX, X) is real for all X € C".
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Proof

(i) We need to consider complex vectors X, as evidenced by the example in
M>x2(R) given by

CLLL- coem o

We take X, Y € C" and s € C, and write

0=(AX +sY), X +sY)

= (AX, X) + s(AY, X) + 5{AX, Y) + Is|*(AY, Y)

=s(AY, X) +5(AX,Y), (3.47)
so by considering s = ¢ and s = it for t € R, we deduce that (AX, Y) = 0, so
A=0.

(i1) We have
(AX, X) e R& (AX, X) = (AX, X) & (AX, X)
=(X,AX) & (AX, X) = (A'X, X)

and by (i), this is equivalentto A = A’.

Definition 3.18 (Self-adjoint)

(i) We say that A € M, «,(C) is self-adjoint if A = A’.
(ii) We say that S € M, «,(C) is skew self-adjoint if S = —S. Often one says that
S is skew. Equivalently S = i A where A is self-adjoint.

Example 3.19 For any A € M, x,(C), the operators A + A’, AA’ and A’A are
self-adjoint, whereas A — A’ is skew self-adjoint.

Theorem 3.20 (Spectral Theorem for Self-adjoint Matrices) Suppose that A €
M5, (C) is self-adjoint, so A = A'.

(i) Then the eigenvalues of A are all real,
(ii) eigenvectors corresponding to distinct eigenvalues are orthogonal, and
(iii) there exists a unitary matrix U such that UU' = U'U = I and A = UDU'’
where D is a real diagonal matrix.

Proof

(i) For an eigenvalue A with corresponding eigenvector X, we have AX = AX, so
MX, X) = (AX, X) = (X, A'X) = (X, AX) = L(X, X), (3.48)

and (X, X) = || X||> > O since X # 0,50 A = A.
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(ii) For an eigenvalue A with corresponding eigenvector X, and an eigenvalue p
with u # A with corresponding eigenvector Y, we have

MX,Y)=(AX,Y) = (X,A"Y) = (X, AY) = u(X, Y), (3.49)
so(X,Y)=0.

(iii)) We find the largest eigenvalue A;. The set K| = {X € C" : (X, X) = 1} is

closed and bounded, so the function K — R : X — (AX, X) is bounded and

attains its supremum. We write A for this supremum, and choose X € Kj

such that (AX1, X1) = A1(X1, X1). Then for any fixed Y € C", the real
function

f@) = (AX1+1Y), Xy +1Y) = A (X1 +1Y, Xy +1Y) (reR) (3.50)
has f(¢) <Oforall  and f(0) = 0, so by calculus

0= CZ(O) = (AX1, Y) + (AY, X1) =0 (X1, V) = a(Y. X1) - (35D

SO
(AX] — M X1, Y)+ (Y, AX| — M X) =0; (3.52)
but Y was arbitrary, so we can choose Y = AX| — A1 X to deduce that
(AX) — X1, AXy — M Xy) =05

hence AX; — A1 X1 = 0 and we have an eigenvector X| with corresponding
eigenvalue Aj.

Observe that
(X, X1)=0= (X, M X1)=0= (X,AX)=0= (AX, X)) =0. (3.53)

Hence we can repeat the argument with K, = {X € C" : (X, X) =1, (X, X1) = 0}
in place of K to find another eigenvalue A;. Thus by an induction argument we can
find eigenvectors X1, . .., X, and corresponding eigenvalues A1, .. ., A,. By (ii), the
eigenvectors X ; of A are orthogonal, so we can choose them so that (X ;, X;) =0
for j # kand (X;, X;) = 1.Then U = [X; ... X,]satisfies U'U = I. Also U'AU

is the diagonal matrix D = diag[Aq, ..., A,]. O

Exercise

(i) Suppose that A = A’. Show that the eigenvalues {Af, ..., Ay} of A determine
the norm of A via ||A]| = max{[A;|:j=1,...,n}

(ii) Let B be am x n matrix. Show that B’B and B B’ are square matrices and their
largest eigenvalues are equal.
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Exercise Suppose that K = K’ has all its eigenvalues positive. Using the spectral
theorem, show that

(i) K isinvertible, and the inverse K —1 4150 has all its eigenvalues positive;
(ii) there exists a L such that L' = L, all eigenvalues of L are positive and L> = K.
This L is unique, and is known as the positive square root of K.

The following result is a variant of the rank-nullity theorem 2.2.

Proposition 3.21 Let A € My, (C) and let V = {x € C" : A’x = 0} be the
nullspace of A’

(i) Then 'V is a linear subspace of C", and its orthogonal complement V+ = {y €
C": (y,v) =0,Yv € V}isequal to the range {Ay : y € C"} of A.
(ii) Also A" maps V into V, and A maps V= into V+.
(iii) rank(A) = dim(V+) = r and nullity(A) = dim V =k, wheren =k +r.
(iv) There exist a unitary U € My, (C), A1,1 € My« (C) and A12 € M,k (C)
such that

U'AU — [Am A1,2:| UAU = |:A/1,1 0] .
0o 0]’

Proof

(1) Forx,z € Vand A, u € C, we have A’(Ax + uz) = AA’x + uA’z = 0, so
Ax 4+ puz € V. Hence V is a linear subspace of C". To identify its orthogonal
complement, we observe that x € V if and only if (y, A’x) =0 forall y € C"
so (Ay, x) = 0 for all y; so x is perpendicular to the range of A.

(i) This follows from the definition of V and (i).

(iii) We have an orthogonal direct sum C" = V& VL, so we can add the dimensions
n = dim(V) + dim(V ). Note that the row rank of A is equal to the column
rank of A, so rank(A) = rank(A’).

(iv) Using the Gram-Schmidt process or otherwise [? ], we choose an orthonormal
basis {eq, ..., e} of V< and an orthonormal basis {ers1,...,en} of V and let
U be the unitary that takes {ej, .. ., e,} to the standard basis of C". The matrix
decomposition then follows from (ii).

O

3.7 Positive Definite Matrices

Definition 3.22 (Positive Definite) An n x n complex matrix K is said to be
positive definite if K = K’ and (KZ, Z) > 0 for all Z € C" such that Z # 0;
we write K > 0. We say that L is negative definite if K = —L is positive definite;
we write L < 0.
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Beware that the product of positive definite matrices is generally not positive
definite. Exercise 3.7 gives basic properties of positive definite matrices. The
fundamental characterization is the following theorem. A principal leading minor
is the determinant of one of the top left corner blocks of a matrix.

Theorem 3.23 (Sylvester) Let K be a (n x n) complex matrix such that K = K'.
Then the following are equivalent:

(i) (KZ,Z) > 0forall Z € C" such that Z # 0;
(ii) the eigenvalues kj of K are all real and k; > 0 for all j;
(iii) the leading principal minors A; of K are all positive, so Aj > 0 for all j.

Proof (i) = (ii) For an eigenvector X with corresponding eigenvalue «, we have
kX =KXsok(X,X)= (KX, X)>0,hencex > 0.

(ii) = (i) By the spectral theorem, we have K = U DU’ where D is the diagonal
matrix with entries the eigenvalues of K, which are all positive, so (i) follows.

(i) = (iii) Let K; be the j x j submatrix of K in the top left corner. Then
(K;jX, X) > 0by (1). Then the eigenvalues of K; are all positive since (i) = (ii);
hence A; = detK; > 0.

(iii) = (i) The proof is by induction on the number n of rows of the matrix.
The basis of induction is the case n = 1, which is evident. Suppose that (iii) = (i)
holds for matrices with n rows, and consider n + 1; that is, consider a self-adjoint
matrix K of the shape

K — A/B nxnnxl (3.54)
B D 1xnlxl

and suppose that all the leading minors have A; > 0. Then by the induction
hypothesis, A is positive definite, and in particular is invertible; also A has a positive
definite square root A!'/2 with inverse A~!/2 by the exercises. Then

Apg1 = det [A B\ _ (det A)(D — B'A™'B) = A, (D — B'A™'B) (3.55)

B/D}
so the final factor is positive. We can then write
A BY[X] [x . >
=(AX, X B, X X,B D
([B,DHJ,M} (AX, X) +&(B, X) + E(X, B) + DIg|

= |A"2X +£AT'2B|? + (D — (A7'2B, A7'2B)) g2,
(3.56)

which is a sum of nonnegative terms. If £ # 0, then the final term is positive;
whereas if £ = 0, then we are left with (A X, X) which is positive unless X satisfies
X = 0. Hence the matrix K is positive definite. O
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For small matrices, (iii) is easy to check, and computers can carry out (iii) in
exact arithmetic for medium sized matrices. For large sized matrices, computers
can handle (i). The condition (ii) involves the eigenvalues, which are useful to find
for other purposes, but can be difficult to locate exactly.

Example 3.24 Part (iii) of the Theorem 3.23 is about positive leading minors;
whereas nonnegative leading minors themselves do not carry much information.
The leading minors of

00
A= |:0 _1j| (3.57)

are Ay =0 > 0and Ay = 0 > 0, but A has a negative eigenvalue —1 and is not
positive definite.
Exercise Let B € M,x,(C). Show that the following are equivalent :

@ 1Bl =1
(ii) B’B has all its eigenvalues less than or equal to 1;
(iii) ((I, — B'B)X, X) > Oforall X € C".

Definition 3.25 Let K be a (n x n) complex matrix such that K = K’, and the
eigenvalues «; of K are all real and k; > 0 for all j. Then K is said to be positive
semidefinite.

3.8 Linear Fractional Transformations

An important idea is to compare the scalar function 1/(s — A) with the matrix
function (s — A)~!, especially when A is chosen to be an eigenvalue of A. To
do this systematically, we broaden the scope of the scalar valued functions slightly,
and consider linear fractional transformations.

Definition 3.26 (Linear Fractional Transformations) Given an invertible matrix

M= [i 2} (ad — bc # 0) (3.58)

we introduce the Mobius or linear fractional transformation

ous) = (cs +d # 0). (3.59)

Example 3.27 The following are linear fractional transformations:
Ty (s) = s + «a, translation through o € C;
D, (s) = rs, dilation through scale factor r > 0;
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Ry (s) = €'?s, rotation about 6 € [0, 27);

J(s) = 1/s, the reciprocal map. This is not to be confused with s +— s/ Is|2,
which gives inversion in the unit circle.

Conversely, any linear fractional transformation is a composition of some
combination of these basic transformations.

To see this, we consider ¢y, as above; there are two cases:

suppose ¢ = 0; then a, d # 0 and we have ¢y (s) = (a/d)s + b/d. so we make
a polar decomposition a/d = re'? and write ppr(s) = rei®s + b/d, so gy is the
composition of Ry followed by D,, followed by 7, with o = b/d.

Now suppose ¢ # 0, and write

a (ad — bc)/c

om(s) = . s+ d (cs+d #0), (3.60)

which we can express as a composition of the basic transformations, including J.

Let C be the set of circles and straight lines in C. A typical circle has centre o and
radius 7 > 0, so has the formulas |s — | = r, 50 55§ — a5 —@s + |«|> = r?; a straight
line has the form y = mx + ¢ withm, c € R, so (s — 5)/(2i) = m(s +5)/2 + c; or
x =d withd € R, so s + 5 = 2d. We suppose that straight lines pass through co.

Proposition 3.28 Linear fractional transformations map C to itself.

Proof By the example, it suffices to show that T, D,, Ry and J all map C to itself.
The most challenging case is J, so we consider the line s 4+ 5 = 2d, which J maps
to s +§ = 2dss, which is a circle with centre 1/(2d) and radius 1/|2d| for d # O.
For s 4 5 = 0, we have the imaginary axis, which is mapped by J to itself. Other
cases are proved likewise. O

Example 3.29 The following linear fractional transformations are particularly
important.

1) @(s) =, is used in changes of variable A = s+ with inverse s = .

(1) ¢(s) = i;i takes RHP = {s € C: Rs > 0} onto the unit disc D(0, 1) = {s €
C:|s| <1}

(iii) Suppose that a,d, c,d € R with ad — bc > 0. Then ¢y (s) takes the upper
half plane {s : Js > 0} onto itself. The inverse function is

“l(5) = (s) = ds—b (—es+a #0)
Om ) =Pyt = —cs+a ’

which has a similar form.

Example 3.30 LetT(s) =d+c(s —a)~'b, which is the transfer function of a linear
system with one-dimensional state space. Then {7 (iw) : —00 < w < oo} is a circle
or straight line in C, passing through d.
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3.9 Stable Matrices

Definition 3.31 A complex matrix A is said to be stable if all of its eigenvalues lie
inLHP ={) € C: %A <0}

Proposition 3.32 Ler A be stable, and let o € (0, 00) and B € [0, 00). Then A/,
oA — BI and —(I — aA)~! are also stable.

Proof First observe that det(Al — A) = 0 if and only if det(h — A') = 0, s0 A is
an eigenvalue of A if and only if A is an eigenvalue of A’. Also A = RA, which
shows A’ is stable if and only if A is stable.

The equations (¢A — Bl)w = pw and Aw = (u + B)w/a are equivalent. In
particular, choosing v to be an eigenvector of A corresponding to eigenvalue A, we
have (¢A — BI)v = (aAr — B)v, where f(aA — ) < 0. The eigenvalues of ¢ A — 1
are oA — 1, where X is an eigenvalue of A, so oA — 1 # 0 and ¢ A — [ is invertible.
Also, —(I — «A)~! has eigenvalues —1/(1 — aA), where

-1 Car—1
N =N < 0. (3.61)
1 —ai [T —ail?

O

The notion of stability is fundamentally important in linear systems. Later we
see how stability of A relates to other notions of stability, such as stability of
polynomials and stability of transfer functions. The definition involves locating all
the eigenvalues, which can be computationally difficult for large matrices. Hence we
introduce a stricter notion called strict dissipativity, which can be checked without
finding eigenvalues, and is a route towards proving stability. See [28] for more
details.

3.10 Dissipative Matrices

Definition 3.33

(i) A n x n complex matrix is strictly dissipative if fi{Av,v) < O forall v €
C"*1\ {0}. Let D, be the set of n x n strictly dissipative matrices. See [18].
(il)) A n x n complex matrix A is contractive if ||A|| < 1.

Exercise

(i) Show that
2R (Av, v) = (Av, v) + (Av, v) = ((A + A)v, v) (3.62)

where A + A’ is self-adjoint.
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(i) Suppose that A = [a jk]’}’ k= 1s stricly dissipative. Show that the diagonal
entries satisfy fa;; < 0, and trace(A) < 0.

(iii) Suppose that A = A’. Show that A € D, if and only if all eigenvalues of A lie
in (—o0, 0). (Hence A is negative definite.)

The following diagram describes the location of the eigenvalues of various types
of matrices.

eig
skew iR
A — iA
. eig
self-adjoint R
A
C -
. . eig
negative definite (—00,0)
A A+ A4 -
o eig
strictly dissipative LHP

Proposition 3.34

(i) If A € Dy, then A is stable.

(ii) A — BI € Dy, forall A € Dy, a € (0,00) and B € [0, 00).

(iii) A € Dy ifandonlyif A’ € D,,

(iv) AeDyifandonlyif A+ A’ € Dy, that is (A + A) is negative definite;

(v) If A1, Ay € Dy, then A1 + Az € D,,.

(vi) I —aA € Dy forall A € D, and « € [0, 00), and ||(I — aA)_1|| <1.
(vii) The Cayley transform matrix Z = (I + A)(I — AL satisfies | Z|| < 1.
(viii) For A € D, there exists k > 0 such that

lexp(tA)| <e™  (t>0). (3.63)

(ix) Conversely, if A is an n x n complex matrix that satisfies the inequality of
(viii) for some k > 0O, then A € D,,.
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Proof

(i) The eigenvalue equation gives v € C"*! \ {0} such that Av = Av, so
R(Av, v) = RA(v, v) (3.64)

where 9i(Av, v) < 0and (v, v) > 0,s0 RA < 0, and A is stable.
(ii) Forall v e C"*!\ {0}, we have

N((@A — BDv, v) = aR(Av, v) — B{v,v) <O. (3.65)
(iii) We observe that
(Av, v) = (v, A'v) = (A'v, V), (3.66)

so R{Av, v) = R(A'v, v), hence (iii).

(iv) The proof of (iii) also gives (iv). Observe that A+ A’ is self-adjoint and strictly
dissipative, ie equivalentto K = —(A 4+ A’) being positive definite.

(v) Likewise, we have

N((A1 + A)v, v) = R(Ajv, v) + N(Aw,v) <O0. (3.67)
(vi) By the Cauchy-Schwarz inequality, we write
I —aA)v][lv]l = R —aA)v, v) = (v, vV)—aR(Av,v) > [lv]*  (3.68)

for all v € C"*!. From this we deduce that ||(I — ¢ A)v| > ||v]l, so [ — A
has zero nullspace and hence is invertible. For all w € C"*! there exists
veCsuchthatw = (I —aA)v and |w| > |( —aA)  w].

(vii) We have

I + Al = (v, v) + ((A + A, v) + (Av, Av)
< (v,v) — ((A+ A)v, v) + (Av, Av)
=~ Avl?,
and since I — A is invertible, we can replace v by v = (I — A)~'w to give
I+ AT = A w] < w].

(viii) First we show that the exponentials satisfy || exp(tA)|| < 1 for all # > 0. For
v € C"™! the function V(1) = (exp(tA)v, exp(tA)v) is non-negative and
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(ix)
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V(0) = ||v]|>. Also V (¢) is differentiable, with

d‘t/ = (Aexp(tA)v, exp(tA)v) + (exp(tA)v, Aexp(tA)v)

= ((A+ A exp(tA)v, exp(tA)v) <0, (3.69)
since A is dissipative, so V (¢) is decreasing. Hence

]2 = V(0) > (exp(tA)v, exp(tA)v) = || exp(tA)v]|> (t > 0).
(3.70)

We refine this estimate as follows. Consider the unit sphere §"~! = {v €
C" : |lv|| = 1}, and the continuous map §" 1 5 R v > R(Av, v), which
attains its supremum at vg, say. Then R(Av, v) < R(Avg, vo) = —kp, where
ko > 0 since A is strictly dissipative. Then A + (ko/2)I is also strictly
dissipative since

R((A + (ko/2))v, v) = R({Av, v) +k0/2 < —Ko/2 <0, (3.71)
forall v € 8, s0 R((A + (ko/2))v, v) < —kol|v||?/2 forall v € C".

Then we write exp(tA) = e¥0t/2 exp(t (A+(xo/2)1)t), so by the previous
estimate, we have

lexp(tA)|| < e /2|l exp(t(A + (ko/2)Dt)|| < e™¥2  (t > 0).
(3.72)

Let W(t) = (exp(t(A + «I))v, exp(t (A + «1))v), which satisfies W(r) <
W (0) by hypothesis, so (W(#) — W(0))/t < 0 for all # > 0, hence taking
t — 0+, we deduce that

(A4 kD, v) + (v, (A +xDv) = W (0) <0, (3.73)

so A is strictly stable.
O

Remark 3.35 Part (iv) of the Proposition 3.34 can be checked in many different
ways, as discussed in Theorem 3.23. Part (v) is a simple result, but can be used
even when A and A, do not commute. For these reasons, it is a good idea to check
whether A is strictly dissipative before embarking on an eigenvalue hunt to see
whether A is stable.



3.10 Dissipative Matrices 73

The following diagram summarizes the effect of the matrix exponential function,
denoted expm in MATLAB, on some spaces of matrices.

expm .
skew unitary
A iA
.. expm ..
self-adjoint self-adjoint
- C
. . expm . . .
negative definite self-adjoint and contractive
A A+ A C

. C expm
strictly dissipative contractive

Proposition 3.36 Forall A € D,,

(1 — ’;A)_m Soexp(tA)  (m—00), (1 > 0). (3.74)

Proof See [18]. The relevance of the following calculation will become clear at the
end of the proof. Let X be a Poisson random variable with parameter m, so that
P[X = k] = e ™mk/k! fork =0, 1,.... Then X has expectation

(e.¢] (e.¢] kmk oo mg
— — — —m — —m —
EX =) kP[X=kl=) e o =me > o = (3.75)
k=1 k=0 =0

and X2 has expectation

o0

EXx? = Zkz]P’[X = k]
k=1
o0

_ktk—Dmk S kmk
P IUERRD DU
k=0

k=0
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o 14 0 l
2 —m§ : —m§ :
=m-e me
2! + 2!
=0 {=0
=m2—|—m.

Then the variance of X is EXZ — (EX)? = m, so the standard deviation is J/m. Also

EIX —EX| < (E|X —EX?)"? = /m (3.76)
SO
> >, |k — m|mF
E|X —EX| = Z|k—m|P[X=k] =e—mz . (3.77)
k=0 k=0

is bounded above by +/m.
We choose o = ¢t/m > 0 and observe that by (vi),

H (1 - ,;A)_m”H < Jvll. (3.78)

To prove the limit formula, we introduce L = (I —tA/m)~!, so that ||[L|| < 1
by (vi),and L — I = (tA/m)({ — tA/m)_l, o)

m(L—1)=tAI —tA/m)~" —> A (3.79)

as m — 00, hence one can check that exp(m (L — I)) — exp(tA) as m — oo.
We have

exp (m(L — 1)) — L™ = e " (exp(mL) — " L")

S krk o m, k
m m*L L™m
=e (Z k! _Z k! )

k=0 k=0

o kerk m
om m*(L* — L™)
=) Koo

k=0

Now for k > m, we have
Lk _ Lm — (Lk—m _ I)Lm — (L _ I)(Lk—m—l +Lk—m—2 + +I)Lm
SO

LS =" < IL=1H(IL " 4+ DL < k=—m)IIIL =11 (3.80)
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and likewise for k < m, we have

ILK — L™| < (m — k)L —I]. (3.81)
Hence we have
e K| L™ — LK e mKm — k|
Hexp(m(L—I)))—Lmufe "y N <=1y "
k=0 k=0
(3.82)

which by the example of Poisson random variables is

H exp (m(L — 1)) — L™ < /m|L —I|
tA tAN\—1
= (=)
- t]|All
< Jm
Hence
AN tA
(1 — mA) —exp (tA(I - )) S0 (m— o). (3.83)
i
Proposition 3.37 (i) Suppose that a,d, c,d € R with ad — bc > 0.
(i) Then
©0=%""" (es+d#0) (3.84)
o(s) = ics +d ics #* .

takes RH P onto RH P.

(ii) If A has all its eigenvalues in LHP, then ¢(A) also has all its eigenvalues in
LHP.

(iii) If A is strictly dissipative, then ¢ (A) is also strictly dissipative.

Proof

(i) Consider ¥ (s) = f;j:g, which maps the upper half plane onto itself. Then
¢(s) = —iY(is), and this has the effect of rotating the left half-plane through
/2 to the upper half plane, transforming the upper half plane by i, then

rotating the upper half plane back to the left half-plane. The inverse function is

o= BT i tazo. (3.85)

—ics +a
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(i) Let A be an eigenvalue of A in LHP with corresponding eigenvector v, so
Av = Av. This equation leads to (aA—ibl)v = (ar—ib)vand (icA+dI)v =
(ick+d)v, so p(A)v = p(X)v, so p(A) has eigenvalues in the left half-plane.

(iii) We consider
@(A) + (A
= (icA+dI) " (aA —ib]) + @A +ibD)(—icA +dI)~!
— (icA+dD)7! ((aA —ibI)(—icA  +dI)
Y (icA+dD@aA + ibI))(—icA’ +dn!
= (icA+dI)""(ad — be)(A+ A (—icA +dI)~!
in whichad —bc¢ > 0,icA+d]I is invertible and —(A+ A’) is positive definite,

so —(@(A) + @(A)’) is also positive definite.
O

3.11 A Determinant Formula

Lemma 3.38 Let A and B be (n x n) complex matrices.

(i) Then the characteristic polynomials of AB and BA are equal
det(s] — AB) = det(s] — BA). (3.86)

and the eigenvalues of AB are equal to the eigenvalues of BA.
(ii) Fors # 0 such that det(sI — AB) # 0, the inverses satisfy

(sI —AB) ' =s"'(I + AGsI — BA)™'B). (3.87)

Proof

(i) We consider the (2n x 2n) matrices

1A, [sI A ., _[1A/s
w4 e[ A 2=t ot

with products

Yy — [1 A] [sl —A:| _ |:sI — AB 0} (3.89)
0I][-B I -B I



3.11 A Determinant Formula

SO
det I A det sl —A — det sl —ABO
01 —-B I —-B I
hence
det[SI _A} — det(s] — AB);
—-B I
also

YZ—|:SI —Ai||:IA/s]_|:s1 0 i|
“|-B 1 ||0 I | |-BI—-BA/s]|’

det sl —A det I A/ls — det sl 0
-B I 0 I

det [ st _A} =s"det(] — BA/s) = det(s] — BA);

—-B I
hence by combining (3.91) and (3.94), we obtain

det(s] — AB) = det(sI — BA).

—B 11— BA/s

7

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

Hence A is an eigenvalue of A B if and only if both of these are zero as s = A,

or equivalently X is an eigenvalue of BA.
(ii)) We have

(sI — AB)s™'(I+A(sI — BA)™'B)

=57 (s] — AB + (s] — AB)AsI — BA)™'B)

=s"!(sI — AB+ A(sI — BA)(s] — BA)"'B)

=s'(sI —AB+AB) =1,

and similarly

s (I + AT — BA)™'B)(sI — AB) = I.

We can also swap A and B in these formulas.

(3.96)

(3.97)
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3.12 Observability and Controllability

See [25]. Let (A, B, C, D) be a MIMO where A € M,,,,(C), with transfer function
T(s) = D + C(sI — A)~' B, which we expand as

00 k
CA*B
T@=D+Y Gy (s> IAD. (3.98)
k=0

This suggests that the coefficients C AF B should contain useful information about
the linear system. In this section we study the vector spaces span{A/B : j =
0,...,n — 1} and span{CAj :j = 0,...,n — 1}, and use them to obtain
decompositions of the state space.

Let (A, B, C, D) be a SISO, and suppose that A isn x n and C is 1 x n. Then we
introduce the n x 1 complex matrix

C
CA

L=| CA* |, (3.99)

CA.nfl
Proposition 3.39 (Observability) The following conditions are equivalent:

(i) span{C,CA,...,CA" '} =Cl**;

(ii) IfCAJv=0for j=0,...,n—1, thenv =0;
(iii) rank(L) = n;
(iv) the observability Gramian L' L is positive definite.

Proof (ii) < (iv) We observe that

C
CA n—1
LL=[C AC...AYn-Dc]| €A% | =3 @a)ic'ca’  (3.100)
: j=0
CAnfl

so that L’L is positive definite if and only if Z;‘;}) ICAJv|?> > 0 forall v # 0,
which is equivalent to (i).

(iii) < (iv) We observe that |Lv||> = (L'Lv, v), so the null space of L'L is
equal to the null space of L, hence (iv) is equivalent to the nullity of L being zero.
But rank(L) + nullity(L) = n, so (iv) is equivalent to the rank(L) = n.
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(i) < (iii). We observe that (i) is equivalent to the statement that
span{C,CA, ..., CA"’I} has dimension equal to n, which is equivalent to (iii). O

Definition 3.40 (Observability) A linear system (A, B, C, D) that satisfies the
equivalent conditions of Proposition 3.39 is called observable.

Remark 3.41 The terminology observable refers to ability to observe an initial state
of the system via the output. See [11]. Clearly only A and C are involved in the
conditions. By the Cayley—Hamilton Theorem 2.29, all the vectors C A belong to
span{C,CA, ..., cA"! }, so we only need to consider the first n such expressions.
Condition (iii) is convenient for computer calculation, as one can find the echelon
form of L. Condition (iv) brings us to the familiar criteria for positive definiteness
of a finite matrix, as in Theorem 3.23.

Now let K : C" — C" be the linear transformation with matrix

K =[B AB A’B ... A" 'B]. (3.101)
Proposition 3.42 For a SISO (A, B, C, D) consider range(K) for K as above.

(i) Then range(K) = {0} if and only if B = 0.
(ii) range(K) has dimension one, if and only if B is an eigenvector of A.
(iii) range(K) has dimension n, if and only if K has rank n.

Proof We observe that

range(K) = [ Y a; Al B @) € (C"] (3.102)
j=1
=span{A/B; j =0,...} (3.103)

is the column space of K. Then one can consider the various cases.

(i) If B =0, then K = 0, The converse is clear.

(i) If B is an eigenvector, then AB = AB for A the eigenvalue, where B # 0 by
definition of eigenvector, hence AJB = A/ B for j =1,...,n,so the column
space of K has basis (B). Conversely, if the column space of K has dimension
one, then B # 0 by (i) and K is spanned by B. Hence AB is a multiple of B,
so B is an eigenvector of A.

(iii) The rank of K is the dimension of the column space of K, hence result.

Proposition 3.43 (Controllability) The following conditions are equivalent:

(i) span{B, AB, ..., A"~DB} = C"*1;

(ii) span{B', B'A’, ..., B'(A)("~D} = b,
(iii) If B' (A v =0for j =0,...,n—1, thenv = 0;
(iv) rank(K') = n;

(v) the controllability Gramian K K’ is positive definite.
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Proof (i) < (ii) follows by taking the adjoint, which clearly does not change the
dimension of a vector space.

The remainder of the proof follows by replacing (A, C) by (A’, B’), and L by
K'. O
Corollary 3.44 Suppose that A has characteristic polynomial s + 27;(1) a jsj , and
thatV = span{B, AB, ..., A”_IB} has dimensionn. Then V has (non-orthogonal)

basis (ej)’}zl where e; = AI7'Bforj=1,...,n, and
n—1
Aej=ejr1, (j=1,....n—1); Ae,= —Zaj_le,, (3.104)
j=1

so A gives a linear transformation of V such that A is similar to

00 ... —ag
10... ’ (3.105)
0. ..'_aan
0... 1 —a,_

which is the transpose of a companion matrix.
Definition 3.45 (Controllable)

(i) A linear system (A, B, C, D) that satisfies the equivalent conditions of Propo-
sition 3.43 is called controllable.
(ii) The controllability space of (A, B) is span{A"_lB, ..., AB, B}.

Remark 3.46

(1) The terminology controllable refers to ability to attain any state of the system
from the input, and thereby control the states of the system. Here only A and B
are involved in the conditions.

(2) The discussion shows that (A, B, C, D) is observable if and only if
(A’,C’, B’, D') is controllable.

(3) We also observe that

CB CAB CA?B... CA"'B
CAB CA’B ... ... CA"B
LK =| CA’B CA’B ... (3.106)

CA™'B ... ... ...CA™M 2B
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is a matrix which is constant on cross diagonals. This is called a finite Hankel
matrix, and the entries are the coefficients of the power series T(s) = D +
S, CAKB/skH1,

Theorem 3.47 (Popov-Belevitch—-Hautus Test for Controllability) Let A be a
n X n complex matrix and B be an x 1 column matrix; let

-1
V=[nZajA/B;aje(C;j:O,...,n—l}. (3.107)
j=0

Then the following conditions are equivalent:

(i) V= Cnxl’.
(ii) the nullspace of BT contains no eigenvectors of AT,
(iii) the rank of [A — Ml B] equals n for all » € C;
(iv) the rank of Q equals n, where Q = [B AB A’B ... A”_IB] .

Proof (not (iii) implies not (ii)) Suppose that there exists A € C such that [A—AT B]
has rank k£ where k < n. Then by the rank-nullity theorem 2.2, the nullspace of

.
[A B_TM} (3.108)

has dimension n — k > 0, so there exists on non-zero y € C"™1 in the nullspace;
hence

(AT —ADy=0, BTy=0; (3.109)

thus the nullspace of BT contains an eigenvector of AT, namely y.
(not (ii) implies not (i)) Suppose that ¥ € C"*! satisfies

ATy=2xy, BTy=0, y#0. (3.110)
Then
n—1 4 n—1 -
Y aiBT(ATY y=Y ajp’BTy=0 (3.111)
j=0 j=0

forall a; € C. Hence y is perpendicular to V, so V is a strictly proper subspace of
cnx 1 )

(not (i) implies not (iii)) Suppose that V is a strictly proper subspace of C"*!, so
there exists a nonzero y € C"*! such that

n—1
ZajBT(AT)jy =0. (3.112)
j=0
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Then the subspace W = {Z?;(l) aj (AT)7y} is non zero and mapped to itself by left

multiplication by AT, hence W contains an eigenvector z of AT. Now ATz = Az
for some A and Bz = 0. Hence z is in the nullspace of BT and is an eigenvector
of AT. So

T_
[A BT“}z:O (3.113)

so by the rank-nullity theorem 2.2, the rank of [A — A B] is less than n.
((1) is equivalent to (iv)) We have

n—1
v={YaaBajeC;j=0...n-1]
j=0

ap
ai
={[BaB A’ a1B]| | |iqjeCij=0,....n—1]

an—1

ap .
=[Q : :aje(C;Jzo,...,n—l} (3.114)

so V equals the range of Q; hence dim V = rank(Q). We deduce that V = C"*! if
and only if dim V = rank(Q) = n.

In condition (iii) we consider the vector space spanned by the rows of [A —
Al B], which depends upon A € C, and its dimension could possibly depend upon
M. Clearly rank[A — Al B] = n for large |A|, and rank[A — AI] < n when A is an
eigenvalue of A. The condition states that, nevertheless, rank[A — LI B] = n is all
cases. ]

3.13 Kalman’s Decomposition

Before considering the general result, we look at a special case.
Proposition 3.48 Ler (A, B, C, D) be a SISO.
(i) Then the state space C" has an orthogonal decomposition

C™' =span{fA/B:j=0,1,..}®{X eC™ : B'(A)Y X =0;j=0,1,...}.
(3.115)
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(ii) Then A is similar to a block matrix with respect to this decomposition

[Al Az] ) (3.116)
0 Ay
Proof
(i) With the n x n matrix
K =[B AB A’B ... A""'B], (3.117)

we have an orthogonal decomposition
C"™! = range(K) @ null(K"), (3.118)
where

range(K) = (K (a))}_, : (a))}_; € ")
n .
={Y @A 7'B @y e
j=1
=span{AjB:j=0,...,n— 1}
=span{A’B:j=0,1...,} (3.119)

where the final step follows from the Cayley-Hamilton theorem 2.29.
Likewise, we have

null(K') = {X e C"™!: K'X =0} (3.120)

(X e (X, K(aj)i_) =0: (a))j_; € C"*}
{X eC™ Y ai (X, ATTIBY = 0: (@)1, € (C”Xl}
=1

{xeC™ (X, A"'B)=0:j=1,....n}

[XeC™ (X,A77'B)y=0:j=1,2,...} (3.121)

where the final step follows from the Cayley-Hamilton theorem 2.29.

(i1)) The subspace range(K) is evidently invariant under A, so we can choose bases
of range(K) and null(K’) so that A can be expressed as a matrix of the stated
block form.
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Consider a linear system represented by (A, B, C, D) where A isn x n and B is
n x k. The basic idea is to introduce a basis for C"*! which is especially adapted to
(A, B, C) such that the linear systems has a special block form. To deal with (A, B),
we let V be the linear span of the columns in [A"~!B A"~2B ... AB B], so that
V is a linear subspace of C"*! which is invariant under left multiplication by A.
Suppose that V has dimension £ < n; then we choose a basis {vy, ..., v¢} of V, and
extend to a basis {v1, ..., v,} of C"*!, thereby introducing a complementary space
W spanned by {vg41, ..., v,}. We can find these bases by carrying out elementary
column operations to find echelon forms. There is an invertible linear transformation
S on C"*! determined by Sv; = e; where {ey, ..., e,} is the standard basis. Then
in term of {vy, ..., v,}, we have an upper triangular block form

S1AS = [f(‘)l ﬁﬂ ,S7'B = [iﬂ ,CS =[C 2] (3.122)

and as similarity does not change the transfer matrix, we have

T(s)=D+C(sI —A)~'B

-1
sl — A1 —A B
:D—i—[ClCz][ . SI_AJ [0}

=D+ Ci(s] —A)"'By. (3.123)

We now consider A; : V — V and its transpose A;r : V. — V,and let V| be the
subspace of V that is spanned by the columns of

TA—1,~T 4T AL-2,-T T~T ~T
[a]'eT al2cT oaTel o] (3.124)
Then V; is a subspace of V that is invariant under left multiplication by A/, so
as before, V1 has a complementary subspace W; in V, and we can introduce an

invertible transformation S : V — V such that the upper triangular block form

—1 4T AlTlAle —1-T C1T1 i T BT
sitals =] bR LsTel = | T LBy si=[81, Bl,]. @125
2,2

which transposes to a lower triangular block form

_ A 0 B _
sas =i 0 Lo =[] e =tenol. e
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Hence we can further reduce the transfer function

T(s) =D+ Ci(sI —A)'B

-1
sl — A1 0 Bi1

_D+I[C O][ ~ } [ ~ }
b —Ayy sI— Ay B

=D+ Cri(sI — A1) By

The full Kalman decomposition of the linear system is

X1 A 0 A3 O X1 By
d |x Azl A2 Az Aog | | x2 B>
= 3.127
dt | x3 0 0 A3 O X3 + 0 ( )
X4 0 0 Ay3 Ay X4 0
X1
X2
y=[C10C30] |+ Du (3.128)
3
x4

for a suitable basis of C"*!. The basis can be found by elementary row and column
operations, as above. O

3.14 Kronecker Product of Matrices
Let (e./k);’il,k=1 of M, ;(C) such that

a1 ... Al

r s
DD ajkeix=1] i (3.129)

i=1k=1
J ar1 .. drg

where aj ; € C. Then for A ; € M, 4(C), we form the block matrix

s Apq ... Al

ZZAj,k@’ej,k: Do (3.130)

i=1k=1
J Arl .. Ars

with r block rows and s block columns, so the block matrix belongs to M, 4(C).
This defines the Kronecker product M, ,(C) @ M, (C) = M, 4:(C), with
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multiplication of blocks. We also take scalars across the tensor ® symbol, so

X11ALL X sALs

r s r N
ZZA]‘,/{ ® Xjkejk = szj’kAj’k Qejr=

i=1k=1 =1 k=1
/ / xr,lAr,l .. xr,sAr,s

(3.131)

Given a linear map ¢ : M), 4,(C) — (C) there exists a unique linear map

Al ... Al d(A11) ... ¢(ALy)
qD:Mp,q((C)@Mr,s((C)_) M, (C): =
Ar,l o Ar,s d)(Ar,l) o d)(Ar,s)
(3.132)

obtained by applying ¢ to the blocks in the matrix.

3.15 Exercises

Exercise 3.1 (Hadamard Matrices) The Hadamard matrices have applications in
signal processing. This exercise gives the construction for matrices of size 2" x 2.

(i) Let H be an n x n matrix. Show that

11 H H
H = . 3.133
o =10 ] 6139
(i) Let
11 11 11
Hy=1, H = Hy=H ooy Hyy1 = H ,
0 ) 1 |:1_1], 2 1®|:1_1:|, » Hptq n®|:1_1:|
(3.134)

(ili) Show that H, has size 2" x 2", that H! = H, and H, H] = 2"In.
(iv) Show that all the entries of H, are in {F1}.

Exercise 3.2 A complex square matrix is stable if all the eigenvalues A have
RA < 0, where A is the real part of L. For each of the following matrices, find
the eigenvalues numerically using computer software to test whether £A, £B, £C
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are stable:
113 117 ;;;i
A=1|275|, B=1]984|, C= 817 (3.135)
182 229 22124
Exercise 3.3 Let
0100 00
3002 10
A= B = ; 1
0001’ 00|’ (3.136)
0-201 01
let Q be the (4 x 8) matrix written as (4 x 2) blocks
Q= [B AB A’B A3B]. (3.137)

Find the rank of Q.

Exercise 3.4 Let A be a (n xn) complex matrix and C be a (1 x n) complex matrix;
then let

C

CA
O0=| . |. R=[cTATCT...(aT)IcT], (3.138)

can-!

which are n x n complex matrices, and C " is the transpose of C.

(i) Show that QT = R and rank(Q) = rank(R).
(ii) Suppose that CT is an eigenvector of A'. Find R, and compute rank(R).
(iii) Find the rank of Q when

1350
019 6
A=
114-7| ¢

221 8

[1-5-1/23]. (3.139)

Exercise 3.5

(1) Let D be a (n x n) diagonal matrix with positive diagonal entries k1 > kp >
.-+ > Kky,. Show that

KilIX|? > (DX, X) = k.| X|* (X e R™). (3.140)
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(i) Let K be a (n x n) real symmetric matrix with positive eigenvalues k1 > k2 >
.-+ > Kky,. Show that

KlIXI? > (KX, X) = k|1 X[* (X e R™). (3.141)

Exercise 3.6 The Lorenz system is

dx n
=-o0x+o
dt Y
dy
=px—y—x
di o y z
dz
dt = —Bz+xy.

where p, B and o are real constants. A linear version of this system is

FRE —o0 o 0 X
al?1=1° -1 0 y|. (3.142)
Z 0 0 -] Lz
Find the eigenvalues of this matrix
—o o 0
A=| p -1 0 |, (3.143)
0 0 -p

and state conditions on p, B and o for all the eigenvalues A to liein {A € C : A <
0}.

Exercise 3.7 Consider (n x n) matrices A, S, K, L. Let K be a positive definite
matrix.

(i) Show that if A is an eigenvalue of K, then A > 0.
(ii) Deduce that det K > 0 and trace(K) > 0.
(iii) Let S an invertible matrix. Show that §’K S is also positive definite.
(iv) Deduce that exp(A")K exp(A) is also positive definite.
(v) Suppose that L is positive definite. Show that K + L is also positive definite.

Exercise 3.8 Let U be a nonzero proper subspace of a finite-dimensional vector
space V,and T : V — V alinear transformation.

(i) Show that T maps U into itself, if and only if T has the block form

A B U
T = [0 D] W (3.144)
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with respect to a suitable basis of V = U @ W, where W is a complementary

subspace of U.
(ii) Show that such a T is invertible, if and only if A and D are both invertible, in
which case
A"l —A-1BD™!
T = ) 3.145
[ 0 D! } ( )

Exercise 3.9

(i) Let B be n x m complex matrix, such that || B|| < 1. Show that this condition
is equivalent to the condition that I — B’ B is a self-adjoint m x m matrix with
nonnegative eigenvalues.

(i) By considering the binomial series

> 1/2
C = -1 k( ) B’ B)¥ 3.146
];( ) BB (3.146)

show that there exists a self-adjoint m x m matrix C with nonnegative
eigenvalues such that C> = I — B’B.

(iii) Show that |B’|| < 1. Deduce that there exists a self-adjoint n x n matrix D
with nonnegative eigenvalues such that D> = I — BB'.

(iv) Deduce that

B D
U= [—c B,} (3.147)

satisfies UU’ = 1.

This exercise shows that a sub-block of a unitary matrix is equivalent to a matrix B
of norm less than or equal to one.

Exercise 3.10 Let A|, Ay € D,. Without assuming that A and A; commute, show
that

((1 _ ’;Al)(I _ ’;Az))_m Soexp(t(A1 + A2)  (m— o0), (1> 0).
(3.148)

Exercise 3.11 Consider C U {oo} with the interpretation that 7 — oo means |z| —
0.

(i) Show that for distinct z1, z2, z3 € C U {00}, there exists a L € C that passes
through z1, z2 and z3.
(i) Show there exists a linear fractional transformation ¢ such that

0(z1) =0, @(z2) =00, ¢@(z3)=1.
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(iii) Deduce that given L1, Ly € C, there exist a linear fractional transformation ¢
such that ¢ (L) = L».
(iv) Deduce that the group of linear fractional transformations acts transitively on

C.
Exercise 3.12 Let

M= [Z Z} € Mayo(C) (3.149)

have ad — bc # 0, and let gy be the corresponding linear fractional transforma-
tion.

(i) Show that for A € C \ {0}, the matrices M and AM give the same linear
fractional transformation.
(i) Show that there exists A € C \ {0} such that det(AM) = 1.
(iii) Suppose that M € M>,2(R) has det M # 0. Show that there exists A € R\ {0}
such that det(AM) € {1, —1}.

Exercise 3.13 (Controllability and Block Matrices) Let A; € Myxx(C), Ay €
Mym(C) and By € CK*! By € C"*!, then form the block matrices

_ A O __ | B1
A= |:0 A21| , B= [Bz] . (3.150)

(i) Find L € Miyxu+k)(C) and M € My, (k) (C) such that

K =[A""'B...AB B] = [ALJ (3.151)

(ii) By considering K T, show that
rank(K) = rank(L) + rank(M) — dim(range(L ') Nrange(M ")).  (3.152)

(iii)) Deduce a formula relating the dimension of the controllability space of (A, B)
to the dimensions of the controllability spaces of (A1, By) and (A2, B»).

(iv) Show that the controllability space of (A, B) has dimension m + k if and only
if

(3.153)

KK — [LL’ LM’:|

ML MM’

is positive definite.
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Exercise 3.14
(1) Supposethat T(s) = D + C(sI — A)~ !B is invertible. Show that
T(s)"' =[01] [SI_A B}l m. (3.154)
cC D 1

(i1) (Higman’s trick) Discuss the validity of the formula

-1
f a 1
[[10] [_b J [o} = frab (3.155)

Exercise 3.15 Let A € M, (C) have eigenvalue A and B € M,,x;, (C) have
eigenvalue u.

(i) Show that A ® B has eigenvalue A .
(i) Show that A ® I,, + I, ® B has eigenvalue A + .
(iii) Show that

exp (1(A® Iy + I, ® B)) = exp(tA) ® exp(tB) (t € R). (3.156)

Exercise 3.16 (i) (Second Resolvent Identity) Let A and A* be n x n complex
matrices. Show that their resolvents satisfy

(sI—A)'— (I —A) =T —A)"" A=A —A!
when s is in the resolvent set of A and the resolvent set of A*.

(i) (Inverse of a transfer function) Suppose that ¥ = (A, B, C, D) has D invertible
andlet T(s) = D + C(sI — A)~! B be the transfer function; then let

s _ [A¢BX] _ A—-BD™'C BD™!
—lcxbpx] | -p7'c¢ D!
have transfer function 7% (s) = D* + C*(sI — A*)~! B*. Show that
T*()T(s) = 1.
Exercise 3.17

(i) Let V € M, x1(C) and C = M, (C), so VC is of rank one. By considering
the Jordan form of V C or otherwise, show that

det(/ —sVC)=1—strace VC =1—sCV.
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(i1) Deduce that
det(s] — A — VC) =det(s] — A) — Cadj(s] — A)V.

(iii) Suppose that V is an eigenvector of A corresponding to eigenvalue A. Deduce
that there is a factorization of polynomials

det(sT — A
det(s] — A — vy = 316 R )(s—)\—cv).

Exercise 3.18 Let X € M>,,(C) satisfy trace(X) = 0.

(i) Use the Cayley-Hamilton theorem 2.29 to show that X> = —§I, for some
s eC.
(i) Deduce that, the terminology of Definition 4.43,

exp(X) = cos(8) > + sinc(d) X.

(iii) Deduce that the equation

=[]

has no such solution X. [In [52], p111, this example is credited to Engel.]

Exercise 3.19 (Matrix Logarithm) Show that for X € M, ,(C) with | X]| < 1,
the integral

L(X) = /OO ((1 +07 L — I+ 1+ X)*l)dt (3.157)
0

is convergent.
(ii) By considering Taylor’s series of L(AX) or otherwise, obtain the formula

x2 x3 x4
L(X)=X-— - ey
(X) ,» t s 4t
asin L(X) = log({ + X).
(iii) Using the integral from (i), show how to define a positive definite L(X) for
X positive definite.
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Exercise 3.20 Suppose that S is an invertible matrix. From the SISO system
(A, B, C, D), we introduce another SISO by (A, B, C, D) = (S"'AS, S™!B, CS,
D).

(i) Show that

det| A 75T Bl Zge| AT B (3.158)
cC D ¢ D

(i) Using Lemma 3.14, or otherwise, deduce that the transfer functions of these
linear systems are equal.

Exercise 3.21 (Variant of the Schur Complement Formula) Let (A, B, C, D)
have D invertible.

(1) Derive the formula

-1
|:2 §i| - |:8 DO_1:|+|:_DI—1C:| (A_Bl)_IC)_1 [I _BD_I]‘

(i1)) Replace A by A — sI and compute the right-hand side.



Chapter 4 m)
Laplace Transforms Shesiie

The Laplace transform is a fundamental tool for solving differential equations with
constant coefficients. The merit of the Laplace transform is that solutions of linear
systems such as constant coefficient ordinary differential equations have Laplace
transforms which are well-behaved functions, such as holomorphic on a half plane.
Holomorphic means analytic, or differentiable as a function of a complex variable.
In this chapter, we present several of the fundamental results about the Laplace
transform and obtain famous results such as Heaviside’s expansion theorem which
was important in the historical development of linear systems. In this book, we have
introduced the theory in terms of state space models with a differential equation
in time variable ¢ for a state vector X satisfying a linear differential equation with
constant matrix coefficients. Here we consider how the MIMO system (A, B, C, D)
can be transformed via the Laplace transform, and we discover the meaning of
the transfer function 7 (s) which previously was defined by a largely unmotivated
formula. The Laplace transform replaces d/dt by multiplication by a variable s,
which leads to a description of linear systems in terms of algebra in which 7 (s)
is central to the discussion. In Chap. 5, we will also interpret transfer functions
geometrically in terms of plots involving s.

4.1 Laplace Transforms

Definition 4.1 (Laplace Transform)

(i) A function f : (0, o0) — Cis said to be piecewise continuous if there exists an
increasing sequence (aj)?il witha; — oo as j — oo such that the restricted
function f|(a;, aj+1) is continuous.

(i1) Suppose that f : (0, co) — C is a piecewise continuous function such that

(E) |f(x)]<MeP* (x>0 (4.1)
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for some M > 0 and B8 € R. Here f is called the exponential type or growth
rate. Then we say that f is of exponential type, or satisfies (E).
(iii)) We then define the Laplace transform by

L(f)s) = /0 f(x)e ™ dx Ms > B). 4.2)

Sometimes L( f)(s) is written as f (s). Here x, t are time variables; whereas

s is the transform variable. Writers often contrast the time domain with s-
space, to emphasize the difference in interpretation. The term s-space is not an
abbreviation for state space, since the latter relates to the time domain.

Example 4.2 (Laplace Transform Table) Let a be a non-zero real number, b > 0
anda > —1.

f@ L)

1 1s
n!
i S"'H
1
e (s > a)
s—a
., T+
4 Soz+l
sin at “
s2+a?
cosat S
s2+a?
Spdt) e
—bs
Hi—b) ©
s

f@/b)y  bfbs)
H@t—b)f(t—b) e f(s)
Af) fs—a)

Example 4.3 Calculating Some Laplace Transforms
(i) Foralle,t > 0Oand £ € N, we have
e2t? gttt gttt
' =1+er+ oty Tz,

sott < 01e® /b, so 1! satisfies (E).
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(i) Now consider f (1) = 12, with

L(t2:s) = s23 (s > 0). 4.3)

To see this, consider R > 0 and integrate by parts

R 2 ,—st R
t R 2
/ tZe—st dt :[ e ] n / te =St dt
0 —s J0 s Jo
tPe SR r2te™'qR 2 (R
o B A RS K e At
—s Jdo —s2 do 52 )y
tZe—st R 2teStqR e SR
=[5 L LAl
—s 40 —S 0 ) 0
R2efRs 2R€7RS ZefRs

2
P P & +s3 (s>0)

— as R — oo.

Remark 4.4 Comments Concerning Some Functions

(i) In the above table t* satisfies (E) for « > 0; for 0 > o > —1, * diverges as
x — 04, but the Laplace transform integral exists as an improper Riemann
integral.

(i) The Dirac delta function dp is not actually a function, instead & is the measure
that assigns unit mass to the point b > 0 on the line. So f f@®)op(dt) = f(b)
for all continuous real functions f. The measure §g is often called the unit
impulse function; as an input, it gives the system a kick start.

(iii) The Heaviside function

HH=1, t>0;
H(t) =0, t<0; (4.4)

is a step function with a jump at x = 0, so H(x — b) is a step function with a
jump at x = b. Hence H(x — b) = f(_oo’x] Sp(dt). While H has a jump, it is
piecewise continuous and bounded, so the Laplace transform is defined using
the same formula as above. The Heaviside function has

L(H(—D);s)= /00 H(t —b)e "' dt
0

o
/ et dt
b

e—sb

- (s > 0).
S
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Exercise Suppose that (a,);2, is a complex sequence such that |a,| < Mr" for
alln =0,1,... for some M,r > 0. Show that f(¢) = Z;O:o apt™ /n! converges
for all # € C and defines a continuous function of type (E) on [0, c0). Show how
f (@) = sin(2¢) and f(¢) = cos(4t) arise in this way.

Proposition 4.5 (Properties of the Laplace Transform) Here (E) refers to some
M > 0and B € R, and s is real.

(i) The Laplace transform exists for all s > B, and |L(f)(s)| < Sf/lﬂ foralls > B.
(i) The Laplace transform is linear so, that if f, g satisfy (E), then forall ., u € C
the function Lf + ug also satisfies (E) and

LS+ ng)s) = ALI)(s) + nL(g)(s). 4.5)

(iii) tf(t) also satisfies (E) and L(f)(s) is differentiable with

d
L(f(@)(s) = —dsﬁ(f)(S)- (4.6)

(iv) If f is continuously differentiable and df/dt satisfies (E), then f also satisfies
(E) and L(df/dt)(s) = sL(f)(s) — f(0).

Proof
(i) Let|f(x)| < MeP*. Thenfor0 < W < R

R R
‘/ e f(x) dx‘ < M/ e dx
w w
_ [ M e(ﬂ—s)x]R
B—s

M
- eB=9R _

w
M
B B—s

eB=IOW 0
as W — oo. Also, we can let R — oo and W — 0+ to get

‘/Ooef”f(x)dx < M . 4.7
0 s—p

(ii) Suppose that | f(x)] < Pe®* and |g(x)| < Reb* for all x > 0. Then with
B = max{a, b} and M = |A|P + ||R, we have

Ihf (x) + png(x)] < MeP, (4.8)
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SO we can integrate

o]

/ e (M f(xX) + png(x) dx = A / e fx)dx +p / e g(x)dx.
0 0 0

4.9)

(iii) Suppose that |df/dx| < MeP* for all x > 0 and some 8 > 0, so df/dx
belongs to (E); we verify that f also belongs to (E). By fundamental theorem
of calculus,

X df
f(x)=f(0)+/ J (n)dt,
0 t

SO

£ < 1£O)] +/ MePt de
0

MePtx
= 15O+ "0 |
_poy 4 M M
- BB

so f satisfies (E). Now for s > 8, we integrate by parts to get

R R
/0 e ;Zi: dx = [ef”f(x)]: + s/o e Y f(x)dx

R
— R F(R) - F(0) +5 f e F(x)dx
0

so we let R — oo to get

[Tt ar=—r+s [T e rwan
0 dx 0

(iv) Differentiating Laplace transforms: Let s > B 4§ for some § > 0 and consider
—8 < h < §. Note that e’*¢™** f(x) is integrable, and x < ¢%%/8, so xf (x)
also satisfies (E). Also

e—(s+h)x e —hx

, - e_”<e h_ 1) S —xe™* (4.10)
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as h — 0. Hence

_ oo ,—(s+h)x _ ,—sx
L) +h) = L) _ / e ¢ f0dx
h 0 h
_ * E_Xh -1 —sx d
_ /O e

— —/OO xe ** f(x)dx.
0

To make this precise, we consider
e~ 1

e~ 1 +hx)
h

+x=h( 2

.11

where by comparing the coefficients in the power series

_ x2 hx’ hZx4
_‘2!_ 3T _‘

x2 sx3 8%yt

e~ — 1 4+ hx
e

< 2!+ 31 + A1 +...
_ e —1—6x < 52007
52
we have e®e ™% f(x) is integrable, and

e — 1+ hx _ > ‘
‘/ ¢ + xeﬂxf(x) dx‘ < |h|/ 872%™ f(x) dx.
0 0

h
4.12)
O

Proposition 4.6 (Holomorphic Laplace Transform) Suppose that f satisfies (E).
Then

(i) L(f)(s) defines a holomorphic (complex differentiable) function of s on the
open left half-plane {s € C : s > B};
(it) L(f)(s) = 0ass — oo along (0, 00).
(iii) Let f be the complex conjugate of f. Then L(f)(s) = L(f)(5).

Proof

(1) Similar to Proposition 4.5 (iii)
(i) This is similar to Proposition 4.5 (i).
(ii1) We have

L(f)(s) = /OO f(e sdt (4.13)
0



4.2 Laplace Convolution 101

is the complex conjugate of

LHEG) = /Oo fe Sdr. (4.14)
0

O
Definition 4.7 Let Euler’s Gamma function be I'(a) = fooo 19~ le~tdt fora > 0.

Proposition 4.8 (Laplace Transform of Exponentials and Powers) Letv; > —1
andlet pj € Cfor j=1,...,N. Then

N
f@) =Y ajt"ieri! (4.15)
j=1
satisfies (E) for B > max{Np;} and L(f)(s) is holomorphic for Rs > B.

Proof By direct calculation, we have

T+ 1)

. 4.16
5§ — pj)‘)jJrl ( )

N
L) =) a
pari

The Laplace transform is holomorphic on the half plane {s € C : fs > B}, so
we stay to the right of the singularities at the p;. If the v; are all integers, then
L(f)(s) has a pole of order v; + 1 at p;, and L(f)(s) is a rational function which
is holomorphicon C\ {py, ..., pn}- O

4.2 Laplace Convolution

Definition 4.9 (Convolution) Suppose that f and g both satisfy (E). Then their
Laplace convolution is

fxglx) = fo fx—y)e(y)dy. 4.17)

Observe that the variable y moves along the range of integration [0, x], and we have
y and x —y in the integrand. We use the phrase Laplace convolution to avoid possible
confusion with convolution on R, where in the latter case the range of integration is
R. We can take our functions f and g to live on [0, 00), so there is no ambiguity.

Proposition 4.10 The Laplace convolution is:

(i) commutative, so f xg = g=x* f;
(ii) linear, so (Af +ug)xh =Af «h+ ug=*h;
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(iii) multiplicative with respect to the Laplace transform, so f * g satisfies (E) and
L(f *g)(s) =L(f)($)L(Z)(s) (s > s0); (4.18)

(iv) associative, so f x (g*xh) = (f xg) xh.
Proof

(i) Change variabletou =y — x.
(i) is easy.
(iii) Bounds on convolution formula: We choose M, 8 such that

|fl < MeP*, [gx)| < MeP* (x> 0); (4.19)
then
If (x = y)e)| < MePE I MePY = M2 P~ (4.20)
50
‘ /Ox f&x =g dy| < xM?eP* 4.21)

so f x g satisfies (E).
Proof of convolution formula: Also, when we change order of integration,
thenletu = x — y,

L(f *g)(s) = fo ¢S f w gx) dx
=/ e“”‘f fx—yey)dydx
0 0

= /O ) ( / T e y) dx)e ™ g(y) dy

y
=/ e_‘”‘f(u)du/ e Vg(y)dy
0 0
= L(f)()L(Q)(s).

Thus the Laplace transform converts convolution to multiplication.
(iv) Associativity: This can be proved in a similar way to (i). Alternatively, one
uses (iii) to compute

L(f x8) #h)(s) = LUf * g)(s)L()(s) = L)L) ($)L(R)(s)
= L(f * (g *h))(s) (4.22)

and then use uniqueness, as discussed below.



4.3 Laplace Uniqueness Theorem 103
4.3 Laplace Uniqueness Theorem

Theorem 4.11 Suppose that f and g satisfy (E) and that there exists so such that

L)) = L)) (s> s0). (4.23)

Then f(x) = g(x) for all x > 0 at which f — g is continuous.

Proof We defer the proof of this theorem until Sect. 4.10. In Corollary 9.5 we obtain
a stronger version due to Lerch. O

Meanwhile, if one knows that F(s) occurs as L(f)(s) for some f, then the best
way to find f is by comparing F with known Laplace transforms in tables, then
invoking the uniqueness theorem. It would also help to describe the functions F (s)
that arise as Laplace transforms, and have an effective formula that produces an
explicit f () from F(s). There is an inversion formula, credited to Bromwich, which
takes a suitable F (s) and produces this function f(¢) via a contour integral as in [53]
page 177. The following result covers some cases of interest.

Proposition 4.12 (Holomorphic at Infinity) Suppose that F(s) is holomorphic
near oo with F(0o) = 0 so that F(s) has a convergent Laurent series F(s) =
Y X ans " Lon{s :|s| > o} for some o > 0. Then f(t) = Y o ant"/n!is of
type (E) and F (s) is the Laplace transform of f(t).

Proof A function F is holomorphic at infinity if F(1/s) has a removable singularity
at 0, so we can write F(1/s) = a—1 + Zzozoans"*l where F(1/s) — a_1 as
s — 0, and we can interpret a_1 as F(00). In particular, F vanishes at infinity when
F(00) = 0. See page 123 [? ] and Exercise 4.13. Note that F (s) is holomorphic on
the half plane {s : s > o} with F(s) — 0ass — oo, as in Sect. 4.1. |

Remark 4.13

(i) A strictly proper rational function F'(s) is holomorphic near co with F(co0) =
0, and we obtain an explicit form for f(¢) in terms of partial fractions and
residues in Proposition 6.55. In linear systems, strictly proper stable rational
functions with simple poles occur frequently, so we deal with this special case
in Sect. 4.7 with Heaviside’s expansion.

(i) The algebraic function 1/ V1452 is holomorphic at infinity, and this occurs
in the theory of Bessel functions as in Exercise 4.12.

(iii) Whereas /7 /+/s is holomorphic on C \ (—o0, 0] it is not holomorphic at co.
This function arises as the Laplace transform of 1/ /t, but the inversion is
much more complicated and uses a specially chosen contour.

@iv) In Sect. 10.7, we prove the Paley-Wiener theorem 10.36 which gives the
definitive description of the functions that arise as Laplace transforms of square
integrable functions, along with a general inversion theorem.
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Example 4.14 We consider some examples relating to exponential and trigonomet-
ric functions, which are interesting in applications, and we use methods which also
work for Bessel functions in subsequent sections.

(i) The hyperbolic function sinh at has a series sinhat = 302 ((at)?" 1 /(2n+1)!
that gives a function satisfying (E), and for s > a > O, this has Laplace
transform

0 a2n+1t2n+1

. _ > —st
L(smhm)(s)_/o Z:;) on 1y € dt

e oo ,2n+142n+1
[T
0

pard @2n + 1)!

[’}
a2n+l

n=0
a

§2n+2

§2 _ g2’
where the change in order of integration and summation is justified by uniform
convergence or the monotone convergence theorem. The Laplace transform
is rational and holomorphic at infinity. One can otherwise obtain this integral
from sinhat = (%' — e™%)/2.

(i) The Laplace transform of f(t) = =2 cos(at'/?) is J(n/s)e’“z/(4s) fora €
R. To check this, we compute

(=1)/a%iti—1/2

_ *® —st -
Ef(s)—/o e jz:;) @) dt

00 (_1)ja2jefsttj71/2

= d
g()/o @))! !

B i (=1)7a TG +1/2)

Qi (4.24)

s

j=0

and we can simplify this by multiplying the numerator and denominator by
2/ j! to obtain

VT e (=D a%
Lf(s)=
s &

22i jisi

_T o—a*/s)

=
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(iii) We introduce the error function by erf (x) = 2 f(;c e’ 2d t/+/m. This defines an
entire function, with Taylor expansion

B 2 & (_1)jx2j+l
erf (x) = Jr /Z:;) Qj+ D1

Let g(t) = ¢! sin(at'/?); then by a similar calculation to the preceding one
(4.24), the Laplace transform satisfies

Vi (=Dia%
Lg(s) = Js ng(zwr )jlsi’

and we deduce that

Lg(s) = mwerf <2j/s)’

which is holomorphic at infinity.

Example 4.15 To solve the integral equation

t
y(t) = 2% + / Py () du (4.25)
0

where a, b are constants with a # b + 1, and y satisfies (E).
Solution Note that the the integral is a convolution of y with e, so by Proposi-
tion 4.10(iii), we have

R 2 y(s
() = 49 (4.26)
s—a s—b
after a little reduction we obtain
7(s) 2= h) (427)
s) = ; .
Y (s—a)s—b—1)
which we write as partial fractions
y(s) 4 + 5 (4.28)
s) = ; .
Y s—a s—b-—1
then
2(a—b -2
A= 2a=b g : (4.29)
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by the uniqueness of Laplace transforms, we have a unique solution

2(a — b)e® — 2¢+D1
y(n = g b1 : (4.30)

Example 4.16 (Unique Solutions of a Population Equation) Let x be the size of a
population at time ¢ > 0. The birth rate and death rate depend upon the age profile
of the population, as represented by a function g, and there can be emigration and
immigration, represented by an input u, so the rate of change of population is given
by

dx

t
= / gt — Dx(r)dt + u(®). (4.31)
dt 0

This is equivalent to the integral equation

t -7 t
x(t) = xo +/ / g)dvx(r)dr +/ u(t)dr (t > 0). (4.32)
0 JO 0

Assuming g and u are bounded and piecewise continuous, one use a version of
Gronwall’s inequality to deduce that x satisfies (E); see [26] page 371. Then we
deduce that the equation has Laplace transform

sX(s) — x(0) = G()X (s) + U(s) (4.33)

SO

X0 1
X0 = TG s G Ue (4.34)

If we can invert the Laplace transform on the right-hand side, then this leads to an
explicit solution. Otherwise, we can regard this as a uniqueness result pertaining to
the solution.

4.4 Laplace Transform of a Differential Equation

Proposition 4.17 Suppose that y(0) = po, Zf ) =pi,... "ty (0) = py_1 and

s dn—1

ar dnfl
ka0 aoy = u() (4.35)
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where the coefficients are complex constants and u satisfies (E). Then there exists a
complex polynomial q,_1(s) of degree < n — 1, that depends only upon the a; and
Pk, such that

"+ an_1s""" + - 4+ a0) L)) + gu-i1(s) = L(u)(s) (4.36)

where s" + an_1s" "L + - - -+ ag is the characteristic polynomial, as in Lemma 1.10
and Definition 2.10.

Proof By Theorem 2.40, we know that this initial value problem has a solution Yy,
and by Sect. 4.5 y is of type (E). By repeatedly applying Proposition 4.5, we have

d
£ ) =L@ = 30

()0 =se(D)w - (D)o
e(5 o =se(G, Yo - ()

so we can substitute backwards and get

2

£(%2) 0 = 2£0)6 -5y - ()0

43y - (o

and thus obtain g, _1(s) with coefficients p; = 'y (0) as in the initial conditions

dti
y(@0), ..., 'g;:f (0). The characteristic polynomial here is the same as we get from
Lemma 1.10 and Definition 2.10. m|

Proposition 4.17 takes us from the data in the differential equation to an algebraic
relation between their Laplace transforms. This leads directly to some interesting
information, as we see in Chap. 5, but to make full use of the result, we need a
systematic method for deriving the solution in the time variable. In Theorem 4.27
we obtain such an inversion process that works for stable characteristic polynomials.

Example 4.18 (Laplace Transform of Differential Equation) To find the Laplace
transform of
&y d*y dy
2 — =

ar Trae T4 TV
d’y dy

0) =5, 0)=—-1,y0) =7
2 =570 ¥(0)

where u € (E).
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Solution The Laplace transforms are found recursively, with
L(y)(s) = 3(s)

L(f;)(s) — 59(s) =7

L(‘Zi)(s) = 525(s) ~Ts + 1
z(‘fti)(s) —35(s)—Ts>+5—5
and substituting this into
c(d?) +2£(d2§) - z(dy) +L(y) = L) (437)
dt dt dt
gives
(s> + 252 — s+ D3(s) — 7s> — 135 + 4 = {i(s), (4.38)

which we write as

752 4+ 13s — 4 1

i (s), 4.39
s3—|—2s2—s+1+s3+2s2—s+1u(s) (4.39)

y(s) =
where the first term on the right-hand side is the Laplace transform of the com-
plementary function with constants chosen four the boundary values and the final
term is the Laplace transform of the particular integral. To make further progress,

one needs to find the roots of s> + 2s% 4 13s — 4 = 0, which are approximately
—2.8312 and 0.4156 + 0.4248i.

Remark 4.19

(i) Alternatively, we can represent this as an (A, B, C, D) SISO system and use
the theorem of the next section.

(ii)) We often take s such that fis > 0, so s is in the left half-plane, and denote the
points on the imaginary axis by s = iw, where € R is the angular frequency.

4.5 Solving MIMO by Laplace Transforms

Definition 4.20 (Transfer Function) Consider a linear system Y = LU where L
is a linear operator, and such that all the entries of the (k x 1) input U and (m x 1)
output Y satisfy (E), and let the initial conditions be zero. Suppose that 7 (s) is a
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(m x k) matrix of functions such that
Y()=T®Us) (s> B). (4.40)

Then T (s) is called the transfer function of the linear system.

Theorem 4.21 Let A, B, C, D be constant matrices, and suppose that the input
function satisfies (E). Then the output Y of the linear system

179.4
=AX + BU
dt
Y=CX+ DU (4.41)

with initial condition X(0) = 0 in (E) is uniquely determined, and the Laplace
transform satisfies

Y(s) = T(s)U(s) (4.42)
where the transfer functionis T (s) = D + C(sI — A~ 'B.

Proof By Theorem 2.40, the solution is determined by the state

t
X(t):/ exp(((t — v)A)BU (v) dv (4.43)
0

which is a convolution type integral of functions in (E), since
lexptA)|| < MieP", U@ < MaeP! (4.44)
so with M = M M, ||B|| and 8 = max{p1, B2}, we have
lexp(((t —v)A)BU w)|| < MeP! (4.45)
)
IX (D) < tMeP' < MePHD! (4.46)
and so X satisfies (E) and has a Laplace transform. From the differential equation,

d X /dt also satisfies (E) and has a Laplace transform, and likewise Y satisfies (E).
The Laplace transform of

dX
. =AX +BU

Y =CX+ DU (4.47)
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is
sX(s) — X(0) = AX(s) + BU(s)
Y(s) = CX(s) + DU (s). (4.48)
Hence when s is not an eigenvalue of A,

X(s) = (sI —A)'BU®) + (s — A)~'X(0)

Y(s) = C(sI — A)"'BU(s) + DU (s) + C(sI — A)~' X (0). (4.49)
When X (0) = 0 we get ¥ (s) = T(s)U (s). O
| A <_O
AX X
_ o B 44»<::y4» 1/s NA e 44»<::}431,
U DU
A b DU

Block diagram for the Laplace transform of the MIMO system

4.6 Partial Fractions

In the previous Sects. 4.4 and 4.5, we have obtained solution of differential equations
such that the Laplace transforms are rational functions. In this section we give an
informal discussion of how to express these rational functions, which we will make
more systematic in Chap. 6. See also [6], page 79.

Proposition 4.22

(i) Let f(s) be a complex rational function. Then there exists a complex polynomial
q(s), integers mj > 0 and poles \.; € Cand ajx € C, all uniquely determined,
such that

N mj

f& =g+ 3 X (4.50)

— Ak
j=1k=1 (s =4))
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(ii) Suppose that f(s) = r(s)/h(s) where the degree N of h(s) is greater than the
degree of r(s) and h(s) has only simple zeros at 71, ..., zn. Then the partial
fractions decomposition of f (s) is

£ls) = i 7@ @.51)
- dh :

R ACHICEE)

Proof

(i) Outline of the proof of existence. Recall the process of long division for
polynomials; see [6], page 64. Starting with f(s) = g(s)/h(s), we use the
Euclidean algorithm to write

8(s) = q(s)h(s) +r(s) (4.52)

where g (s) and r(s) are polynomials, and either r(s) = 0 or the degree of r(s)
is strictly less than the degree of 4 (s); hence

B r(s)
fs)=q()+ his) (4.53)

where r(s)/ h(s) is strictly proper. Now by the fundamental theorem of algebra
[6] page 101,

N
h(s)=b]]es—nrp™ (4.54)
j=1

where the A; € C are distinct. One can derive from this a partial fractions
decomposition by repeatedly using the division algorithm for polynomials, as
we discuss in Proposition 6.24. By such a process, we obtain coefficients a; ¢
such that

ris) _ ﬁ: @ik (4.55)
h(s) 4 ; '

with integers m ; that give the multiplicity of the poles ;. The poles A; and
coefficients ajy, are unique, as one can show by considering the Cauchy
integral formula to (z — A;)? f(z) to suitably chosen contour integrals about
the A;.
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(i1) The function

)
HOENIOED I

o as @D —z))

is proper and rational, with A(s) — 0 as s — oo. The only possible poles are
simple poles at the z;, but we find that (s — z;)g(s) — 0 as s — zj, so there
are no such poles. Hence g(s) is holomorphic and bounded on C, so g(s) is
constant by Liouville’s theorem. But the constant must be zero, since g(s) — 0
as s — 00.

O

This result is very useful, so long as one can locate the poles A;. Using Corol-
lary 6.27, one can check simplicity of the poles, as in the hypothesis (ii) of
Proposition 4.22, without locating the poles A ;.

Corollary 4.23 (Laplace Transforms Which Are Strictly Proper Rationals) Let
y(t) be a function of the form

n
YO =Y ajn et (4.56)
j=1

Then the Laplace transform Y of y is a strictly proper rational function with partial
[fraction decomposition

n Ny
v =3y " (4.57)

G Ch

Conversely, all strictly proper rational functions arise thus.

Proof Let RL < B and B < s. We substitute z = (s — A)t and find

o0 o0
/ tnekte—st dt = / tne—(s—k)t dt
0 0

1 oo
— n_,—z .
_(S—)»)"“/o e ds

this can be justified by Cauchy’s theorem from complex analysis. Integrating by
parts, we obtain

oon)\t —st 1 nfzoo n Oonfl -z
/Otee dt:(s—k)”+1[_ze ]0+(s—k)”+1[0 7" et dz

n—le—z:loo n(n - 1) 0

n-2_-—z
""feTtdz
0 (S — )\)n"'l 0

=0+ _n [—z
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and so until

0t st n!
/0 t"eMe S dt = (s — 2yt (4.58)

O

In the next section, we give an inversion formula via a contour integral when the
poles are simple.

4.7 Dirichlet’s Integral and Heaviside’s Expansions

Inverting the Laplace transform involves the following crucial calculation. We write
sgn(t) = 1fort > 0and sgn(t) = —1 fort <O.

Lemma 4.24 (Dirichlet’s Integral)

R .
t
im | 00 = ngn(t). (4.59)

R—o0 Jo w

Proof By a simple scaling argument, we can replace rw by w, taking account of the
change in sign of the resulting integral when ¢ < 0. The function f(s) = e¢™%/s is
holomorphic except for a simple pole at s = 0, so we use the contour

[ = [—Ri, —8i]1 ® Ss @ [8i, Ri]1 ® (—Sr). (4.60)

where 0 < § < R and the indentation around s = 0 ensures that O lies to the left of
I' as in Fig. 4.1. By Cauchy’s Theorem,

—S
/e ds =0,
r S

We can express this integral as the sum of the four parts corresponding to the arcs
in (4.60), taking first the two segments on the imaginary axis with s = iw

s -8 R ,—iw
/ +/ ds :/ +/ dw
[—Ri,—48i] [8i,Ri] S _R s w
R e—i(x) _ eia)
= dw
k) w
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Fig. 4.1 Semicircular
contour in the left half-plane
with indentation

then taking the integral round the indentation, with s = 8¢/ for —7/2 < 6 < 7/2,

-5 /2 ;
/ ¢ ds =i/ e 4p
S5 S —n/2

— i 6 — 0+);

and finally taking the integral round the large semicircle with s = Re’? for —m/2 <

0 <m/2
—s /2 ;
/ ¢ ds =i/ e R’ 4p
Sg S /2

/2 o
— i/ e*RcoseﬂRsmedQ;
—/2

where the final integral is bounded by

/2 m/2 )
2/ e—R0080d0 =2/ e—RSln¢d¢
0 0

/2
S 2/ e—2R¢/]td¢
0

T
R

IA
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Combining these identities, we deduce that

/Rsmwd —”+0(1) (R = o) (4.61)
) w Cl)—2 0). .

O

Definition 4.25 (Hilbert Transform) The Hilbert transform is defined by the
Cauchy principal value integral

Hg(y) = lim [ / . / g(w) de (4.62)
y+e

y—ow 7w

for g € L>(R).

Example 4.26 Tt follows from Dirichlet’s integral 4.24 with the change of variable
w — o — y that

y—¢ 00 LI P .
lim { / + / — _isgn(r)e!" (4.63)
00 y+e w T

e—>0+

The following is a useful inversion formula for special Laplace transforms, which
we extend in Proposition 6.55.

Proposition 4.27 (Heaviside’s Expansion Theorem) Ler F(s) = p(s)/q(s) be a

strictly proper rational function with simple poles atz; € LHP for j =1,...,n,
and let
1 iR
f(@) = lim / e F(s)ds (t > 0). (4.64)
R—o00 271 —iR

Then F (s) is the Laplace transform of f (t), and

P(Z]) o7

f(t) = i (> 0). (4.65)

j=1 dv(ZJ

Proof The rational function has a partial fractions decomposition

Fo =Y 4 " @) (4.66)

o1 as @6 —2z))

where we have computed the residues of p(s)/q(s) at the simple poles z; by the
formula of Proposition 4.22. Note that e’ appears instead of ¢™*’, and for ¢ > 0
the function ¢*? is bounded for s in the left half-plane. We integrate % F (s) round
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a semicircular contour of large radius R > 0 in the LHP, which winds round all the
poles. As in the calculation of Lemma 4.24 Dirichlet’s integral , the contribution of
the semicircular arc tends to 0 as R — oo. The poles are all simple, and residues of
e F(s) are
. st .
Res{e”F(s);zj} — lim (s Z])p(s)e _ f(Z/) eth’ (4.67)
=5 q) (2)

so the formula for f(¢) follows from Cauchy’s Residue Theorem. Then F(s)
coincides with the Laplace transform of f(¢) by a simple case of Corollary 4.23.
If F(s) = O(1/s%) as s — oo, then the integral (4.64) is absolutely convergent. O

Remark 4.28

(1) If F(s) has multiple poles, then the formula (4.64) is still valid, but the
expansion formula needs amending with more complicated formulas for the
residues at the multiple poles. See Proposition 6.55 for details.

(i) The reader will find it instructive to extend to the case in which the poles are
possibly in RH P; it only takes a translation in the variable s.

Heaviside’s expansion gives a succinct solution of some differential equations. For
polynomial g (s) = a;,s™ + - - - + ap we write

(Do o
=a e a ap,
9N\ g " dm Yar 70

as in the style of Proposition 4.17.

Corollary 4.29 (Heaviside’s Solution) Suppose that q is a complex polynomial of
degree m with all its zeros simple and in LH P, and suppose that p is a complex
polynomial of degree n where n < m and let f(t) be as in (4.65). Then for any
n-times continuously differentiable input u of the type (E), the unique solution of
the initial value problem

d d
q(dt)yzp(dt)u (4.68)
D= Pz Vg o= = T 4.69
yO="0==" Jo=0=u0== 0 @
is
t
y(t):/ it —Du@de > 0). (4.70)
0

Proof By Theorem 2.40, there exists a unique solution, which belongs to (E)
by section 4.5. The Laplace transform of the differential equation is g(s)Y (s) =
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p(s)U(s) so Y(s) = F(s)U(s), so the solution is expressed as a convolution with
f asin (4.65). |

4.8 Final Value Theorem

The results of this section are useful for finding or checking constants in solutions
of differential equations. For a continuous and bounded function f : (0, c0) — C,
we can interpret

SF(s) = s /OO e Fdt (s > 0) .71
0

as a weighted average of f, since s fooo e 'dr = 1. This suggests that the values
of s F(s) should be strongly related to the values of f ass — 0 ors — oo. In the
literature there are two types of results about limits of Laplace transforms:

(i) Abelian theorems, which show that f(¢) has certain limits as t — 0+ ort —
03
(i) Tauberian theorems, which have the hypothesis that f(#) has certain limits as

t — 0+ ort — 00, and conclusions that F'(s) has certain limits as s — o0 or
s — 0+.

It is important not to confuse the hypotheses and conclusions. See [56].
There following two results are Tauberian theorems for the Laplace transform,
and may be applied with due care about the hypotheses. See [53].

Proposition 4.30 (Final Value Theorem) Suppose that f : (0,00) — Cis a
continuous and bounded function such that f(t) — L ast — oo for some L € C.
Then the Laplace transform F (s) of f satisfies limg_,0+ sF(s) = L.

Proof Take M such that | f(¢)| < M forall t > 0, and let & > 0. Then we split the
integral

SF(s) — L = /Oo(f(t) — L)se™'dt 4.72)
0

into fOR + [z ; where R > 0 is to be chosen. We take R such that | f(1) — L| < ¢
forallt > R, so

‘ /oo(f(t) ~ Lyse™ dt‘ < /OO se™tdr < e 4.73)
R R

when we have | f(f) — L| <M + |L| <2M, so

R R
‘/ (Ft) — L)se*”dt‘ < ZM/ se="dt = 2M(1 — e R); (4.74)
0 0
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there exists so > 0 such that 2M (1 — e’SR) < g forall 0 < s < sp; hence the
result. O

Proposition 4.31 (Initial Value Theorem) Let f be continuous on [0, 0c0) and
suppose that f satisfies (E). Then the Laplace transform F (s) satisfies

f(0) = lim sF(s). (4.75)

Proof By a simple scaling, one can show that

SF(s) = f(0) = /0 (f(x/s) = f(O))e™ dx.
Given ¢ > 0, and M, o > 0 such that
lf(@)] < Me™ =0, (4.76)

consider s > 2« and R > 0. Then

- fx/s) — f(0))e ¥ dx| <aMe R?2 (s> 2a). 4.77)
R

We now choose and fix R so large that 4Me~R/? < ¢. By continuity of f at 0,

f(x/s) — f(0) — 0 ass — o0, so there exists so such that

R
‘ fo (f(x/s) = f(0))e™ dx‘ <e¢ (4.78)

forall s > s0.
From the preceding estimates, we deduce that for all s > max{so, 2c},

[SF(s) = fO)] < | /0 (FC/s) = f(O))e™ dx| < 2. (4.79)

O

Example 4.32 In the context of Proposition 4.27, one can check that f(0) =
lims_ o0 s F(s) and lim; 0 f(#) = 0 = lims_0sF(s) as in the initial and final
value theorems.

Remark 4.33

@) If f : [0,00) — C is continuous and lim;_,», f(t#) = L exists, then f is
bounded so that there exists M > 0 such that | f(z)| < M for all ¢+ > 0. In this
situation, f satisfies the hypotheses of both the initial value theorem and the
final value theorem.
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(i) The hypotheses of the theorems are nevertheless different. The function sin 7 is
continuous and bounded on [0, c0), but does not have a limit as ¢ — oo. The
function sin(1/¢) is bounded and continuous on (0, co), but does not have a
limit as ¢t — 04.

(iii) In the final value theorem, we assume that lim,_, o, f(#) exists, and identify
this limit in terms of s F'(s) as s — 00; in the initial value theorem, we assume
that f(0) = lim,— o+ f(#) exists, and express this limit in terms of s F (s) as
s — 0. The results do not say that limits for s F(s) imply existence of limits
for f(1).

(iv) The initial value theorem can be extended to a more subtle versions known as
Watson’s lemma; see [53].

4.9 Laplace Transforms of Periodic Functions

In many applications, especially to signal processing, one works with periodic
functions, which have Laplace transforms with a special form. We consider a basic
result and two significant examples, namely sine waves and square waves.

Definition 4.34 (Periodic Function)

(i) A piecewise continuous and nonconstant function f : R — C is said to be
periodic with period p > 0 if f(t + p) = f(¢) for all # € R, and no such
identity holds when p is replaced by 0 < g < p.

(i) A complex function F(s) is said to be meromorphic if F is holomorphic apart
from some poles. All rational functions are meromorphic.

Proposition 4.35 Let f be periodic. Then f is bounded and has a Laplace
transform which is a meromorphic function that satisfies

I e fuydu
| )

cio=""_" (4.80)

Proof Since f is piecewise continuous, it is bounded on [0, p] so is evidently
bounded on R as the graph repeats itself when we translate it to the right through
steps of p. Then f when restricted to (0, co), has a Laplace transform, which we
compute by splitting the range of integration into intervals [np, (n + 1) p), on which
we change variables to r = np + u. We have

Lf(s)= /00 e f(t)dt
0
e (n+Dp

= Z/ e S f(1)dt

n=0""P

o P
= Ze_"ps / e " f(np +u)du,
0
n=1



120 4 Laplace Transforms

where f(np + u) = f(u) by periodicity, so all the integral are equal and we can
sum the geometric series to obtain

fop e " f(u)du
Lre="" ",
where the numerator is an entire function of s, and the denominator is an entire
function of s with zeros at e’” = 1; thatis s = 2wni/p where n € Z. Therefore the
Laplace transform is a meromorphic function with possible poles on the imaginary
axis, equally spaced with gaps 27 /p between them. However, the possible poles
may be canceled by zeros on the numerator. O

Example 4.36 (Sine Waves) The function of periodic functions include sin(27¢/ p)
is periodic with period p > 0, and we have

: _ 27/ p
L(sin2rt/p))(s) = (s — 21/ p)(s + 21/ p) (4.81)

which has only two poles, at +27i/p, so in this case all but two of the possible

poles are canceled out.

Example 4.37 (Square Waves) Consider the initial value problem for k > 0

d2y

dt?
y(0)=y'(0)=0

+ K2y (1) = u(r)

for a bounded and piecewise continuous input «. Then the solution is
Psink(r —
y(1) = / s (k Dumyde (>0, (4.82)
0

One can verify that this works by differentiating twice. To derive the formula, we
take Laplace transforms, and obtain

$2Y(s) + k2Y(s) = U(s), (4.83)
SO
1
Y(s) = k5?42 Ul(s), (4.84)

where k/(s?> + k?) is the Laplace transform of sin kz, so we obtain the solution as
the convolution of (sin kt)/k with u(¢).
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In particular, we can take the square wave input

u(t) =1 (tel0,HUI2,3)U[4,5U...)
-1 (tell,2)U[3,49U[56)U...
which is known as the square wave on account of its graph, which resembles the top
of the curtain wall of a medieval castle. One can write

u(@t) =Yy (H(t—2k)—2H@—1-2k)+H(@—2-2k)) (t>0) (485
k=0

which is a finite sum for each ¢t > 0 since H(t —n) = 0 foralln > ¢.
The Laplace transform is

e 2n+1 0 2n
U(s) = / e Sdt — / e dt

X_: 2n X_: 2n—1
n=0 n=1
1 & l &

— Z(e—Zns _ e—(2n+1)5) _ Z(e—(Zn—l)s _ e—ZnS)
§ n=0 § n=1

_ 1—2¢ S e %

 s(l—e )

S

= tanh _,

s 2

where we used geometric series to make the summation. This calculation is easily
justified by uniform convergence since the partial sums of the series for u(¢) are
uniformly bounded. Hence sU (s) = tanh(s/2), and since u(¢) is right-continuous
at t = 04, we can use the initial value theorem to confirm that u(04+) =
limg_, 0o sU(s) = 1. Whereas sU(s) — 0 as s — 0+, the square wave does not
have a limit as t — 00, and we cannot apply the final value theorem.

For large t > 0, we choose N to be the largest integer such that 2N +2 < ¢, and
we write the solution as

2N+2 ; _ t . _
(@) =/ sink(t T)u(t)dr—i-/ SINk(=1) | oyde (4.86)
0 k AIN+2 k

where the final integral is bounded independent of 7, and the other integral is
evaluated by splitting [0, 2N 4 2] into subintervals of length 2. A typical subinterval



122 4 Laplace Transforms

contributes

/2"+2 sink(r — 1) (t)de /2"“ sink(t — z)d /2"+2 sink(r — z)d
u\t = T — T
2n k 2n k 2n+1 k

= klz (2 cosk(2n 41 —1) — cosk(2n — 1)
— cosk(2n +2 — t))

= klz ( — 2sin(k/2) sink(2n + 1/2 — 1)
+ 2sin(k/2) sink(2n + 3/2 — t))

4
=0 sin’(k/2) cosk(2n 4+ 1 —1).

e Whenk # 2m+ 1)m form =0, 1, ..., we have cos(k/2) # 0, and we continue
with

u(t)dt =2

2042 Gink(t — 1) sin?(k/2) _ .
. 2sinkcosk(2n+1—1t)
o k k2sink

= klz tan(k/2)(sink(2n 4+ 2 —t) — sink(2n — 1)),

and we deduce that

N

INA2 Gink(r — 1) 242 Gink(t — 1)
u(t)drt = / u(t)dr
/O k nX:(:) 2n k

N
= Z klz tan(k/2)(sink(2n +2 — 1)
n=0

—sink(2n — 1))
1
= 2 tan(k/2)(sin k2N +2—1)+ sinkt),

which is bounded independent of ¢, so the solution y(#) is bounded.
e Whenk = 2m + 1) forsomem =0, 1,2, ..., we have cos(k/2) = 0, and

/2"+2 sink(r — 1)
2

4
X u(t)drt = 2 (cos(Zm + 1)2n + 1)w cos(m + tr
n

4 sin@@m + 1) + Dy sin@m + 1)m)

4
= 2 cos(2m + Dtm,
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and we deduce that

N2 Sink(t — 1) Y4
dt = — 2 1)t
/0 r u(r)dr X_: 12 cos(2m + Dtw
n=0
4(N+1)

= 2 cos(2m + Dtm,
so y(t) oscillates unboundedly as t — oo, and we have a resonance effect for
such k.

Remark 4.38 Given a piecewise continuous function f : [0, p] — C, there is a
natural extension of f to a periodic function f : R — C. Given ¢t € R, there exist
aunique n € Z and u € [0, p) such thatt = np + u. For u € (0, p), we define
f(@®) = f(u). For u = 0, we can define either:

(i) f(np) = limy_ o+ f(v), if one wants a cadlag function (continuous from the
right with limits from the left); or

(i) f(np) = limy—o+(1/2)(f(v) + f(p — v)), which is useful in the context of
Fourier series.

4.10 Fourier Cosine Transform

The Fourier transform is fundamentally important in signal processing and theory
of linear differential equations. In this section we give some fundamental results,
including an inversion theorem. The Laplace transform and Fourier transform are
different, but they are related; in particular, we obtain the uniqueness theorem
for Laplace transforms via the Fourier inversion formula. Throughout this section,
we suppose that f : [0,00) — C is a piecewise continuous function such that
fooo | f(2)|dt converges, so that f is integrable. We regard + > 0 as time and
introduce @ € R as the angular frequency. The function cos(wt) is a periodic
function of ¢ with period 27 /w for w > 0. Models described in terms of w referred
to as frequency domain models. The Fourier transform takes us from time domain
models to frequency domain models.

Definition 4.39 We define the Fourier cosine transform of f by

b (w) = / - cos(wt) F()dt  (w € R). (4.87)
0

Proposition 4.40 The Fourier cosine transform is a continuous and bounded
function.
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Proof By the triangle inequality, we have a bound

¢ ()] Sfo | cos(wn)|| f(1)|dt S/O lf®ldt (0 €R), (4.88)

so the integral is absolutely convergent and uniformly bounded in w.
By continuity of cosine, the partial integrals

¢n(w) = /n cos(wt) f(t)dt (w € R) (4.89)
0
are all continuous and

1P (@) — Pn(@)] 5/ | cos(wn)|| f(1)|dr 5/ lfOldr (weR) (4.90)

n

s0 ¢, — ¢ uniformly on [0, 00) as n — 00. Hence ¢ is also continuous. O

Remark 4.41

(i) Suppose that f has Laplace transform F and cosine transform ¢. Then from
cos(wt) = 271 (e 4 ¢~i") we deduce that

p(@) =271 (F(iw) + F(-iw)) (0 €R). 4.91)

(i) Suppose that f is integrable and real-valued on (0, c0), so has Laplace
transform is F (s); then with s = iw and w € R, we have

RF(s) = /OO £ (1) cos(wt) dt = ¢(w), (4.92)
0

namely the Fourier cosine transform.
Hence we can convert Laplace transform formulas into Fourier cosine formulas.
Example 4.42

(i) By integrating twice by parts, one can show that f () = ¢~ has Fourier cosine
transform ¢ (w) = 1/(1 4+ w?).

(ii) Let Lo q4) be the indicator function of (0, a), so L 4)(t) = 1 for ¢t € (0, a) and
L0,q)(t) = Ofort € R\ (0, a). Then the Fourier cosine transform is sin(aw)/w.
Note that sin(aw)/w — a as w — 0, so we have continuity.

Definition 4.43 The unnormalized sinc function is
int
sinc(r) = Sl? (t €R). (4.93)

This is sometimes called the cardinal sine function.
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Theorem 4.44 (Integrated Inversion Formula)
x o2 [RsinGo)
f@)dt = lim ¢(w)dw. (4.94)
0 R—oco 1 Jo w

Proof By Lemma 4.24, we have

R .
lim f SINW®) o~ 22w > 0)
0 w

R—

=-—m/2 (u <0).

Then we have

R sin(xw) R sin(xw) [
/’ mwm=/ /cm@ﬁmmm
0 w 0 w 0

o0 R sin(xw) cos(wt)
= d d
[y o )

[ R sin((x = Do) + sin((x + Do)
= /0 ( /O . da)) F(n)dt

where we have changed the order of integration and used a trigonometric addition
rule. The inside integral has limit

R sin((x — 1)w) + sin((x + t)a))d T sgn(x —t) + sgn(x + ¢)
/0 20 ) 2

T
= Ty x
2 ( x,x)( )

as R — oo. From integration theory, we deduce that

AL i nrmdi=" [ foar
Jim [T MMw—ZA e O F @) —ZAfO-
(4.95)
Oa

Corollary 4.45 (Laplace Transform Uniqueness) Suppose that f has Laplace
transform F, where F(s) = 0 for all s € (sg, 00) for some so > 0. Then f(t) =0
at all points of continuity of f.

Proof By Propositions 4.6 and 4.40, F is holomorphic on {s : s > 0} and
continuous on the closed left half-plane {s : fis > 0}. By the principle of isolated
zeros, we deduce that F(s) = O on {s : Ms > 0}. In particular, ¢(w) =
27Y(F(iw) + F(—iw)) = 0 when s = iw is on the imaginary axis, so from the
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integrated inversion formula (4.94), we have

fx f@®dr =0 (x > 0). (4.96)
0

By the Fundamental Theorem of Calculus, we have f(¢#) = 0 at all points 7 at which
f is continuous. See Exercise 4.23 for an inversion formula.

This proves the Laplace uniqueness Theorem 4.11 on Sect. 4.4, and in Corol-
lary 9.5, we prove a stronger version of this result due to Lerch. O

4.11 Impulse Response

Proposition 4.46 For a stable system (A, B, C, D) as in Sect. 5.6 let ¢(t) =
Déo(t) + Cexp(tA)B. Then

L(@)(s) =T(s). (4.97)
Proof We have

o0 o0
/ e S'p(t)dt = D + C/ e *Texp(tA)dtB
0 0
=D+CI—A"'B=T(),

by the Proposition 3.10. O

This ¢ frequently appears in the literature, without having a ubiquitous name.
One can call ¢ a scattering function, by analogy with similar functions which appear
in physics; alternatively the impulse response function as it is the signal that arises
from an input of §.

We consider some standard inputs u for the SISO system (A, B, C, 0), where the
initial condition of the state is X (0) = 0. Let ¢ (r) = C exp(tA) B.

(1) Letu;(t) = H(t), so

13 13
y1(2) :/0 ¢t —v)dv =/0 ¢ (v)dv. (4.98)

(2) Letus(t) = éo(dt), which is the unit impulse. Then y»(t) = ¢ (¢), which is the
derivative of the output in case (1).
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(3) Let uz(t) = ¢ for real angular frequency v. In this case, it is more helpful to
consider the Laplace transforms Y3 of the output y3, T (s) of ¢ and U3 of u3, so
that

Y3(s) = T(s)Us(s) = C(sI — A)_IBS ! . (4.99)

—iv
Evidently, Y3(s) has a possible pole at s = iv, as we discuss in the next chapter.

Example 4.47 Suppose that we use an (A, B, C, D) model for a pension fund, in
which the employee contributes an input u(¢) from the start of employment at time
to until retirement at time ¢+ = 0, and then draws a pension y(¢) for t > 0. After
retirement the contributions cease, so U (t) = 0 so amount of money in the pension
fund is the state variable X (¢), which satisfies

min{z,0}
X (1) =exp((t — 1t9)A) X (t0) +/ exp((t — t)A)BU (7)dr, (4.100)
1o
and the output, namely the pension is
min{0,7}
y(@) =CX() = Cexp((t —10)A)X (o) + f Cexp((t —1)A)BU (1)dr.

fo

(4.101)

If we assume that 1y is in the remote past, and A is stable, then exp((¢ — f9)A) — 0
as fp — —o0, so we are therefore led to consider

y@) = /°° Cexp((t +v)A)BU (—v)dv (4.102)
0

where we have substituted v = —t. With ¢ (#) = Cexp(tA)B and f(v) = U(—v),
we have

o
() = / ¢t +v) f (W)dv. (4.103)
0
In this formula, ¢ 4+ v is the total time elapsed between payment of a pension
contribution and a receipt of the pension.
4.12 Transmitting Signals

(i) Morse. Suppose that we have a radio transmitter that is able to transmit radio
waves at angular frequency w.. We use this to send out short pulses called dots
of duration d seconds and longer pulses called dashes of duration D seconds.
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(ii)

(iif)

4 Laplace Transforms

The letters of the alphabet can be represented by specific combinations of dots
and dashes, in Morse code. A signal consists of dots and dashes emitted at
times t; fort; < --- < ty, so the signal is

n
ay Tiy4a;) (1) sin et (4.104)
j=1

for some a > 0 where d; € {d, D}. The signal is obtained from the
carrier sin w.¢t by multiplying by an on-off switch, known as Morse key. The
receiver records the transmission and communicates this by a loudspeaker to a
human receiver, who identifies the pattern of dots and dashes in the signal as
letters, and thus reconstructs the message text. This system was used in radio
communication in the first half of the 20th century, particularly in maritime
and military contexts. The advantage is that only very simple transmitters and
receivers are required, and the message can be interpreted when the signal is
rather faint. The disadvantage is that one can only communicate text, and the
rate of communication is slow.

Amplitude modulation (AM). Suppose that we wish to communicate sound
waves at angular frequency wy, , such as the middle C note of a piano has 264
Hz so w,, = 27 (264) and the wavelength is 1.25m. We transmit a carrier signal
sin w, as above, but we modulate the amplitude of the signal at the angular
frequency w, so that the combined signal is

(A + a sin wy,t) sin wt. (4.105)

For instance, Radio 4 uses long wave 1514m at frequency 198kHz, so the
angular frequency of the carrier wave is much larger than the angular frequency
of the signal. The input into the transmitter derives from electrical signals
from microphones, and the receiver reverses the process by broadcasting the
received signal via a loudspeaker. This system is effective for transmitting the
spoken word, and requires relatively simple equipment.

Frequency modulation (FM). Let x(¢) be a signal with polar decomposition
x(t) = A®@)e”D; then we define the instantaneous angular frequency to
be ‘gllf. Suppose in particular that we have a carrier wave e/’ which we
modulate by adding a phase ¢ (¢) so that 6(¢) = w.t 4 ¢ () with instantaneous
angular frequency ‘éf = w; + 4, - Given a bounded and continuous function
m : [0, 00) — R, we can choose ¢ (1) = f(f m(u)du so that 6(t) = w.t + ¢ (1)
has instantaneous angular frequency

do

dt = w; +m(t); (4.106)
the carrier frequency w, is thus modulated by the signal m(¢). If we choose w,
so that |m(t)| < w,, then 0 is a strictly increasing and continuously differen-
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tiable function. This is the basic principle underlying frequency modulation,
which is used for radio transmission, especially for broadcasting music with
high fidelity. Radio 3 uses very high frequency transmission of 90 MHz so the
wavelength of the carrier signal is about 3.33m. For comparison, the highest
note on a piano has frequency of about 4185 H z, so the frequency of the carrier
signal is much larger than the modulating frequency.

4.13 Exercises

Exercise 4.1

(i) Calculate the Laplace transforms of cos 2wt from the definition, and
(i) deduce the Laplace transform of sin® wr where w > 0 is a constant.

Exercise 4.2 Solve the initial value problem

d
df — 7y = sin2t,

y(0) = 0;

by taking Laplace transforms. Use partial fractions at the final step of the calcula-
tion.

Exercise 4.3 Solve the integral equation

t

Y = e / ety du,
0

where y has property (E), by using Laplace transforms.
Exercise 4.4

(i) Show that
Spx f(t) = f(@t —b)H(t — D) (t,b > 0).

(ii) Let h(t) = H(t — b) for some b > 0. Show that

t—b
hs f(t)=H(t —b)/ fu)du.
0
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Exercise 4.5 Solve the differential equation

d3y d?y dy d*u du
3 6 4y =21 39 —12
ar a4 T ar T ar !
d?y dy du
0) = 0)=y0)=0= 0)=u
dtz() dt() y(0) dt() u(0)
by Laplace transforms.

Exercise 4.6 (Poles at —1) Let R be the set of functions of the form

n

a
TO=2 Ly

j=1
wheren > Oanda; € C.

(i) Show that f(s) is differentiable, and df/ds € R.
(i) Show that, for all f(s), g(s) € R, the sum f(s) + g(s) and the product
f(s)g(s) also belong to R.
(iii)) Show that f(s) is the Laplace transform of

- ajtjfle”
= 0).
(@) ; G- €0

Exercise 4.7 Let y(r) = (1/2)80(¢) + Zj‘;l(—l)/ﬁj (#) be an alternating sum of
Dirac point masses on the nonnegative integers.

(i) Calculate the Laplace transform Y (s) of y.
(i1)) Show that Y (s) has zeros at even integer multiples of mi, and poles at odd
integer multiples of mi.

Exercise 4.8 Compute the Laplace transform F'(s) of

n

fx) = (ajcos(bjx) + c; sin(d;x))

j=1

and consider the values lims_, 5 s F(s) and lims_,o+ s F(s) in relation to f.

Exercise 4.9 Show that

X X0 oy
/ o—tds — 2 / sin(wx) dw x> 0)
0 0

T w 1+ w?
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and deduce that

) /°° cos(wx)
e = dw (x > 0).
7)o 1+ ?

By taking x — 04, confirm that the constants are correct.

Exercise 4.10 (Carleman’s Integral) See [47]. Let y(¢) be a bounded, continuous
and integrable function that has Laplace transform Y (u#). By taking the Laplace
transform of Y, derive the formula (the Laplace transform of the Laplace transform)

© ]
2 -
L2(y)(s) —/0 IO

The right-hand side was studied by Carleman, and in operator theory by Power [47]
and others. It leads to a fundamentally important example of a Hankel operator. In
books of standard integrals, it is sometimes known as the Stieltjes transform of y;
see Titchmarsh [57] page 317.

For A such that )il > 0, let

If(x)= fo Ooe—“””f(wdy (f € L*(0, 00)).

Then the range of I is {ce’”; ¢ € C}, so I" has rank one.

Exercise 4.11 Suppose that g is piecewise continuous on (0, o0) of type (E).
Suppose also that the Laplace transform G(s) of g satisfies G(s) = 0 for all
s € (8o, 00) for some 59 > 0.

(1) Show that there exists k > 0 such that f(r) = e *'g(r) is piecewise
continuous and fooo | f(¢)|dt converges.
(i) Show that f has Laplace transform F'(s) = G (s+«), and deduce that F(s) =0
on {s : Rs > 0}
(iii) Using Corollary 4.45, deduce that g(¢) = 0 at all points of continuity of .

Exercise 4.12 (The Series and Laplace Transform of Jy) See [53]. Let Bessel’s
function of the first kind of order zero be defined by

1 2
Jo(t) = / cos(t cos6)d6.
2 0

(i) Show that Jo(0) = 1 and Jj satisfies Bessel’s equation

d2J0 dJy

2 2

t t t“Jo(t) = 0.
i + it +t°Jo(?)
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(i) By expanding the outer cosine function as a series, obtain the power series
expansion

e¢]

_1n2n
O DR

2 27
22 (n)

and verify that it converges for all r € C.
(iii) Show that the Laplace transform satisfies

e s de
s2 +cos20 27’

L(Jo)(s) = /
0

and by calculus of residues or otherwise, deduce that

L(Jo)(s) :

0)(s) = .

V1452

(iv) Obtain this Laplace transform from the differential equation and the initial
value theorem.

(v) Expand the Laplace transform as a power series in 1/s for |s| > 1 by the
binomial theorem to obtain

1 _i (—=D)"(2n)!
Vi+s2 22l

and compare with the series that you obtain by taking the Laplace transform of
the power series in (ii) term by term. This step is justified by Exercise 4.13.

Exercise 4.13 (Bessel Functions) Suppose that Y .- a,z" is a complex power
series with radius of convergence r > 0, so the series converges for all z € C
such that |z| < r.

(i) Show that f(r) = Z;O:o ant" /n! converges for all 1 € C, and that f(¢) for
t > 0 determines a function of type (E) with Laplace transform

F(s) = /00 f®e ™ dt = Z:ans_"_1 NRs > 1/r). (4.107)
0 n=0

(i) Show also that Y o2, ap,s "~ converges uniformly on {s € C : |s| > o} for
allo > 1/r.
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Fig. 4.2 Bromwich contour for Laplace inversion

(iii)

(iv)

v)

Let I'r (o) be the Bromwich semicircular contour of Fig. 4.2 where R > o, so

I'r (o) lies outside of the circle C (0, 1/7). Show that

0 o0
o d "
/ Y a3 (t €C). (4.108)
(o) =0 2mi 0 n!
Show that for ¢ > 0,
o+iR X ds Sl a "

li nlets U= " t>0). 4.109
RLmOO o—iR nzz;)ans ¢ 2mi nzz;) n! ( = ) ( )

so that there is an inverse Laplace transform formula

o+iR ds
f() = nm/ F()e & (1 >0). (4.110)
R—o0 Jo_iR 2mi

This exercise is related to Borel summability as in [56] Exercise 4.21 and
applies to examples of f(¢) such as Bessel’s function Jy(¢) in Exercise 4.12.
In the case of the Bessel function of order zero, it shows that

1+iR o5t ds

Jo() = lim .
R—oo J1_jr /1 + 52 2mi

Here the function /1 + 52 is holomorphic on C \ [—i, i] and takes opposite
signs on either side of the cut [—i, i]; see (6.120). To reconcile this formula
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Fig. 4.3 A dog-bone contour

with the definition as given in Exercise 4.12, show that

lim

1+iR st ds / et ds
R—oo Ji_ir 145227 Jp

V1 4 52 2mi

where B is the dog-bone contour as in Fig. 4.3 that goes from —i + 6 to i + 6,
goes round i on an arc of a circle, then goes down from i — § to —i — §, then
goes round —i on a semicircular arc back to —i + §. Evaluate this integral
by letting 6 — 04 and substituting s = icos6@ for —n < 6 < 0, thereby
recovering Jo(t).

Exercise 4.14 Suppose that (A, B, C, 0) is a stable linear system where A is similar
to a diagonal matrix with eigenvalues A1, ..., A,.

(i) Show that ¢(¢) = C exp(tA)B satisfies
(1) = Zajekft (t > 0)
j=1

forsome a; € C.
(ii) Let f be a bounded and continuous function and let

) = fo 50t +v)f (W)dv.
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Show that
n
Y0y =Y "bj' (>0
j=1

for some b; € C.

Exercise 4.15 Let f, g : [0, 00) — R be continuously differentiable functions of
class (E) such that f(0) = g(0). An approximate form of the telegraph equation
gives rise to the initial value problem

9%u
dxdy +u=0, (x,y > 0),
u(x,0) = f(x), (x > 0)
u,y) = g(), (v > 0). (4.111)

(i) By integrating by parts and changing order of integration, show that
o0 [o.¢] o0
atpg) [ [T e P ydndy = s+ [ e pwods - o)
o Jo 0

+f0 ge Pg(y)dy — g(0)
4.112)

(ii) Using the power series in Exercise 4.12 or otherwise, show that

(0.¢] (0.¢] 1
e PP o (2 /xy)dxdy = (p,q > 0).
/0 /0 (V) 1+ pgq

(iii) Find the Laplace transform of

/Ox af Jo(2y/y(x — 1))dt,

dt

and deduce that

/00 /00 e Py /x af Jo(2\/y(x — t))dtdxdy
o Jo o dt

_ —f(O)Jr P

o0
= e P* f(x)dx.
1+ pq 1+pq/o
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(iv) Deduce that

*d Yd
u(x,y) :f(0)10(2¢xy)+/() d‘f JO(Z\/y(x—t))dt—',-/O df J0(2\/x(y—t))dt

gives a solution of the initial value problem.
(v) Use the change of variables x + y = § and x — y = n to solve the inital value

problem
U U
852_8n2+U:O’ Exn=>0),
UE,8) = fé), E=n
U, —5) =g@®), & =-n. (4.113)
Exercise 4.16

(i) Given the Laplace integral formula

o b 1 |n
2 2\/&}7
— — dv = ,b>0),
/0 exp( av v2) v 2\/ae (a,b > 0)

deduce that for «, x > 0

> xexp(—x2/(4kt)) _,,
/0 e *'dt = exp (—xy/s/k)

Vit

(i1) Let u(x, r) be a solution of the telegraph equation

ou 0%u
81‘ :Kaxza (-xat>0)7
u(0,1) = f(), (t>0)
u(x,t) — 0, (x — oo,t > 0). (4.114)

o0 —st

Take the Laplace transform U (x, s) = [, e *'u(x, t)dt in the ¢ variable and
show that it satisfies the ordinary differential equation in the x variable

92U (x, s)

952 =sU(x,s)

where U (x, s) — 0 as x — oo. By solving this, show that

/oo e~ulx, 1)dt = exp (—x\/s/ic) /OO e~ T f(T)dr.
0 0
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(iii) Deduce that

2
u(x. 1) = /t xexpC=xt/ (D) oo

Va3

Exercise 4.17 (Tent Function) Fora > 0, let f () be the tent function

f@)=a—t O<t<a)
a-+t (—a <t <0);

0 else.

Show that the Fourier transform of f is

3

00 02
[ s 450

—00

and that

x =2ma.

/00 4 sin®(ax /2)d

2
PSS by

Exercise 4.18 Show that sinc is log-concave, in the sense that

2
a2 logsinc (t) <0 (-7 <t <m).

Exercise 4.19 (Bounded Convolution)

(i) Say that f : (0,00) — C belongs to LY(0, 00) if f is integrable and
fooo | f(x)|dx is finite. Say that u : (0,00) — C is bounded if there exists
M such that |u()] < M for all + > 0. Show that if f € L'(0, c0) and u is
bounded and continuous, then f * u is bounded.

(i) In the context of the differential equation (4.68) suppose that the input u is
bounded for ¢ € [0, o). Show that the output y is also bounded.

Exercise 4.20 (Saw Tooth) The saw-tooth wave is periodic with period 2 and
u(t) =t —1for0 < t < 2. Show that the Laplace transform of u is

1 coths
U(s) = 5y~ .

N
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Using the logarithmic series or otherwise, show that

0 ieinm‘
t—1= 0<t<?2).
> . O<i<2
n=—00;n#0

Exercise 4.21 Suppose that f(z) is entire and there exist §, M > 0 such that
| £(z)| < MeP for all z € C. By considering

@"F ) n!/ @,
C

dz0 "7 27 Jeom 2!
show that
dnf(O)\ M )
az" n'"
so the series g(w) = Z;O:o flnz{ (0)w" has radius of convergence » where r >

¢!~ Calculate the Laplace transform of f(¢) = Z:io inz,’,‘ O)t"/n! fort > 0 and
compare with g.

Exercise 4.22 (Error Function)

(i) The error function is erf(t) = Zfé e‘xzdx/\/n. Express erf(¢) as a power
series, show that erf(1/s) is holomorphic near oo and find the inverse Laplace
transform g(¢) of erf(1/s).

(i) Find the Laplace transform of g(\/ 1), and compare this with (1/4/s) sin(1/4/s).

Exercise 4.23 (Fourier cosine inversion formula) Let f : (0,00) — C be a
continuous function such that fooo | f(t)|dt converges. Let ¢ be the Fourier cosine
transform of f, and suppose that fooo |¢ (w)| dw converges. Show that

f@)=Q2/m) /00 cos(wt) ¢p(w) dw (r > 0).
0



Chapter 5 )
Transfer Functions, Frequency Response, e
Realization and Stability

This chapter considers the Laplace transforms of linear systems, particularly S/SOs
that have rational transfer functions. The aim is to reinterpret the properties of
solutions y(#) in terms of the transfer function 7 (s). The centrally important idea
is stability, and we focus attention on BIBO stability, which means that bounded
inputs always lead to bounded outputs. This chapter contains the crucial theorem
that BIBO stability of a linear system (A, B, C, D) is equivalent to stability of its
transfer function as a rational function. Results of complex analysis are crucial to the
theory, and we begin by considering some contours and winding numbers. Nyquist
and Bode observed that much of the essential information about a linear system
(A, B, C, D) is captured by the frequency response function 7T (i), which can be
plotted in a diagram known as a Nyquist plot. With computers it is straightforward
to plot Nyquist diagrams and when suitably interpreted they encapsulate much
information about the linear system. We consider these plots geometrically and
relate them to properties of the transfer function such as gain and phase. The plots
lead to criteria for various linear systems to be BIBO stable. Using these tools
from geometric function theory, we are able to solve stability problems as posed
by Maxwell.

5.1 Winding Numbers

Let y : [a, b] — C be a continuously differentiable function. Then we say that y is
an arc with initial point y (a) and final point y (b), and that dy /dt gives the tangent
to y at y(¢). A curve y is a continuous function that is made up of consecutive arcs
such that the final point of one arc is the initial point of the next arc. If y (a) = y (b)
then we call y a contour.

Definition 5.1 (Winding Number) Let y be a contour. If z = y (¢) for some ¢ €
[a, b], then we say that z lies on y, or that y passes through z. Otherwise, for an arc
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y we define

oo ! /b vt 1 / ds 5.
ny,z) = = .
vz 2ri J, vy —z 2miJ,s—2

to be the winding number of y about z. The definition extends to contours made up
of several arcs by splitting the integral into integrals over arcs.

One can show that n(y, z) is an integer, and that for all z not on y there exists
8 > O such that n(y, z) = n(y, w) forall w € C such that |z — w| < §.

(1) In particular, if n(y,z) = 1, then we say that y winds round z once in the
positive sense.

(ii) By Cauchy’s theorem n(y, z) = O for all z such that |z| is sufficiently large. If
{z € C : n(y, z) = 0} consists of a connected open set, then its elements are
said to lie outside of y.

Example 5.2 Forr > 0 and a € C, the circle y = C(a, r) with centre a and radius
ris givenby s = a + rel? for 0 < @ < 2x. Then n(y,z) = lfor|z—al <r,
namely the points in the open disc of centre a and radius r; whereas n(y, z) = 0 for
|z — a| > r, namely the points outside the closed disc of centre a and radius 7.

Suppose that f is a rational function such that the poles of f are not on y. Then
I'=foy :[a,b] - Cisanarc. If y is a contour, then I" is also a contour. For
z € C, we consider whether I' winds round or passes through z, and introduce

b
wfopa= | [IOO a1 [ dinds o,
viJo  fyo) -z 2, fo) -z
In other words, we use n( f oy, z) to determine whether f (s) winds round or passes
through z as s describes y.
In complex analysis it is usual to use continuous curves that are made up of
consecutive arcs. The previous observations apply likewise to this case (Fig.5.1).

Definition 5.3 (Semicircular Contours) Let R > 0. In complex analysis one
considers the semicircular contour in the left half-plane I' = Sg @ [Ri, —Ri], which
is given by the semicircular arc Sg : z(§) = Re'? for —m/2 < 6 < /2 with centre
0 from —iR to i R in the left half-plane, followed by the line segment [i R, —i R]
Z(w) = —iw for —R < w < R from i R down the imaginary axis to —i R. Evidently
I' is continuous, and starts and finishes at —i R, hence defines a contour. We say that
I' is described in the positive sense, namely anti-clockwise.

In some engineering books, a different convention is followed, and one considers
the reverse of I', namely (—I'") = [—Ri, Ri]®(—Sg). Here we take the line segment
[—Ri, Ri] z(w) = iwfor —R < w < R from —i R up the imaginary axis to i R, then
the semicircular arc (—Sg) z(9) = Re~'? for —m/2 <0 < /2 with centre 0 from
iR to —i R in the left half-plane. The contour (—TI) is taken in the negative sense,
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2 4
3t l i
4+ 4
5 |

-5 0 5

Fig. 5.1 Semicircular contours in left and left half-planes

namely clockwise. Hence we need to interpret the formulas of complex analysis
carefully, reversing the signs as necessary.

Now consider a proper rational function 7 (s); note that 7 (s) has no poles on the
imaginary axis. By choosing R > 0 sufficiently large, we can ensure that there are
no poles on Sg. Since T (s) is proper, there exists ¢ € C such that T(s) — ¢ as
|s| — oo, so in particular, T(s) — ¢ as R — oo for all s on Sg. Pictorially, the
image {7 (s) : s € Sg} reduces to a curve joining the points 7 (i R) to T (—i R) where
T@@R) — cand T(—iR) — c. For this reason, one often replaces the full contour
[—Ri, Ri] & (—Sgr) by the line segment [—Ri, Ri], and fills in the gap between
T(@iR) to T(—iR). In this context, we can regard [—Ri, Ri] for large R > 0 as a
contour that goes round points in the open left half-plane once in the negative sense.
For s on [—i R, i R], we use the natural parametrization s = iw where —R < w <
R is the range of natural frequencies, and consider 7 (i), the frequency response
function.

If T (s) is also stable, there are no poles inside or on (—I") for sufficiently large
R > 0; the poles of T (s) are either in LHP outside (—TI"), or in the open RHP inside
(-I).

Proposition 5.4 Let f(s) be a rational function that has no zeros or poles on the
imaginary axis, and let

Zr = t{zeros of f(s) in RHP}

Z1 = t{zeros of f(s) in LHP}

Pr = t{poles of f(s) in RHP}

Pr. = t{poles of f(s) in LHP}. (5.3)
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Then Z1 + Zg equals the degree of the numerator, P;, + Pg equals the degree of
the denominator, and for all sufficiently large r > 0

1 / df/ds
. ds=7Zr+ 7Z; — Pr — PL, 5.4
2ri Jew,ny S
and
1 " (df/ds)(
lim @fds)ie) , o 7 7t e — Py, (5.5)
reoom J . fliow)

Proof We use the contours of Fig.5.1. We choose r > 0 so large that all the
zeros and poles lie inside C(0,r). Then we introduce the semicircular contour
Sr @ [ir, —ir] and apply Cauchy’s Residue Theorem to obtain

/ +/ Af/ds \ o ori(Zr — Pr). (5.6)
s, Jiir—ir] f(5)

Likewise, when we take the semicircular contour [—ir, ir] @ T, which is taken
anti-clockwise the left half-plane, we obtain

df/ds .
ds =2wi(Z;, — Pr). 5.7
/, +/|ir,ir] fs) § =2z 2 6D

The sum of these gives

/ dffds , _ [ dffds, [ df/ds
C

- ds =2mi(Z Z1 — Pg — Pp),
on F& T fo0 T re mi(Zr+ZL — Pr = Pp)

(5.8)

since the contribution from [—ir, ir] cancels the contribution from [ir, —ir]. Also

df/ds df/ds 1
ds — ds =0 5.9
s f0 Tl reo @ () o9
as r — 00. The reason is that
df/dS_ZR+ZL—PL—PR 1
o) = ) + 0(s2) (5.10)

and we can compute these with the substitution s = re’?. Then by taking (5.7)-
(5.6)+(5.9), we obtain

dffds B 1
2~/[—ir,ir] f(s) ds=2mi(Zy —Zp+ FPr— FL)+ O(r)7 .11)

and finally we take s = i to parametrize the integral.
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Note that the first of the integrals gives the degree of the numerator minus the
degree of the denominator, while the second integral gives us extra information.
When a function has poles on the imaginary axis, we need to modify the contours,
as in Dirichlet’s integral. O

Proposition 5.5 (Argument Principle) Let f be a rational function with no zeros
or poles on a simple contour y. Let P be the number of poles inside y, counted
according to multiplicity, and Z be the number of zeros of f, counted according to
multiplicity. Then

L (dfjds,
i), 1) ds =7 — P. (5.12)

5.2 Realization

We now apply the results of the previous section to transfer functions.

Definition 5.6 (Transfer Function) Consider a linear system ¥ = LU where L is
a linear operator, and such that all the entries of the (k x 1) input U and (m x 1)
output Y satisfy (E) of Sect. 4.1, and let the initial conditions be zero. Suppose that
T (s) is a (m x k) matrix of functions such that

Ys)=T6s)UGs) (s> B). (5.13)

Then T (s) is called the transfer function of the linear system.

Consider a SISO linear system ¥ = LU where L is a linear operator, and such
that all the input U and output Y satisfy (E). Let Y and U be the Laplace transforms
of Y and U. Suppose that 7' (s) is a complex function such that Y (s) = T(s)lj (s)
for s > B so T (s) is the transfer function of the linear system. Conversely, we have
a realization theorem.

Theorem 5.7 (Realizing a SISO by a Rational Function) Let T be a complex
rational function. Then there exists a SISO linear system X, possibly with feedback,
composed of taps, amplifiers, summing junctions, integrators, and differentiators,
such that the transfer function of X is T.

Proof Let the transfer function be T (s) = p(s)/q(s) where p(s) = Z?:o ajsj and
q(s) =Y 1 bys* are polynomials with b,, = 1. Consider the differential equation

" diu
yZZ‘”dﬂ‘ (5.14)
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which has Laplace transform
Y(s) = p(s)U(s). (5.15)

Also, we can realize the proper rational function 1/¢g(s) as the transfer function of
a SISO system, as in Proposition 2.51. By combining these in series, we realize a
system with transfer function 7'(s) = p(s)/q(s). |

Corollary 5.8 Let T be a matrix of complex rational functions. Then there exists a
MIMO linear system %, possibly with feedback, composed of taps, matrix amplifiers,
summing junctions, differentiators and integrators such that the transfer function of
YisT.

5.3 Frequency Response

Suppose that we have a S}SO with LaplaceA transform ¥ =T (s)ﬁ (s). We change
variable to s = iw s0 Y(iw) = T(iw)U(iw). (Consider input ¢'“’, with iw on
imaginary axis in s plane.)

Definition 5.9

(i) Let T'(s) be a (proper) rational function. Then the frequency response function
is T (iw) where w € (—00, 00).
(i1)) The Nyquist plot of T is the curve {T (iw) : —00 < w < oo}.

Note that @ > €/*” for a > 0 is periodic with period 277/a. We interpret
w as an angular frequency. Nyquist introduced a plot of the frequency response
function T (iw) = ['(w)e!?@. The Nyquist plot is easy to produce on computer,
and one can glean a great deal of useful information about the linear system from
the shape of Nyquist plot. Here we focus attention on Nyquist’s criterion for stability
Theorem 5.30, which is the starting point for the other application. In examples it is
helpful to produce Nyquist plots of all the frequency response functions in use.

Remark 5.10 (Geometrical Interpretation of Phase and Gain) In the Nyquist plot,
the gain and phase can be found from the polar form of points on the Nyquist
contour:

* I'(w) = |T (iw)]| is the gain, namely the distance of 7' (iw) to 0;
* ¢(w) = arg T (iw) is the phase, namely the angle between T (i w) and the positive
real axis.

In complex analysis, a contour is a continuous curve y : [a,b] — C such that
y(a) = y(b), and y is piecewise continuously differentiable. The following phases
are noteworthy

¢(w) = 0, 2 when the Nyquist contour crosses the positive real axis (0, 00);
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¢(w) = /2 when the Nyquist contour crosses the positive imaginary axis
(0, ico);

¢ (w) = m, —m when the Nyquist contour crosses the negative real axis (—oo, 0);

¢(w) = —m /2,3 /2 when the Nyquist contour crosses the negative imaginary

axis (—ioo, 0).

5.4 Nyquist’s Locus

Nyquist diagram Bode plot
. bode
nyquist
uscp B2 g
pole
Zero
zeros of T'(s) poles of T'(s)

Diagram to show the information that may be derived from T (s), graphically
(Fig.5.2).

Proposition 5.11 (Nyquist’s Locus) Let R be a proper rational function with all
its poles in LH P. Then R(iw) for —oo < w < oo gives a contour in C that starts
and ends at some ¢ € C where R(s) — c as s — o0.

Proof Write R(s) = ¢ + p(s)/q(s) where degree of p(s) is strictly less than the
degree of g (s), where R(s) — c as s — oo. There are finitely many poles, at A such
that g(1) = 0, and there exists § > 0 such that %A < —4 for all poles A. Hence for
—00 < w < 00, the function R(iw) is continuously differentiable and R(iw) — ¢
as w — Fo0o. We can write w = tant where t € (—m/2,7/2), and R(i tant) — ¢
ast — (—m/2)+ and t — m/2—,s0 y(t) = R(itant) is a contour in the sense
of complex analysis. Since R is proper with no poles on the imaginary axis, there
exists M such that |4% (iw)| < M/(1 + «?) for all real  , hence % |4 (iw)|dw
converges and the length of the contour is finite. The contour starts and ends at c,
since p(s)/q(s) — Qass =iw — £ioo. |
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Nyquist plot

0.648

Im(h(2iTf))
o
1

-5 T T T T T T T T T T T T T 1
-4 35 -8 -25 -2 -15 -1 -05 O 0.5 1 1.5 2 25 3

Re(h(2itf))

Fig. 5.2 Nyquist plot for the transfer function (s> — 20s 4 7)/(s> + 2s% + (70/4)s + 15). Note
that a Nyquist plot can cross itself repeatedly, and the arrows indicate the direction of travel as iw
runs up the imaginary axis in the s plane

5.5 Gain and Phase

The polar decomposition of the frequency response function gives the gain and
phase (Fig.5.3).

* gain measures the factor by which the device multiplies the amplitude of a signal.
* phase describes the relative position of peaks in the input and output.

Definition 5.12 (Gain and Phase) Define the frequency response to be T (iw),
and make a polar decomposition T (iw) = I'(w)e!?@. Then define the gain (or
amplitude gain) of the system to be I'(w) = |T (iw)| at angular frequency o € R;
define the phase (shift) to be ¢ (w) = arg T (iw). Equivalently,

logT(iw) =logI'(w) + i¢(w).

The phase (or phase shift) ¢ (w) is the change in phase of the signal. When
¢(w) > 0, one talks of a phase gain, so the output is running ahead of the input.
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Nyquist Diagram
0.5 .

Imaginary Axis

-1 -0.5 0 0.5
Real Axis

Fig. 5.3 Nyquist plot for the transfer function 1/(s% + s + 6)

When ¢(w) < 0, there is a phase lag. In engineering, the frequency response is
relatively easy to measure. The Bode plot consists of the graphs of log I'(w) and
¢ (w) against w, usually plotted on the same diagram; there are various options as
to whether one uses natural logarithms, logarithms to base 10 for log I'(w), and
whether ¢ is in radians or degrees. MATLAB can give the logarithmic gain as
expressed in decibels (dB), as in 201log;o I'(w). For instance, I'(w) = 100 gives
40d B, while I'(w) = 0.1 gives —20d B. The factor of 20 = 2 x 10 involves 10 to
convert bels to decibels, while the 2 accounts for I'2, which is gain in the power of
the transmitted signal. The bel is an inconveniently large unit, so decibels are more
popular.

(4,B,C,D) T)=D+ Csl — A 'B |—| T(iw)= T'(w)e?*®

det(sl — A) poles of T'(s) log I' () phase

Bode diagram
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Bode Diagram

o

Magnitude (dB)
© & A D
o o o o

90 +
-135 ¢

-180 i i
107" 100 10 102
Frequency (rad/s)

Phase (deg)

Fig. 5.4 Bode plot and phase for the transfer function 1/(s% 4 s 4 6)

Data derived from a MIMO (A, B, C, D) (Fig.5.4)

Example 5.13 1If the transfer function has poles on the imaginary axis, then the
frequency response function and phase need to be interpreted carefully. In this
example we write § = —3§, so § is the reflection of s in the imaginary axis Rs = 0;
in particular, s = § if and only if s = 0. Suppose that (A, B, C, D) is a SISO with
Dreal, A = —Aand C = iB’. Then T'(5) = T (s), so T(s) is real for all Rs = 0;
to see this, write

T(s)=D+iB'(sI —A)~'B (5.16)
SO
T(s)=D —iB'GI —A) 'B=D+iBGI —A)~'B=T(Q3). (5.17)
In particular, for
A:[(i)_oi]Bz[ﬂ,Cz[ii],Dzl (5.18)
we have transfer function
Ty =1+ 28 (5.19)
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with poles at s = =i on the imaginary axis, so the frequency response function is

@ +20—1 (@+1+V)(+1-v2)

Tiw)=" " = 0+ Di—1) , (5.20)
so T (iw) is real for w € R\ {£1} and has sign
T(iw)>0 (we (=00, —1—-+2)U(=1,v/2-1)U(,0o0)), (5.21)
T(iow) <0 (we(=1—+2,-1)U2-1,1)), (5.22)

so the phase changes abruptly between 0 and 7 at the endpoints of these intervals.
Example 5.14

(i) Fora > 0and @, b € R, we introduce @ = a + ib and the transfer function

T(s)=e®" ¢ (5.23)
s+«

which has a simple zero at « € RH P and a simple pole at —a € LH P. On the
imaginary axis, we write s = iw where w = b + a cot(¢/2) so the frequency
response function is
T(iw) = & z:w - z:b —a _ ot z cot(¢/2) — 1 _ it cos(¢p/2) + l s%n(¢/2) — O,
iw—ib+a icot(¢p/2) + 1 cos(¢/2) —isin(¢p/2)
(5.24)

so that the gain is constant with I' = |T (iw)| = 1, and the phase is 6 + ¢. This
calculation is a variant on the tan¢/2 substitution which is commonly used in
integral calculus.

(ii)) We now take aj, ¢y > O and bj, d; € R and introduce &j = a; +ibj € RHP
and B = cx + idy € RH P; then let

T(s) = €' ]‘[ s+ Br (5.25)

s—l—(x/k 1s—,3k

which has zeros at «; € RH P and at —Bk € LHP, and poles at —aj € LHP
and at By € RH P. As in (i), the gain of the transfer function is constant I" = 1.
To find the phase ¢, we introduce new variables ¢; and v depending upon w
by

w=">bj+ajcot(¢;/2), w = di+ ccot(Yi/2) (5.26)
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and as in (i), obtain phase

p=0+) ¢j—Y Vi
j=1 k=1

(5.27)

Example 5.15 (Gain and Phase of Damped Harmonic Oscillator) Fora,b > 0, ug

a constant and y(0) = 'g (0) = 0, we find the gain and phase of

d2y ~|—bdy + t
a = uUugp CosSwrt.
dt? dr 7 0

Then the Laplace transform is

(as> +bs + DY (s) =

Ho 24 2
so that taking s = iw in the formula
T®= , .
as=+bs+1
1 1 —aw? —ibw

T(@ = = y
(i) 1—aw?+ibo (1 —aw?)?+biw?

so the gain is

1
o) =T ()| =

while the phase ¢ (w) satisfies

bw 1

tan¢ = ) , ¢ =tan"
w*a —1

w?a — 1
which has sign depending on the value of w. Note that

¢ () = arg(1 — aw? — ibw)

VA — aw?)? + b2w?’

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

and so 7(0) = 1, hence ¢(0) = 0; while T (iw) is in the third quadrant as w — o0,
whereas T (i) is in the second quadrant as ® — —oo; at 1 — aw* =0, T (iw) is on

the imaginary axis so ¢ (£1//a) = Fm/2.
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5.6 BIBO Stability

Definition 5.16 (BIBO) Let (A, B, C, D) be a linear system

dXx
= AX + Bu
dt
Y=CX+ Du (5.35)

such that for all bounded inputs u(t) for # € (0, 00), all outputs y are bounded for
t € (0, 00). Then we say that the system is bounded-input bounded-output stable,
or BIBO stable.

Bounded Exponentials of Matrices
[ Lemma 5.17]Suppose that A has (not necessarily distinct) eigenvalues such that
RAj <Oforall j=1,...,n. Then there exists M, > 0 such that

llexp(tA)|| < Me™® (1> 0). (5.36)

[ Proof]This follows from Lemma 3.6. O

The difference between A < 0 in Proposition 2.33 (iii)) and RA < O in the
Lemma 5.17 is subtle, and historically important in the theory. Maxwell realized
that the stronger hypothesis of the Lemma 5.17, requiring strict inequality, is needed
to cover the case of multiple eigenvalues, and deal with resonance.

Remark 5.18 (Stability Cases) Consider dX/dt = AX with X (0) = Xo. This has
solution X (t) = exp(tA) X0, and we distinguish the following cases.

(i) Exponentially stable: there exist M, > 0 such that | X(r)|| < Me™® for
all 7 > 0 and all Xo. This occurs when RA; < O for all eigenvalues A;. In
Theorem 5.21 we find this to be BIBO stable.

(ii) Marginally stable: X () is bounded for ¢ > 0 for all X, which occurs when
RAj < 0, or RA; = 0 and the corresponding Jordan blocks are all of size
1 x 1. Later we will resolve this marginal case as BIBO unstable. Whereas
the complementary function X (#) is bounded, a bounded input can give an
unbounded particular integral. This effect occurs via resonance, which we
discuss in the context of the harmonic oscillator.

(iii) Unstable: X (¢) (¢t > 0) is unbounded for some X, which occurs when either
RA; > 0 for some eigenvalue A; of A, or RA; = 0 for some A; that has a
Jordan block of size > 2. This is also found to be BIBO unstable in general.

These cases will be considered with reference to a crucial example, the damped
harmonic oscillator.
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Example 5.19 (Damped Harmonic Oscillator) Matrix form of the damped har-

monic oscillator is

dX
= AX + BU,
dt
where y > 0 and g real in

-[8) o-[)

The characteristic equation of A is

A =1 )
det =1 +18+y =0,
[V)»+ﬁ:| Aty

so eigenvalues are

he =27 (B 2B — 4y,

with corresponding eigenvectors

M|

so when A4 # A_, we introduce
g = 1 1
Ay A
so that S is invertible and

and

b0 o
exp(rA):S[eO em}s !

Cases of the damped harmonic oscillator

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)
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Consider 1/(s2 + Bs+ y)withy > 0; polesat A+ = (1/2)(—B £ \/A) where
A = B? — 4y. The results are summarized in the following table.

solutions A <0 A=0 A>0
B > 0 decaying oscillations critically damped exp decay
o ; (5.45)
B=0 periodic constant hyperbolic

B < 0 unbounded oscillations exponential growth exp growth

The damped oscillator is exponentially stable if and only if 8 > O and y > 0. When
B = 0and y > 0, the oscillator is marginally stable. For 8 < 0, the oscillator is
unstable.

Poles of the Transfer Function of the Damped Harmonic Oscillator
Consider 1/(s?4Bs+y) withy > 0 and g real with poles at A+ = (1/2)(—B£+/A)
where A = B2 — 4y. Then

poles B A<0 A=0 A>0
Ay = A_ Ay = A_ distinct real roots
unstable 8 <0 NRAL >0 AL >0 O0<A_ <Ay (5.46)

marginal B =09AL =0 2+ =0 A_ <0< Ay
stable B >09A+ <0 2 <0 A_<Aiy <O

For a damped harmonic oscillator, we have 8, y > 0, so only the last row matters.
The last row gives the stable cases.

5.7 Undamped Harmonic Oscillator: Marginal Stability and
Resonance

Example 5.20 The undamped harmonic oscillator

d*x

2t v2x = Uy cos wt (5.47)

with Uy real and w, v > 0 is marginally stable, but not BIBO stable.

We introduce
X 0 1 0
X = A= ,B = , 5.48
L=l =[] 549

d
th = AX + BUpcoswt. (5.49)

Note that A has eigenvalues £iv on the imaginary axis.
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Marginal Stability

The general solution is given by the complementary function plus a particular
integral. The complementary function arises when the input is zero. For U = 0
the system oscillates at its natural angular frequency v and the general solution of
4X =AXis

X:Cl[ cos vt i|+6‘2|: sSin vt :|’ (550)

—vsin vt v cos vt

for constants cy, c2. In particular, all these solutions are bounded, so we have
marginal stability.

e For Uy # 0 and w # v, the input has angular frequency different from the
natural angular frequency, and the solution is the complementary function plus a
particular integral

i U
X = el |: COS'l)t i| e |: sSin vt i| + ) 0 ) [ COS.a)l‘ :| ; (551)
—V Sin vf Vv CcOS vt Ve — w — SIn wt

here the complementary function oscillates at natural angular frequency v;
whereas the particular integral oscillates at the input angular frequency w. These
solutions are all bounded. One can obtain these particular integrals by W3.2, or
by guesswork.
Resonance

e Let Uy # 0 and v = w, so that the input angular frequency equals the natural
angular frequency. Then the general solution is

. U :
X:CI[cosvt:|+C2|:smvti|+ o|: t sin vt i| (5.52)

—sin vt v cos vt 2v | sin vt + tv cos vt

where the solution oscillates unboundedly; this effect is called resonance. The
input is bounded whereas the output is unbounded, so the system is not BIBO
stable. A system is prone to resonance when the transfer function has a pole on
the imaginary axis. The term marginal stability is used to describe the situation
in which the complementary function is bounded, whereas the particular integral
is unbounded for suitably chosen bounded inputs; this means that the system is
not BIBO stable.

Resonance is desirable or undesirable depending upon the application. The
process of tuning involves inputting a signal with a single oscillating frequency
such as a sine wave, and then identifying the frequency that produces a large output.
Musical instruments are tuned so that they resonate at particular frequencies in the
process of tuning. However, in automotive engineering, one avoids having structural
components that resonate at the frequency of the engine’s rotation, as this would
produce noisy vibrations. In the example of square waves in Sect. 4.9, we identified
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a system that could be adjusted to have several resonant frequencies, which in the
context of music are known as harmonics.

5.8 BIBO Stability in Terms of Eigenvalues of A

Theorem 5.21 Suppose that all eigenvalues A j of A satisfy Rk ; < 0, and that U is
bounded on (0, 00). Then all solutions to

1794
dt

Y =CX + DU (5.53)

=AX+BU

are bounded on (0, c0). Hence (A, B, C, D) is BIBO stable.

Proof By the Theorem 2.40, the general solution to the differential equation is
1
X() =exp(tA)Xo + / exp((t —s)A)BU(s)ds (5.54)
0

where by hypotheses there exists K > 0 such that

IBIIU®I =K (s>0) (5.55)
and by the Lemma 5.17
lexp(tA)|l < Me™ (¢ > 0), (5.56)
SO
IX ()] < Me™ | Xoll + /Ot lexp((t —s)AIBINU (s)llds (5.57)
Hence

t
IX) < M| Xoll + KM / =39 g
0

KM 4
= MiXol+ " [ —e ]

KM
= MIIXoll + (1—e)

KM
= MiiXoll + (t > 0).
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Hence X (¢) is bounded, so the output is also bounded, since
Y(@) = CX(t) + Du(t) (5.58)

is the sum of two bounded functions. a

Transfer functions and stability criteria: Next we combine ideas about transfer
functions with the notion of stability, so as to obtain criteria for stability of a
system solely in terms of properties of transfer functions. The idea is to describe
the properties of solutions of the differential equation, without having to solve the
differential equations explicitly. Thus we go from differential equations to algebra
via the Laplace transform. Instead of working with functions of time ¢ in the state
space or time domain, we work with functions of s in s-space, where s is a complex
variable.

When building devices out of components, the main operations on the transfer
functions are:

e amplification A f (s)
e addition f(s) + g(s)
* multiplication f(s)g(s).

We investigate these complex functions, starting with polynomials, and progressing
to rational functions. In the rest of this chapter we use geometrical tools, and in the
following chapter we introduce more sophisticated methods from algebra.

5.9 Maxwell’s Stability Problem

Definition 5.22 (Stable Polynomials) A polynomial /(s) is said to be stable if all
of its zeros are in the open left half-plane LHP = {s € C : fis < 0}.

Problem (Maxwell’s Problem) Find necessary and sufficient conditions on the
coefficients of a monic complex polynomial for the polynomial to be stable.

Finding the zeros exactly can be very difficult, especially when the polynomial
has large degree and there are multiple zeros near to the imaginary axis. Practical
modern method: given a monic complex polynomial p(s), there exists a complex
matrix A such that det(s/ — A) = p(s). Then one can find the eigenvalues of A
numerically. If all the eigenvalues are comfortably in the open left half-plane, then
p(s) is stable.

Proposition 5.23 (Necessary Condition for Stability) Suppose that h(s) is a
monic real polynomial that is stable. Then all the coefficients of h(s) are positive.

Proof Here h(s) has real coefficients, so #(1) = 0 if and only if h(x) = 0. Hence
the roots of i(s) are either real u; < 0; or pairs of conjugate complex roots Ax and
Mx with RA, < 0, which combine to give real quadratic factors (s — Ax)(s — Ag) =
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s2 — 2sMAx + |Ax|>. Hence h(s) factorizes as

n

his) = [T = np) TT6? =259 + 1), (5.59)
j=1 k=1

where —p; > 0, —2RA; > 0 and |)Lk|2 > 0; hence all the coefficients that we
obtain on multiplying out are positive. O

This necessary condition for stability is easy to check, but it not sufficient. For
example

5 —1 1++/5

1—4/5
=s4—|—s3+s2+s+1 = (s2+ \/
s—1 2

1)(s
s+ s 4 ’

s+1) (5.60)

has roots at the complex fifth roots of unit, namely two roots in LHP and two roots in
RHP, hence is unstable. In Proposition 6.7 we characterize stable real cubics. Routh
and Hurwitz [30] extended this to a sufficient condition for general real polynomials,
as we present in Theorem 6.12.

5.10 Stable Rational Transfer Functions

Definition 5.24 (Stable Rational Functions) Let LHP = {s € C : iis < 0} be
the open left half-plane. A complex rational function f(s) is said to be stable if

(1) f(s) is proper, and
(i1) all the poles of f(s) are in the open left half-plane.
The space of stable rational functions is denoted S.

Equivalently, f(s) = g(s)/h(s) is stable if

(1) degree(g(s)) < degree(h(s)), so f(s) is proper, and
(i1) all the zeros of h(s) have Ms < 0, so h(s) is stable.

(So apolynomial 4 (s) is stable, if and only if 1/ A(s) is a stable rational function.)

For a linear system such as (A, B, C, D), we have two notions of stability, one
is BIBO stability, relating to the solutions of the associated differential equation;
the other is stability of the transfer function as a rational function. The following
result resolves these two interpretations. The merit of the result is that one can often
determine whether transfer functions are stable by basic algebra.

Theorem 5.25 (Stability for Systems and Transfer Functions) Ler ¥ =
(A, B,C, D) be a linear system with rational transfer function T. Then X is
BIBO stable if and only if T is stable.
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Proof T not stable implies X not BIBO stable: Suppose that the system is BIBO,
and that T is not stable. Recall I?(s) = T(s)ﬁ (s). Then we can choose a bounded
input U = 1 such that Ij(s) = 1/s. But X is BIBO stable, so Y is bounded, so
|Y(t)] < M for some M and all ¢ > 0, so

|?@ﬂ=‘£meSanm‘

o0
< }/ e_tmstt‘ < M.
0 N

N

Hence )?(s) is holomorphicon {s : Ns > 0} and )?(s) — Oass — oo along (0, 00).
So T (s) = sY (s) must be proper rational.

Suppose that T has a pole at A. If iA > 0, then T(s)U(s) = T(s)/s also has a
pole at A. But Y (s) cannot have a pole at s = X by Prop.

Now suppose that HA = 0, so A = iv for some real v. The idea is to cause
resonance, so we let U (1) = cos vt, which is bounded, and

s 1/2 1/2

U(s) = = +
) s24+v2 s—iv  s+iv

(5.61)

has a pole at iv, and hence I?(s) = T(s)lj(s) has a double (or triple, ...) pole at iv.

Now consider s with s > 0 and s — iv. Now T(s)ﬁ (s) diverges like 1/(s —
iv)? or 1/(s — iv)3 etc.; whereas I?(s) can only diverge like M /s at worst. This
contradicts the identity )4 (s) = T(s)U (s).

We deduce that Y has at most a simple pole on the imaginary axis, so 7 has no
poles in the imaginary axis. Hence T (s) has all its poles in LHP. Hence T is stable.
T stable implies BIBO stable:

Conversely, suppose that T is stable. Then by Proposition2.51, there exists a
SISO (A, B, C, D) such that the transfer function is 7 and the eigenvalues A of A
are the poles of T, hence satisfy A < 0. Then by Theorem5.21, (A, B, C, D) is
BIBO stable. O

‘We state two results which summarize results from elsewhere in the book.
Theorem 5.26 (Realization)

(i) Every monic complex polynomial is the characteristic polynomial of some
complex matrix.
(ii) Every proper complex rational function is the transfer function T (s) of some
SISO system (A, B, C, D).
(iii) Every stable complex rational function is the transfer function of some BIBO
stable system (A, B, C, D).

Realization suggests building a gadget with desired properties.
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Proposition 5.27 (Stable Matrices) For a n x n complex matrix A, the following
conditions are equivalent.

(i) All the eigenvalues of A are in the open left half-plane.
(ii) There exists a positive definite n x n complex matrix K such that —AK —
KA =1
(iii) The characteristic polynomial of A is stable.
(iv) Forall (B, C, D) complex matrices of shape (n x 1,1 x n, 1 x 1), the transfer
function of (A, B, C, D)

T(s)=D+C(sI —A)'B (5.62)

is a stable rational function.

(v) All solutions of gt X = AX decay exponentially to 0 as t — oo.

(vi) Forall (B, C, D) complex matrices of shape (n x 1,1 x n, 1 x 1), the linear
system (A, B, C, D) is BIBO stable.

Example 5.28 (Three Rational Filters) In signal processing, the term filter is often
used for a type of transfer function. Rational filters are easy to construct and analyze,
and the following three examples have specific properties for their phase and gain.

(i) Forx >0andy e R,letz=x+iye RHP,and -2 = —x +iy € LHP be
its reflection in the imaginary axis. Then

NEd

B(s) = (5.63)

s+z

is a stable rational function with a zeroatz € RH P andapoleat —z € LHP.
With s = iw on the imaginary axis, we have the frequency response function
0 — iy —x (a)—y)z—x2~|—2ix(a)—y)

i
B(iw) = = 5.64
(i) iw—iy+x (@ — y)? + x2 (5.64)

so B(iw) has constant gain I' = 1 and phase ¢ (w) where

2x(w =)

tan ¢ (w) = (@—y)? —x

) (5.65)

hence

(@) >0 (0—> —0); @@ —>-—7/2 (@— (y—x)—) @) =m;
(5.66)

¢(@) > 7/2 (w—> (y+x)+); ¢@ —>0 (w—> 00); (5.67)
so B(iw) loops once round 0 in the clockwise (negative) sense. The Nyquist

contour of B is the circle of centre 0 and radius 1, taken clockwise and starting
and ending at 1.
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Let

—1
P.(s) = + _ (5.68)
s—2z2 stz

so P, (s) is proper with P, (s) = 0(1/s%) as s — oo with polesatz € RHP
and —z € LHP, so P.(s) is not stable. Then the corresponding frequency
response function is

. 2x
P.(iw) = (©— )2 +ax? >0 (5.69)

so phase ¢ (w) = 0. Since P, (iw) — 0 as w — F00, this filter reduces high
frequency signals. By choosing x > 0 small, we can make P;(iw) be sharply
peaked near to w = y, where P,(iy) = 2/x is the maximum of P,(iw). For
f (s) holomorphic and bounded on {s : Rs > —4§} for some § > 0, we have an
absolutely convergent integral

fco —1 1 ds
i)

o = /@ (5.70)

—ico —z s+2z/27mi
by Cauchy’s integral formula; see Sect. 5.1 for discussion of the relevant
semicircular contour. This is known as Poisson’s integral formula for RH P.

If f(z) is a stable rational transfer function, then f is determined by its
frequency response function via this absolutely convergent integral.

Let

1 1
Q:(s) = + _ (5.71)
s—z Ss+z
so Q;(s) is proper with Q(s) = O(l/s) as with poles at z € RHP and
—z € LHP, so Q;(s) is not stable. Then the corresponding frequency
response function is

—2i(w—y)

QZ(lw) = (C() _ y)2 + xz

(5.72)

is purely imaginary, so phase ¢(w) = 7 /2 for v < y and ¢ (w) = —n/2 for
o > y; thus the phase is discontinuous with a jump at y of size w. We also

have
100 1 1 ds
—15 [ —1z t 0
/ ¢ <S—Z+S+Z)27ri ¢ ¢ >0)

—ioo

= ¢t (t <0) (5.73)
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by Cauchy’s integral formula. Suppose that f is holomorphic and bounded on
{s : Ns > —4} for some § > 0. Then by Cauchy’s Theorem we have
io0 ® fiw)dw

y—e
F6)0:9 % - lim / + / . @ — iy).
27i e—0+ J_oo y4s @ — Y IT
(5.74)

—ioo

The right hand side is i times the Hilbert transform of f (iy); see (4.62).

Proposition 5.29 (Factorization of Stable Rational Functions) Let T € S. Then
T(s) = S(s)B(s) for:
(i) S € S that has no zerosin RHP and |T (iy)| = |S(iy)| forall y € R;

(ii) B € S such that |B(iy)| = 1 for all y € R; and the factors are uniquely
determined up to multiplication by a unimodular complex constant factor.

Proof Let the zeros of T in the open RH P be by, ..., by; let the other zeros of T
be ¢y, ..., cp; let the poles of T be ay, ..., ap, all listed according to multiplicity.
Since T is stable, we have p > m + n, and Ra; < O for all j. We introduce

B(z) = ! (5.75)
ljll Z+bj
j_
which has zeros at by, ..., b,, € RH P and poles at —151, .. -—Bm € LH P,hence B

is stable. Observe that —b  is the reflection of b in the imaginary axis, so liy—b;| =
liy +bj|forall y € R, so [B(iy)| = 1forall y € R.

Now let
m A n
_(z+Db)) _(z—cx)
s =21 b M= : (5.76)
[Te=i(z —ae)
WI}ere A ;L-_O is to be chosen. Then S has poles at ai,...,a, € LHP, zeros at
—b1,---— by € LHP and zeros at c1, ..., ¢, where fic; < 0; hence § is stable.

Also by cancellation, S(s)B(s)/T (s) is a rational function with no zeros or poles,
hence by Liouville’s theorem is a constant, and by adjusting A we can ensure that
T(s) = S(s)B(s). Hence [T (iy)| = |B@y)||SGy)| = |SGy)| forall y € R. A
similar argument establishes uniqueness.

The factor B(s) is called a finite Blaschke product, the inner factor of T or an all
pass filter. The S(s) is called an outer factor or minimum phase factor. In Chap. 8,
we show how to introduce all pass filters by means of linear systems specified by
matrices. O
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5.11 Nyquist’s Criterion for Stability of T

Consider the feedback loop with constant feedback —1, so the transfer function is
T =R/(1+R).

— -1 —0

-y

y

e W |
N ~

Theorem 5.30 (Nyquist’s Criterion) Let R be the transfer function of a plant such
that R is stable. Suppose that the contour R(iw) (—o0 < w < 00) does not pass
through or wind around —1. Then T = R/(1 4+ R) is also stable, so the feedback
system with constant feedback —1 is also stable.

Proof First we give a proof that depends upon the Argument Principle, then in the
next section we give a more detailed proof that uses contour integration. We let
¢ = limg_,» R(s) where ¢ # —1 by assumption. Hence we can write R(s) =
¢+ p(s)/q(s) where p(s) and g (s) are polynomials, and the degree of p(s) is less
than the degree of g (s). Then

I's) = R(s) _ c+pB)/gls) _ cqls)+pls)

= = = (5.77)
I+ R(@s)  c+1+ps)/qls)  (+0)q(s)+ pls)

and the degree of (1+c¢)q(s) + p(s) equals the degree of g (s), hence T (s) is proper.
Note that poles of R give finite values of T. So the possible poles of T (s) are the
zeros of 1 + R(s), and these are not canceled by the zeros of R(s). Let

* N be the number of times that the Nyquist contour of R winds around —1,
clockwise;

* Z be the number of zeros of R(s) + 1 in the left half-plane;

* P be the number of poles of R(s) + 1 in the left half-plane;

Then, by the Argument Principle of complex analysis applied to a semicircular
contour in the left half-plane,

N=2Z-P.

Here N = P = 0 by hypothesis, so Z = 0. Hence T has no poles in the left half-
plane, hence T is stable. m]
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5.12 Nyquist’s Criterion Proof

Proposition 5.31 (Nyquist’s Criterion) Let R(s) = p(s)/q(s) where p(s) and
q(s) are complex polynomials with degree of p(s) less than the degree of q(s), and
suppose that q(s) has all its zeros in LHP. Suppose that the Nyquist contour R(w)
for —oo0 < w < 00 does not pass through or wind around —1. Then R/(1 + R) is a
strictly proper and stable rational function.

Proof

(i) First, we show that there exists M such that

M
IR(s)| < 1+1|S| (5.78)

and that there exists M> > 0 such that

dR M,
< 5.79
ds ‘ T 1+ s)? (5-79)
for all s € RH P. Since the degree of g (s) is greater than the degree of p(s),
we have
sp(s) ]
SR(s) = —c (Js| = 00); (5.80)
q(s)

for some ¢ € C. Also, g(s) has only finitely many zeros, so we can choose ro
to be the largest modulus of any zero of p; then we can choose M such that

R < (5.81)
1+ |s]

for all |s| > ro + 1. By hypothesis, R is stable, so R is holomorphic and hence
bounded on {z : Mz > 0; |z] < ro + 1}. So by changing M if necessary, we
obtain the stated upper bound for alls € RH P.

Likewise

dp . dq
ile _ a9 f(s) ds (5.82)
s q(s)

where the degree of ¢(s)* exceeds the degree of ff; q(s) — p(s)flz by two.
Also, g (s) has only finitely many zeros, so we can choose r( to be the largest
modulus of any zero of ¢; then we can choose M such that
dp dq
dR s)—p(s M
‘ _ ‘ ds 40 = P(8) 4 - (5.83)
ds q(s)? 1+ 5|2
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for all s such that |s| > ro+ 1. By hypothesis, R is stable, so R’ is holomorphic
and hence bounded on {z : Mz > O; |z] < ro + 1}. So by changing M if
necessary, we obtain the stated upper bound for all s € RH P.

Let S, be the semicircle in the left half-plane S, : z = re'? for —x /2 <0 <
m/2.Fors = re'? on S, and r > M, we have

dR 2
My/(1
| g MO 5.8
1+ R(s) 1—M/(A+7)
SO
‘/ flfds ‘ - 2 Mar(1 4 r) (5.85)
1+ R(s) T A+ +r M)’ '
hence
dR
‘ds
/ ds -0 (5.86)
s, L+ R(s)
asr — 00.
Let y» = S, @ [ir, —ir] be the contour made of joining the ends of the

semicircle S, with part of the imaginary axis; then let I', = R(z) for z on
y, be the image of y, under R. We show that for all sufficiently large r, the
contour I', does not pass through or wind around —1. Note that the image of
the contour y, under the holomorphic map R is again a contour. The image of
the interval [ir, —ir]is {T(w) : —r <w <r} C {T(w) : —0 < w < 00},
which does not pass through —1. Also,

R < MUy (5.87)
“14+r

for all r > M1, so R(S,) does not pass through —1. Indeed, I', does not pass
through or wind around —1 for all sufficiently large r.
Let

o
J.o= . : (5.88)
2wi J,, 1+ R(s)

we aim to prove that J, = O for all sufficiently large r. The function 1 4+ R
is holomorphic on RHP, so R’/(1 + R) is holomorphic, except where 1 + R
has zeros. Suppose that 1 4+ R has a zero of order m at sg. Then there is a
holomorphic function g(s) such that g(sg) # Oand 1 + R(s) = (s — s0)" g(s)
on some neighbourhood of sg, so

dR dg

ds m ds
= + , 5.89
L+R(s) s—s0 &) -5
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where (dg/ds)/g(s) is holomorphic on some neighbourhood of s, so

dR
Res(1 j_sR;so) =m. (5.90)
By Cauchy’s Residue Theorem,
ny (ZR ny
Jrzjzz;Res<1+SR;sj>=;mj, (5.91)

where the sum is over all the orders of all zeros s; inside y,. Hence J; is a non
negative integer, and increases with increasing . Now

1 “Ras 1 R g
Jr = + , (5.92)
21 Js, 1+ R(s) 271 Jpr—iy 1+ R(s)
and by (ii) we deduce that
1 flfds
Jr — (5.93)
271 Jlioo,—100] 1 + R(s)

as r — oo. The final integral converges, by the estimates from (i). An
increasing function which takes integer values and is bounded must ultimately
be constant, so the left-hand side satisfies

dR

1 4 ds

J, = (5.94)
271 Jli00,—100] 1 + R(s)

for all r sufficiently large. Now the value of the constant is O, since y, does
not pass through or wind around —1. Hence J, = 0O for all » > 0, since the
left-hand side increases with increasing . We deduce that 1 + R has no zeros
inside y, for all r > 0, hence has no zeros in the left half-plane.
Finally, we deduce that 14 R(s) has all its zeros in LHP, and hence that R /(1 +
R) is a strictly proper and stable rational function. By (iv), we deduce that 1+ R
has all its zeros in LHP, and by hypothesis R has all its poles in LHP. Hence
R/(1 4 R) has all poles in LHP and is strictly proper.

O

Remark 5.32 (Root Locus) The Nyquist Criterion Theorem 5.30 appears to empha-
size the controller K = —1 unduly; however, this is to simplify the statement of
the result. For a rational function G, we can let k > 0 be a positive parameter and
consider K = —1/«x which corresponds to the transfer function k G/(1 + «G), so
that the zeros of

14+xkG(s)=0 (5.95)
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give rise to poles of the transfer function. When viewed as functions of k € [0, 00),
the zeros give the root locus, and by Weierstrass’s preparation theorem of complex
analysis the root locus is made up of continuous curves; see [27] p 267. The root
locus plot shows in particular if any roots lie in the RH P, and hence give unstable
poles of the transfer function. MATLAB has a convenient function rlocus for
plotting the root locus.

The region C\ (—o0o, —1] consists of the complex plane with part of the negative
real axis removed, and is starlike with star centre in the sense that for all { € C\
(—oo—1]and k € [0, 00), the pointk¢ € C\ (—oo— 1. If G(iw) € C\ (—o0 —1]
for all —oo < w < oo, then the Nyquist contour of G does not pass through or
wind around —1. Hence 1 + «G(iw) € C\ (—00,0] for all —o0 < w < o0,
so the Nyquist contour of 1 + xG does not pass through or wind around —1, and
1 + kG (iw) is nonzero for all —oo < w < oo. This helps to describe the effect of
scaling some transfer functions. There are commands in MATLAB that describe the
ways in which a Nyquist contour can cross the axis.

If the Nyquist contour crosses (—1, 0) (but possibly not (—oo, —1]), then the gain
margin is the smallest x > 1 such that 1 + kG (iw) = 0 for some —o00 < w < 0.
The gain margin measures how much we need to scale up the Nyquist diagram of
G for marginal instability.

If the Nyquist contour of G crosses the unit circle C (0, 1) but does pass through
—1, then the phase margin is the smallest |¢| such that ¢/? G (iw) + 1 = 0 for some
—00 < w < oo. This measures how much we need to rotate the Nyquist diagram of
G, or lag the phase, for marginal instability.

5.13 M and N Circles

We introduce a geometrical device which will enable us to visualize both R and T
by a single Nyquist plot. We consider the Argand diagram, namely the Euclidean
plane with complex coordinates. Let ¢ be the Mobius transformation

az+b

; 5.96
cz+d ( )

p(z) =
by general theory ¢ maps circles and straight lines to circles and straight lines. For

example, the map z + z/(1 + z) takes the imaginary axis to the circle {s € C :
|s — 1/2| = 1/2}. In particular, we consider the relations

R T

= . R= , (5.97)
R+1 1-T

In the T plane, an M circle is determined by |T| = M, and the M circles give a
concentric family of circles with radius M and centre O such that every point in
C \ {0} lies on precisely one M circle. In the T plane, an N circle is the straight
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N lines for N=1/4,1/2,1,2,4; M circles for M=1/4,1/2,2,4

Fig. 5.5 M circles and N lines

line through O with gradient N where —oco < N < oo, and we take N = tan ¢ for
—n/2 < ¢ < w/2. Every point in C \ {0} lies on precisely one N circle. The M
circles and N circles intersect at right angles (Fig.5.5).

We map these back to the R plane, retaining the names M and N circles. Then
R =u +ivisonan M circle if

i 2
M2=|T|2=‘ it ‘ (5.98)
u+1-+iv
or
(M — Du® +2M*u+ (M?> — D> + M*> =0 (5.99)
SO
M2 2 ) M2
- , 5.100
<M+M2—1> TUE 2oy (5.100)

so that an M circle in the R plane has centre —M?/(M? — 1) + i0 and radius
M/|M? — 1| (Fig.5.6).
Let N = tan ¢ and consider R = u + iv on an N circle; then

w4+ 1+iv)=u+iv (5.101)

SO

¢ =tan"'(v/u) —tan"'(v/(u + 1)), (5.102)
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1
" >
-2.5
-

-3 -2.5 -2 -1.5 - -0.5 0 0.5 1 1.5 2

Fig. 5.6 M circles with M=1/4,1/2,2,4,8; N circles with N=1/4,1/2,1,2,4

and by the tangent addition formula

v/u—v/(u+1) v
N = tan = - , 5.103
M 2t 1) T w2 4109
SO
12 1\2 N?2+1
(”+2) +(”_2N) T oan? G109

so an N circle in the R plane has centre —1/2+i/(2N) and radius VN2 + 1/(2N).
Since Mobius transformations are conformal and bijective, the M and N circles
intersect at right angles, and every nonzero point in the R plane lies on exactly one
M circle and one N circle.

The R plane is plotted with a background of M and N circles, with the following
interpretation: in polar coordinates, a typical point is R = I'e’® where I is the gain
and 0 is the phase; also R lies on an M circle and an N circle, where T = R/(1+R)
has polar decomposition T = Me'? where tan¢ = N (Fig.5.7).

Example 5.33 The linear system is given by

A=[1,2;3,4], B=[0;1].C=[3,5].D=1.
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Nyquist Diagram
0.5 - ; - ; ¢ i s i
6 dBdB 2 dBO dB-2 dB-4 dB T~-6dB
0.4 3

108 -10de /

0.3}

2048 20 d8

Imaginary Axis
=

-0.2
0.3}

-0.4
———

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis

-0.5

Fig. 5.7 Nyquist plot with grid of M and N circles with transfer function (s — 1)/(s> — 55 — 2).
The scale on the background plot refers to the gain in units of decibels

To produce the Nyquist plot in MATLAB, one can use the commands
>> [b,a]l =ss2tf(A, B,C, D)

to find the transfer function as a quotient of polynomials, Here the transfer
function is

s2—1

. 5.105
s2—55—2 ( )

R(s) =
then to obtain the Nyquist plot, enter
>> R =1tf([1,0,—1],[1, -5, -2])
>> nyquist(R)
Then include the grid by

>> grid on
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5.14 Exercises

Exercise 5.1 Calculate the transfer function 7 associated with the linear differen-
tial equation

d?y dy du
6 =-3 . 5.106
ar2 + dt +y +u ( )
with y(0) = (dy/dt)(0) = 0 = u(0); here y is the output and u is the input.
(i1) Find the gain I and phase ¢ of the frequency response function 7 (i ®).

Exercise 5.2

(i) Let A be a n x n complex matrix with eigenvalues Aq, ..., A,. Find the
eigenvalues of A — kI forany k € C.

(ii) Deduce that given any MIMO (A, B, C, D) there exists k € C such that (A —
kI, B, C, D) is BIBO stable.

Exercise 5.3 (Nyquist and Bode Plots) Recall s = iw and let

8 + 81 +4

T(s) = .
s+DGE+2+1)

(5.107)

Take care with complex numbers when carrying out the following plots.

(i) Plot the Nyquist locus of T'; that is, plot {T (iw) : —00 < w < 00}.

(i1) Let I'(w) be the gain and let ¢ (w) be the phase of 7. The Bode plot consists of
the graphs of log I'(w) and ¢ (w) against w. Produce the Bode plot for —100 <
w < 100.

Exercise 5.4 (More Bode Plots)

(i) Let T(s) = p(s)/q(s), where p(s) and g(s) are polynomials with real
coefficients; then 7 (s) is said to be a real rational function. Show that the gain
I' and phase ¢ of T satisfy

INow) =T(-w), ¢(-w)=—-¢w) (w € R). (5.108)

(i) For T(s) = 1/(1 4+ s) and s = 1w, plot logI'(w) and ¢(w) against w for
—100 < w < 100.

(iii) When T (s) is a transfer function as in (i), we can plot log I' and ¢ against log @
for 0 < w < oo. Do this for T(s) = 1/(1 + ).

Exercise 5.5 Let p(s) be a complex polynomial with leading term s”, and let
r(s) = p(s) — (s + D"
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(i) Show that

R(s) = r(s)

= o1y (5.109)

is stable.
(i) Show that p(s) = 0 has no roots in the left half-plane if and only if the Nyquist
contour of R(s) does not pass through or wind around —1.

(i1) Hence show that
pis) =s* +33 4252 +5+1 (5.110)

has zeros in the left half-plane.
Exercise 5.6 Let p(s) = s> — 25 + 7 and ¢(s) = s> + 25> + (69/4)s + 65/4.

(i) Verify that R(s) = p(s)/q(s) is stable.
(i) By considering the Nyquist locus of R, discuss whether 7 = R/(1+ R) is also
stable. Supply graphs to justify your results.
(iii) Replace p(s) by r(s) = s2 — 25 — 20, and repeat (i) and (ii).

Exercise 5.7 Let 6 be an improper rational function such that 6 (s) 4 1 has no zeros
in RHP.

(i) Show that R(s) = —1/(1 + 6(s)) is stable.
(ii) If the Nyquist locus of R does not pass through or wind around —1, show that
6 (s) has no zeros in RHP.

Exercise 5.8 At frequency w, the Nyquist contour of R points in the direction
i R'(iw). Show that

i o) 4, .d¢

. = i (5.111)
R(iw) I'w) dw

is a decomposition into real and imaginary parts.

Exercise 5.9 (Cumulants) Suppose that a piecewise continuous function y
(0, 00) — C satisfies the conditions:

(1) there exist k, M > 0 such that |y(z)| < Me™* forall ¢ > 0;
@) fo y®dt #0.

(i) Show that Y (s) = fooo ey (t) dt converges for all s such that Rs > —«,
and defines a holomorphic function of such s.

(i) Show that ¢(s) = log Y (s) defines a holomorphic function on {s : |s| < &}
for some 0 < § < k, hence has a convergent power series

Rl |
go(s)=ZC’js! (Is| < 9.

j=0
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In probability theory, one considers the case where y > 0 and
f0°° y(t)dt = 1, and the terms (—1)jcj are known as cumulants.

(iii) Let y; and y; satisfy (1) and (2) for some constants. Show that y = y1 x y»
also satisfies (1) and (2), for some constants.

(iv) Show that the ¢ corresponding to y and the ¢; and ¢, corresponding to y;
and y; satisfy

o(s) = @1(s) + @2(s),

and the ¢; are likewise additive.
(v) For y(t) = e *' sinat where ¥k > 0 and a > 0, obtain an expression for
@(s) and the c;.

Nyquist plot, Bod plot

block diagram Frequency response 7 (iw) = I (w)e!®®

Transfer function 7'(s) =D+ C(s — A)~1 B

ODE: dX/dt = AX + BU; Y= CX+DU}#>

Linear system in matrices (4, B, C, D) }—»

Poles, zeros, factors of transfer function

Kalman decomposition Stability criterion




Chapter 6 m)
Algebraic Characterizations of Stability s

The results of the previous chapter provide a geometrical and analytical approach
to the problem of stability. The tools they use are effective when implemented by
modern computers. However, the solutions they provide are often only approximate,
as they depend upon solving algebraic or transcendental equations which often
admit only of numerical rather then exact solutions. In this chapter, we take rational
transfer functions, and consider algebraic approaches to stability.

* We use algorithms which can be carried out in exact arithmetic without approxi-
mation, such as:

* polynomial long division which gives a Euclidean algorithm for polynomials;

* clementary row operations for matrices with polynomial entries.

* We move between conditions on coefficients of polynomials and entries of
matrices.

* Basic computer algebra makes determinant calculations easy, so we present
Hurwitz’s Theorem 6.12 solving Maxwell’s stability problem.

This discussion involves functions F'(s) where s is the variable that arises in the
Laplace transform. At the end of the chapter, we use the inverse Laplace transform
to take us back to state space models in terms of f(¢).

6.1 Feedback Control

Vehicles are usually under human control.
Example 6.1

(1) An airliner starts at rest on the runway and then is accelerated until it achieves
lift-off. To achieve this, the engines are run almost flat out. Once the aircraft
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reaches cruising altitude, the pilot will reduce the amount of fuel going into the
engines, and fly at a steady speed.

(i) A car on the motor way is not run flat out. Instead, the driver regulates the
speed by means of the accelerator, so that when the car is going too fast, say
over 70 miles per hour, the driver can reduce the amount of fuel going into the
engine, and thus slow down the car. Likewise the driver can speed up the car
by allowing more fuel to go into the engine. Regulating speed thus involves the
continual attention of the driver; so can we automate this?

Remark 6.2 (Feedback Controllers) The engineer Watt produced various
controllers (governors) for steam engines and developed the principle of feedback
control. The output is fed through a machine back into the input. A plant is some
sort of machine, described by a rational matrix transfer function. Consider a plant
given by a linear system G (m x k) and a controller represented by a linear system
—K (k x m). The output from G is fed back into the input. The minus sign indicates
that we want negative feedback (if the engine goes too fast, the controller will slow
it down).

* Controllers generally use negative feedback.

e Usually, plants are described by their Laplace transforms.

» Rational transfer functions and controllers are simplest to deal with.

* Proportional-integral-differentiator controllers PID are widely used, as discussed
below in Sect. 6.2.

Definition 6.3 (Simple Feedback Loop)

(1) Suppose that G has k inputs and m outputs. We choose K to have m inputs and
k outputs. Then the simple feedback loop (SFL) has transfer function

T=(+GK)G. (6.1)

(i) Suppose that G and K are rational matrix functions. The poles of G are called
open loop poles; the poles of T are called closed loop poles.

6.2 PID Controllers

Definition 6.4 PID (proportional-integral-derivative) controllers K have the form

b
K(s)=a+ +ecs, (6.2)
s

where a, b, ¢ are constants, usually real. The differentiator is expressed in s-space
as cs.

In 1866, Robert Whitehead, a naval engineer from Bolton in England, invented
PD controllers for torpedoes, in which the differentiator moves the errant torpedo
abruptly back on track. In more sensitive applications, P I controllers are preferable,
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as they have a milder effect on the system. A PID controller has three parameters
a, b, c, and by choosing these carefully, engineers can often select a controller that
ensures stability while having the right degree of responsiveness in the resulting
controlled system. For instance, the steering of a car should be stable, so that the
car does not drift off the intended route, but the driver should still be able to change
direction of the vehicle. Note that K (s) is unstable unless b = ¢ = 0. It may
seem paradoxical to stabilize an unstable plant by adding an unstable controller, but
this choice is sometimes made. Inevitably, this poses potential difficulties which we
address later in our discussion of internal stability.

DR 0 —O)

Oy

u N Yy
N -
Problem 1 Given a stable plant R(s), we consider a feedback loop with propor-

tional feedback 6, so that the new transfer function is T = R/(1 — 6 R). When is
this stable?

Certainly T is stable for 8 = 0, so the question is how much latitude we
have in the choice of & while retaining a stable system. Such feedback might
arise deliberately, as in Black’s amplifier Example 1.7, or inadvertently; this issue
is whether the feedback can be accommodated. By a simple scaling argument,
replacing —6 R by R, we note that the case of T = R/(1 + R) is sufficiently general
as to give results in the general case. Nyquist’s Criterion Theorem 5.30 is therefore
formulated for a stable plant and a simple feedback look with proportional controller
K = —1,giving T = R/(1 + R).

—— -k —)

(\— o .
> v

Problem 2 Given a SISO system with rational transfer function G, can we find a
rational controller —K such that

T=(+GK)"'G (6.3)

is stable rational?

This is a more general question in which G(s) is not necessarily stable, but we
allow K to be a rational controller, possibly unstable.
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Example 6.5 (Proportional Feedback) Consider a SISO system with transfer func-
tion G(s) = p(s)/q(s) with p, g complex polynomials. The zeros of p are called
open loop zeros, while the zeros of ¢ are called open loop poles. Then the controller
—K = —k with constant k > 0 gives a proportional negative feedback loop with

p

T=(I+KG)™'G= )
( ) kp+ g

(6.4)

In particular, let p(s) = s2 and g(s) = bs + ¢ where b, ¢ > 0. Then G(s) is not
proper; whereas

§2

T(s) = 6.5
) ks2+bs + ¢ (©3)
is proper and has poles in the open left half-plane at
—b + /b% —4ck
- v -, (6.6)
2k

so the controlled system with T is stable.

Example 6.6 (Proportional-Integral Controller) Find a PI feedback controller of
the form —a — b/s that stabilizes the plant with transfer function

G(s)=s/(s —1)(s +3).

A a+b)s )

@ s/((s = D(s +3)) ()

The plant has poles at s = 1, —3, hence is unstable. We consider

G 1 s

= = . (6.7)
1+GK (1/G)+K s2+Q—-a)s—b-3

For stability we require positive coefficients, so 2 —a > 0 and —b — 3 > 0. In
particular, we choose b = —4 and @ = 0, and get

G s

1+GK ~ (1+5)? ©®

which is stable.
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6.3

Stable Cubics

Proposition 6.7 Leta, b, c, A, B, C be real constants. Then

(i)
(ii)
(iii)

s + a is stable, if and only if a > 0;
s2 + bs + c is stable, if and only if b, ¢ > 0;
s3 + As? + Bs + C is stable, ifand only if A, B, C > 0 and AB — C > 0.

Proof

@
(i)

(iii)

Obvious.
The roots of the quadratic are

b+ b2 —4
s = ) ‘ (6.9)

where ¢ = z4z_ and b = —(z4 +z_). If ¢ < 0, then b> — 4c > 0 and
s + bs + ¢ has real zeros of opposite sign, hence is unstable. If ¢ = 0, then
s = 0 is a zero, so the quadratic is unstable. Hence we need ¢ > 0; also —b
as the sum of the roots, must be negative, so b > 0. Conversely, if b, ¢ > 0,
then b — 4¢ < b? and either there are two negative roots, or a pair of complex
conjugate roots in LHP.

Note that s>+ As?>+Bs+C — ooass — ooand s3+As>’+Bs+C — —oo as
s — —oo0. By the intermediate value theorem there exists a real root s = —a.
Hence we have a factorization

s34+ As’+ Bs+C=(s+a) s> +bs+c) (6.10)

where A =a+b, B =ab+ cand C = ac. Now the cubic is stable if and only
if s + a and s2 + bs + c are stable; that is, if and only ifa, b, c > 0 by (i) and
(ii). Hence A, B, C > 0, and

AB — C = a®b + bab + be = b(a(a + b) + ¢) > 0. 6.11)

Conversely, if A, B,C, AB — C > 0, then a, b, ¢ > 0. First note that ac > 0
so a and ¢ have the same sign, and if a, ¢ < 0, then we cannot have A, B > 0.
Soa,c>0,and AB— C =b(Aa+c) > 0,s0b > 0 also.

O

Example 6.8 (Governors) In the nineteenth century, the term governor was used for
what we would now call a proportional-integral controller; see [32] for an historical
account. Maxwell [40] considered Jenkin’s governor, and found that the nature of
solutions depended upon the roots of a cubic equation

MBn® + (MY + FB)n> + FYn+ FG =0 (6.12)
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where M, B,Y, F, G are various real constants. He solved this cubic by the
trigonometric method described in the following exercise.

Example 6.9 (Discriminant of the Cubic) Suppose that the depressed cubic equa-
tion z3 + pz 4+ ¢ = 0 has roots z1, z» and z3. From the factorization

DHpitqg=Gc—2)@—22)E—123)
we deduce by comparing coefficients that
O=z1+22+2z3, p=z1220+ 2223 +2123, g = —212223;
hence one can use the identities zj + pzj+q =0forj=1,2,3 to show
0=(z1+22+23)° =z%+z§+z§+2p;
0=2z+23+23+3¢=0;
0=zl+25+23—2p%
Let
111

d=z1 22 23

222,

so that by the multiplicative property of determinants

11 1|1z 2}

2
=z |12 25

233Nz

3 0 —2p
=| 0 —2p -3¢
—2p —3q 2p?

= —4p* - 27¢°,

which is given by the coefficients of the cubic. Note that 82 is real if p and ¢ are
real.

Exercise (Trigonometric Solutions of the Cubic) It is possible to obtain algebraic
surd expressions for the roots of cubics and biquadratics by a carefully chosen
sequence of substitutions. These results were known in the 16th century and were
published by Cardano. Unfortunately, the surd expressions are rather complicated,
and do not make it easy to see where the roots are located in the complex plane. For
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this reason, the trigonometric solution is sometimes preferable, and gives accessible
conditions for the roots of the real cubic to be real. The following exercise gives the
method, which was know to Viete.

Solving the depressed cubic by trigonometry

(i) Show that the substitution s = z — A/3 reduces the real cubic equation
s34+ As>+Bs+C=0 (6.13)
to the depressed cubic in the style of Scipione del Ferro
2+ pzt+q=0 (6.14)
where the new real coefficients are
p=B— A?/3, g=C—AB/3+2A%/27. (6.15)
(i) Show that cos30 = 4 cos® 6 — 3 cosf forall & € C; this is the crucial identity.
(iii) Lety? = (—4p/3) so that y is real for p < 0 and purely imaginary for p > 0.
For p # 0, and z = y cos 8, show that the depressed cubic reduces to

3q
Yp

cos 30 = (6.16)

(iv) Suppose that p < 0. Show that for —1 < 3q/(yp) < 1, there are three real
roots for the depressed cubic equation in (i), given by

z=1ycosf, ycos(@+2r/3) ycos(@—2m/3) (6.17)

where 6 € R satisfies the identity in (iii).

(v) Suppose that p < 0. Show likewise that for 3¢/(yp) € (1,00) and for
3q/(yp) € (—oo,—1) and for there is a real root and a pair of complex
conjugate roots. In the last case, it helps to consider 30 = 7w + 3i¢ with
¢ € R, s0cos36 = —cosh3¢.

(vi) Suppose that p > 0. Show that there is a real root, and a pair of complex
conjugate roots. Here it helps to consider 30 = 7 /2 + 3i¢.

(vii) Let A = —(4p> + 27¢?) be the discriminant of the depressed cubic. Deduce
that (i) has three real roots if and only if A > 0.

Example 6.10 Suppose that G(s) = p(s)/q(s) is a plant where p(s), g(s) € C[s],
and we wish to stabilize G in a simple feedback loop involving the PID controller
K(s) =a+ b/s + cs. Then we have

1 1 G| _ 1 sq sp
1+GK |K GK | sq+plas+b+cs?) |(as+b+csPg plas+b+ces?) |
(6.18)
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The common denominator is
A(s) = sq + plas + b + cs?), (6.19)

and we require all the zeros of A(s) to lie in LHP. A necessary condition for stability
is that all the coefficients of A(s) are of the same sign; this gives a system of
linear inequalities in a, b, ¢, one inequality for each coefficient of A(s). By linear
programming, we either have no solution, or a feasible region in which all the linear
inequalities are satisfied. We can then determine whether some points in this feasible
region do indeed give roots in LHP.

Example 6.11 Consider a plant G(s) = s> + s + y, where y > 0 and 8 € R,
and form the simple feedback loop with a PI controller K (s) = a + b/s. Then the
transfer function is

G s34+ Bs2+ys s34+ Bs2+ys

1+KG s+ (24 Bs+y)as+b) = as3 + (b + Ba)s® + (1 + Bb + ya)s + yb’ (6.20)

so by the Proposition 6.7 we have stability when the coefficients of the cubic on the
denominator satisfy

A=bja+B>0, B=1ja+pbla+y >0, C=byja>0, (621
AB —C = (bJa+ B)(1/a+ Bbja)+ By > 0. (6.22)

For example, when y > Oand 1 + (2 + y)B > 0, we can choosea = b = 1 for a
stable system.

Ferrari solved the biquadratic (quartic) equation of degree four by radicals, thus
obtaining the roots in terms of algebraic surds. For quintic equations, Hermite
demonstrated a solution in terms of elliptic functions. These approaches become
increasingly complicated, and for polynomials of higher degree, one has to resort
to numerical or graphical approaches for locating the roots. Maxwell’s stability
question is solved by the Routh—Hurwitz criterion Theorem 6.12 in the next section.

6.4 Hurwitz’s Stability Criterion

We consider the equation

aos" +ars" '+ 4 ap_1s+a, =0 (6.23)
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where ag > 0, ai, ...,a,-1 € R, and for notational convenience we take a; = 0
for j < 0 and for j > n. Then we build the n x n matrix

ay az as ... ayu—1
ap a a4 ...axyum—2

H=|0a a3 ...a;m3 (6.24)
0... % ... ay

in which the indices increase in steps of two as we move from left to right along
each row, and decrease in steps of one as we move down each column. The leading
diagonal of the Hurwitz matrix gives the coefficients of the polynomial in order
ai, az, ..., ay, omitting the leading coefficient ay.

Theorem 6.12 (Hurwitz) All the roots of the polynomial equation have negative
real parts, if and only if all the leading minors of H are positive, so

Ar=a; >0, Ay>0, ..., A,=det(H)>0. (6.25)

Proof The proof in [30] involves a complicated application of the argument
principle, and is omitted. O

In calculations, we can assume that all the coefficients are positive, since this has
already been established as a necessary condition for stability. With the aid of
computers, Hurwitz’s condition 6.12 becomes a feasible calculation for medium
sized matrices, and can be carried out in exact arithmetic without root finding.
Another advantage is that one can compute the minors when they involve additional
parameters, which often happens in control problems.

Example 6.13 For the cubic equation s3 4+ As? 4+ Bs + C = 0, we have

ACO
H=|(1BO0], (6.26)
0AC
with leading minors
AC ACO
A, ‘1 B‘:AB—C, 1 B0|=(AB—C)C, (6.27)
0AC

and Hurwitz condition is that all of these are positive. Considering the last two
minors, we see that C > 0, so the condition is A, C, AB — C > 0, which is
equivalent to Proposition 6.7.
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Hurwitz’s criterion 6.12 turns out to be equivalent to the solution achieved by
Routh. In this book we present Hurwitz’s version since the former can be expressed
in terms of determinants rather then Routh’s special arrays.

6.5 Units and Factors

We can solve the stability problem using some commutative algebra. Ultimately we
will describe and solve the problem using the polynomial ring C[s], and it is helpful
to introduce some related rings of rational functions.

Definition 6.14 Let R be a commutative ring with 1.

(i) Say that u € R is a unit if there exists v € R such that uv = 1.
(i) We say that f € R divides g € R if there exists 2 € R such that g = fh. Such
an f is called a factor or divisor of g, denoted f | g.
(iii) Givennonzero g1, g2 € R, anelementd is called a greatest common divisor (or
highest common factor) if d divides both g; and g», and all common divisors
of g1 and g; divide d.

Remark 6.15

(i) In Z, the units are {3-1}.
(i) InZ, we let (f) = {af : a € Z} be the integers that are divisible by f. Then
flg < (f) 2 (g) for f, g € Z\ {0}
(iii) Note that if d is a greatest common divisor of g; and g, then ud is also a
greatest common divisor for any unit # € R.

6.6 Euclidean Algorithm and Principal Ideal Domains

For a general introduction to ideals and factorization, see [6] chapter XIII.
Definition 6.16 (Ideals)

(i) Let R be a commutative ring with 1. An ideal J is a subset of R such that
OeJ,—aeJforallae J,a+be Jforalla,b € J and ra € J for all
r € Randa € J. In particular, {0} and R are ideals of R.

(i) Anideal J is called principal if there exists a € J such that J = {ra : a € R},
and such an ideal is denoted (a). Observe that a|b < (a) 2 (b).

(iii)) An integral domain R is a commutative ring with 1 in which fg = 0 implies
f = 0or g = 0. An integral domain R in which all ideals are principal, is
called a principal ideal domain. In algebra, the abbreviation P D is commonly
used, although this conflicts with the abbreviation we use for proportional-
integral-differentiator controllers.
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Example 6.17

(i) The prototype of a principal ideal domain is Z with the usual multiplication
and addition. Note that (2) is the ideal of even integers, (2) N (3) = (6) and
(2) + (3) = Z. Ideals in Z are studied using Euclid’s algorithm.

(ii) In the field of rational functions C(x), the only ideals are {0} and C(x).

(iii) In C[x] the ideal J = {f € C[x] : f(1) = 0 = df/ds)(1) = f(2)}
can be expressed as J = ((x — 1)2(x — 2)). There is a Euclidean algorithm
for polynomials, based upon polynomial long division, which we use to study
ideals, and in Proposition 6.18 we show all ideals in this ring are principal.

(iv) The space C(s), of proper rational functions may be regarded as a ring of
functions near oo since each F' € C(s), has a well defined limit lim,_, o F(s).
Hence we can introduce the strictly proper rational functions C(s)g = {F (s) €
C(s)p : F(o0) = 0} which is the principal ideal generated by 1/s. To see this,
note that F(s) = (1/s)(sF(s)) where 1/s € C(s)g and s F(s) € C(s), for all
F € C(s)o.

(v) It is not possible to extend the discussion of (iv) to C(s). The identity 1 =
(1 + 5)(1 + 5)~! shows that one cannot regard elements of C(s) as a ring of
functions from C U {oo} to C since there can be poles at oco.

(vi) The principal ideal domains that are most useful in control theory are C[s] and
Cl1/a + 1.

Proposition 6.18 The ring C[x] is a principal ideal domain with units C \ {0}.

Proof Let f, g be nonzero polynomials with degrees n and m. Then fg is a
polynomial of degree n + m. So the identity fg = 1 occurs only if f and g are
nonzero constants.

Let J be an ideal in C[x]. If J = {0}, then J = (0). If J contains a nonzero
constant polynomial X, then J also contains A7 = 1,50 J = (1) = C[x].
Otherwise, we consider the set {degree(f) : f € J, f # 0}, which is a non-
empty subset of N, hence has a smallest member m. Now m = degree(g) for
some g € J,and if f € J with f # 0, then by the Euclidean algorithm for
polynomials f = gg + r where g, r € C[x] and either r = 0 or degree(r) < m.
Now r = f — gg € J, so by the minimality of m, we must have »r = 0. Hence
f = qg, and we deduce that J = (g). Multiplying g by the reciprocal of its leading
coefficient, if necessary, we can suppose that g is monic, and this choice is then
unique. O

Corollary 6.19 (Minimal Polynomial) Let A € M, «,(C). Then there exists a
unique m(s) € Cl[s] that is monic and of degree less than or equal to n such that

p(A) =0 for p(s) € C[s] if and only if m(s) is a factor of p(s) in C[s].

Proof Consider J = {p(s) € C[s] : p(A) = 0} and observe that J is an ideal
in C[s]. Further, by the Cayley-Hamilton Theorem 2.29, we have xa(s) € J. By
Proposition 6.18, there exists a unique monic m(s) such that J = (m(s)), and the
degree of m(s) is less than or equal to n by (2.9). |
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Lemma 6.20 Let f and g be nonzero in a principal ideal domain R, and (f, g) =
{af +bg : a,b € R}. Then (f, g) is an ideal in R, and (f, g) = (h) where h is a
greatest common divisor of f and g. This h is unique up to multiplication by a unit.

Proof One easily checks that (f, g) is an ideal, hence (f, g) = (h) for some
nonzero h € R. Also, f = 1f 4+ 0g € J,so f = kh for some k € R. Likewise
g=0f+1g € J,so g = ph for some p € R, hence h is a common divisor of f
and g. Conversely, if r is a common divisor of f and g, then f = ur and g = wr
for some R, so h = af + bg = (au 4+ bw)r, and r is a divisor of h. If h = rs and
r = hk, then h = skh, so h(1 — sk) = 0, hence 1 = sk since 1 # 0, hence s is a
unit. O

The formula i = af 4+ bg expressing the greatest common divisor of R as a
combination with a, b € R is known as Bezout’s identity. One can write

h = [a b] [g ] . (6.28)

We say that f and g are coprime if there exista, b € R such that 1 = af + gb. This
is equivalentto R = {af + bg : a, b € R}. If R is a Euclidean domain such as C[s]
or Z, one can use Euclid’s algorithm to determine whether f and g are coprime by
finding a highest common factor 4 and a, b such that h = af + bg.

Definition 6.21 (Euclidean Domain) Let R be an integral domain with unit 1. Say
that R is a Euclidean domain if there exists § : R \ {0} — {0, 1, ...} such that for
all x,y € R\ {0} there exists ¢, € R such that x = gy + r and either r = 0, or

8(r) < 8(y).
Example 6.22

(i) The integers Z give a Euclidean domain for 6 (x) = |x]|.
(i) The polynomial ring C[s] is Euclidean for §(f) the degree of the polynomial
f. Likewise, K[s] is a Euclidean domain for any field K.
(iii) The ring Z[s] is not Euclidean.

Proposition 6.23 Any Euclidean domain is a principal ideal domain.
Proof This follows exactly as in Proposition 6.18. O

Algorithm The iterated Euclidean algorithm applies to a Euclidean domain R with
6: R\{0} — {0, 1, ...} the Euclidean function.

Given xo, x1 € R the algorithm determines a, b, x € R such that (x) = (xg, x1)
and x = axg + bx.

Step 0. Let xo, x; € R and suppose §(xg) > 5(x1).

Step 1. Introduce g1, x2 € R such that xo = g1x1 + x2 and either x = 0, in
which case stop; or 6(x1) > §(x2), in which case continue.

Step 2. Introduce g2, x3 € R such that x; = gax2 + x3 and either x3 = 0, in
which case stop; or 6(x2) > §(x3), in which case continue.

Step n. Introduce ¢g,, € R such that x,_; = g,x, in which case stop.



6.7 Ideals in the Complex Polynomials 185

The algorithm terminates since §(x1) > 8(x2) > &(x3) > ... is a strictly
decreasing sequence of nonnegative integers, so must reach 0 in at most § (x1) steps.
Also

(x0, x1) = (x1,x2) = (x2,X3) = - -+ = (Xp—1, Xn) = (Xn).
We reverse the steps and make the remainder the subject of the formulas

Xn = Xn—2 — 4n—1Xn—1

Xn—1 = Xn—-3 — 4n—-2Xn-2

X2 = X0 — 4q1X1,

SO we recover a,,b, € R such that x, = apxo + b,x1 by substituting back.
Equivalently, we can write

i i

and we can recover x, = a,xo + bpx1 by matrix multiplication.

6.7 Ideals in the Complex Polynomials

Proposition 6.24 Let F be a nonempty finite set of complex polynomials, and J (F)
the ideal in C[s] generated by F; that is, the intersection of all the ideals in C[s]
that contain F. Then by finitely many applications of the division algorithm, one
determines p € C[s] such that (p) = J(F).

Proof We give an algorithm for finding p. For F = {py, ..., pm} we can describe
J (F) explicitly as

JF) ={hip1+- -+ hmpm :hi,... . hm € C[s]}. (6.29)

We assume that the elements of F are nonzero and let d(F) = min{deg(p); p € F}.
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Start with Fy = F and choose py € Fy such that deg(pg) = d(Fp). For each
p € Fy, we use the Euclidean algorithm for polynomials to write p = gpo + r
where g, r € C[s] and either r = 0 or deg(r) < deg(po). Note thatr = p — gpo €
J(Fp). If remainder r = O for all p € Fp, then pg divides all p € Fy and we have
J(Fy) = (po). Otherwise, there exist nonzero remainders, and we introduce the set
of nonzero remainders F; = {r = p — qpo;r # 0; p € Fyo} where J(F1) = J(Fp)
and d(F1) < d(Fp). Then we repeat with F7 instead of Fy.

A strictly decreasing sequence of positive integers is finite, so after at most d (F')
steps, we obtain a nonempty finite set of nonzero complex polynomials F; such that
J(Fj) =J(F)and J(F;) = (p;) for some p; € F;. |

Example 6.25 (Lowest Common Denominator) Let F be a nonempty and finite set
of complex rational functions, so F C C(s), and let

J ={p(s) € Cls]: p(s) f(s) € Cls], Vf(s) e F}. (6.30)

Then J is an ideal in C[s]. To see this, note that 0 € J since 0 € C[s] and for
p(s),q(s) € J we have (p(s) + g(s)) f(s) € C[s] for all f(s) € F; likewise
p(s) f(s)g(s) € C[s] forall p(s) € J, f(s) € F and g(s) € C[s].

Now J = C[s] if and only if 1 € J, or equivalently, F C C[s]. This
happens in particular if F = {0}. Otherwise, we let f;(s) = p;(s)/q;(s) with
pj(s),qj(s) € Cls]for j = 1,...,n be the nonzero elements of F, and observe
that g(s) = q1(s) ... qn(s) satisfies g(s) fj(s) € C[s] forall j =1,...,n, so0g(s)
is a nonzero element of J. Then by the Proposition 6.18, there exists p(s) € Cl[s]
such that J = (p(s)), so we can clear the denominators of the elements of F by
multiplying by p(s). This p(s) is often called the lowest common denominator,
and we can find it explicitly by the Euclidean algorithm. More precisely, p(s) is
the polynomial of lowest degree in J \ {0}, and is unique up to multiplication
by a nonzero complex number. This result has a significant application to finding
partial factions, and enables us to calculate inverse Laplace transforms, as in
Proposition 6.55

6.8 Highest Common Factor and Common Zeros

By Proposition 6.18 and Lemma 6.20, any two nonzero polynomials in C[s] have
a greatest common divisor. In C[s], the units are precisely the nonzero constant
polynomials, so we can replace a greatest common divisor by a monic greatest
common divisor. The following result characterizes the case in which the greatest
common divisor is 1. The criterion can be assessed via the Euclidean algorithm,
which one can carry out in exact arithmetic, with computer assistance as required.
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Proposition 6.26 Nonzero complex polynomials P and Q have no common com-
plex zeros if and only if there exist complex polynomials M and N such that

PM + ON = 1. 6.31)

Proof If P and Q have a common zero X, then
PMMR) + Q)N =0,

contrary to the equality.

Conversely, suppose that P and Q have no common zeros and carry out the
Euclidean algorithm for P and Q to obtain complex polynomials M, N, R such
that R is the highest common factor of P and Q and PM + QN = R. If R=risa
nonzero constant, then we can multiply through by »~! to obtain PM/r + QN /r =
1, as required. Otherwise, R is a complex polynomial of positive degree, and hence
by the fundamental theorem of algebra [6] has a complex zero 1. Now R is a factor
of both P and of Q, so s — A is a factor of both P and Q, so X is a common zero of
P and Q, contrary to assumption. O

Corollary 6.27 A nonconstant polynomial P has only simple zeros if and only if
the highest common factor of P and P’ is 1.

Proof Now P has multiple zeros if and only if (s — A)? is a factor of P for some
A € C, or equivalently P(A) = (d P/ds)(r) = 0. Otherwise, P and d P /ds have no
common zeros and we have the situation of the Proposition 6.26. See also [6], page
403. ]

Remark 6.28

(i) MATLAB can find the greatest common divisor (highest common factor) for

polynomials via command
=>> [g,M,N]:ng(P,Q)

(i) Let G be a nonconstant complex rational function. Then we can write G =
P/ Q for complex polynomials P and Q, and find their highest common factor
H by the Euclidean algorithm. First, if H = 1, then P and Q have no common
complex zeros and the algorithm gives complex polynomials X and Y such
that PX + QY = 1. The X and Y can can be found using the Euclidean
algorithm, which can be carried out in exact arithmetic—no need to find roots
of polynomial equations. If H is a polynomial of positive degree, then we can
write P = Hp and Q = Hgq where p, g are complex polynomials such that
p/q = P/Q = G, and p and g have highest common factor 1, and we are back
in the first case. Thus we can reduce G to G = p/q where p, g are complex
polynomials with no common complex zeros.

(iii) The algebra C[x, y] of complex polynomials in two variables is not a principal
ideal domain, but does have unique factorization. See [6], pages 76 and 349.
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(iv) The Euclidean algorithm for polynomials [6] page 64 works for K[s] for any
field K such as the reals R or the rationals Q, so Proposition 6.18 holds in this
context. However, 1 +s2 and 1+ s2)2 have no common zeros in R, but clearly
they have common factor 1 + s2. Proposition 6.26 makes essential use of the
fundamental theorem of algebra, which establishes algebraic completeness of
C.

6.9 Rings of Fractions

Definition 6.29 (Multiplicative Sets) Let R be an integral domain, and S € R
such that 1 € S and s, € S implies st € S; then § is said to be multiplicative. A
multiplicative set S is said to be saturated if ab € S fora, b € R impliesa, b € S.

Example 6.30 The following sets are multiplicative for the usual multiplication
operation:

(i) in an integral domain R, the set R* = {r € R : r # 0};
(ii) the set of units, namely the set of u € R such that uv = 1 for some v € R;
(iii) in C[s], the set of monic stable polynomials;
(iv) in C[s], the set {(1 4+ )" : n =0, 1, ...} of powers of (1 + s);
(v) in C[s], the set of even polynomials f(s) so that f(s) = f(—s);
(vi) S* the set of nonzero stable rational functions.

The examples (i), (ii), (iii) and (iv) are saturated; whereas (v) is not, since s2 is an

even polynomial which is the product of the odd polynomials s and s. (vi) This is
saturated as a subset of the ring of stable rational functions, which forms an integral
domain. However (1 + s)/(1 + s) = 1 is stable, whereas (1 4 s) is not stable, so
(vi) is unsaturated in C(s).

Definition 6.31 (Ring of Fractions)

(i) For a multiplicative subset S of an integral domain R, we introduce S~!R =
{a/b:a € R, b € S}, the set of fractions with numerator in R and denominator
in S. We identify a/b with c¢/d when ac = bd, and identify a/1 with a €
R. Then S™! R becomes a commutative ring for the obvious operations a /b +
f/g = (ag +bf)/(bg) and (a/b)(f/g) = (af)/(bg), and we can regard R as
a subring of S™!'R.

(ii) In particular Q(R) = {P/Q : P € R, Q € R%} gives the field of fractions of
R.

Example 6.32

(i) We can choose S = {g € C[s] : g # 0} and R = C[s] so that S~!R = {f/g :
[ 8 € Cls]: g # 0} = C(s).
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(i) The ring S consists of proper rational functions p(s)/q(s) with denominator
q(s) a monic stable polynomial. In Proposition 6.58, we summarize the
properties of S, and write out the formulas in detail there.

(iii) We can choose S% in S, to form {P/Q : P € S, Q € S*} which we show in
Proposition 6.36 out to be all of C(s).

(iv) The advantage of a saturated set is that we can take a fraction p/q € S™'R
and any factorization p = p1p2 and ¢ = qiq2 in R with give p/q =
(P1/41)(p2/q2) with factors p1/q) and py/g2 in S7'R.

The following result introduces a ring which is surprisingly important in the
theory. We have already encountered this in Exercise 4.6.

Lemma 6.33 Let R be the space of proper complex rational functions with poles
only at —1. Then R is a principal ideal domain, and a subring of S.

Proof Observe that {g(s)/(1 + s)* : f(s) € C[s],n = 0,1, ...} gives a ring of
rational functions with the only possible poles at —1 and co. When g(s)/(1 +5)" is
proper, then the only possible pole is at —1.

For f(s) € R, there is Laurent expansion about —1 given by

F&)=pE)+> 6 iknk’ (6.32)
k=1

where the principal part p(s) is a polynomial, which reduces to a constant since f
is proper. Hence the map C[A] - R

n n
k Ak
dank sy . (6.33)
k=0 k=0 (s+D
is an isomorphism of algebras. Hence R is a principal ideal domain. O

In Proposition 6.36, we show that {P/Q : P € R, Q € R*}is all of C(s).

Example 6.34 (Changes of Variable in the Rational Functions) Consider C(s) and
let g(s) € C(s). Then the map A > g(s) and 1 — 1 determines a homomorphism
of fields C(A) — C(s) via f(A) — f(g(s)). Consider a, b, c,b € C such that
ad — bc # 0, and write

N as+b dr —b (6.34)
= , S = . .
cs +d —ch+d

There is an isomorphism of fields C(A) — C(s) : f(A) > f (f;jrrs ) with inverse

f(s)— f( _d(f‘)j ’,)- In particular, we can take

1 A—1
A= , §= . (6.35)
s+1 —A
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Let P(A) € C[A]. Then P(1/(1 + s)) gives a stable rational function in s. We have
aring R = C[1/(1 + s)] which is a principal ideal domain and a subring of S.

In the next few sections we consider how the stable rational functions can be used
to solve control problems. The implications for Laplace transforms are discussed in
the final two sections of this chapter.

6.10 Coprime Factorization in the Stable Rational Functions

Definition 6.35 (Coprime) Let P(s), Q(s) € S be non zero. We say that P and Q
are coprime if there exist X (s) and Y (s) in S such that

P(s)X(s) + Q)Y (s) = 1. (6.36)

Proposition 6.36 (Coprime Factorization into Stable Rationals) Let G(s) be a
complex rational function. Then there exist P(s) and Q(s) in S such that

G(s) = i (6.37)

and P(s) and Q(s) are coprime in S. In particular, the field of fractions of S is
C[s].

Proof

(1) We have shown that C(s) and C(1/(s + 1)) are isomorphic. The issue is to show
that we can choose P(s) and Q(s) coprime in S. Since G (s) is rational, we can
write G(s) = M(s)/N (s) where complex polynomials M, N have no common
Zeros.

(2) We introduce a new variable > = 1/(1 + s) and write

M) =)\mM<1 ;k)
N =)\m1v(1 ;)\) (6.38)

where m is the maximum of the degrees of M and N, so that M) and N()
are polynomials. Now M (i) and N (1) have no common zeros. The problematic
case is A = 0, but we note that M (0) is the m'" coefficient of M, and N (0) is
the m™ coefficient of N; so either M (0) or N (0) is not zero by the choice of m.
(3) By Proposition 6.26 there exist complex polynomials X (1) and Y (1) such that

MMO)XA) +NOWY () = 1. (6.39)
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(4) Finally we convert back to the original variable s = (1 — A)/A and introduce

P(s) = M( ); 0(s) = 1\7( (6.40)

1 1 )
1+ 1+s/

X(s) =5((1J1rs); Y(s) = 17( ); (6.41)

1
1+s
so that P(s), Q(s), X(s), Y(s) belong to S. Indeed, they are all proper and the
only poles are at s = —1. Furthermore, P(s) and Q(s) satisfy

PS)X(G)+ Q@)Y (s) =1 (6.42)
and

M) _ M1/ +5) P

G = = _ = .
W= Ne T majatsy - 0

(6.43)
We have shown that C(s) is the field generated by S.

Algorithm (Coprime Factorization Algorithm for Stable Rationals)

(1) Write G(s) as a quotient of polynomials in s with no common zeros.
(2) Introduce A vias = (1 — 1)/ and clear the denominators.

(3) Apply the Euclidean algorithm for polynomials in A.

(4) Convert back to the original variable s by A = 1/(1 + s).

Example 6.37 (Coprime Factorization in Stable Rationals) Let

245

G(s) = .
() s2—s+1

(6.44)

Then with s = (1 — 1)/A, we have

(1 =22 4512 612 =20+ 1

G(s) = = .
o) = oA —n 422 32—+ 1

(6.45)

Then by the Euclidean algorithm

(24)\7_ 2) (3)\2 — 3+ 1) - (12x7— 9) (6A2 — 2%+ 1) =1 (6.46)

so letting . = 1/(1 +s5), we have PX + QY =1 with P, 0, X, Y €S

2 -2 3 3 3-9 6 2
(7(1+ss))<(1+s)2 T+ le>_(7(1+j~))((1+s)2 1+ +1) -
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Realizing the quotient via linear systems. Suppose that G(s) = P(s)/Q(s) where
P(s) and Q(s) are coprime in S, where Q(s) is proper but not strictly proper.
Then there exists a BIBO stable linear system 1 = (A1, By, C1, D1) with transfer
function P(s), and a BIBO stable linear system %> = (Aa, B2, Cz, D7) with
transfer function Q(s). Then there exists a linear system X5 = (A, By, C,', D)
with transfer function 1/Q(s), which is not necessarily stable. Then G(s) is the
transfer function that arises from multiplying 1/Q(s) and P(s), namely running the
linear systems X1 and ZZX in series; see Proposition 7.14.

Definition 6.38 (Unstable Poles) For rational transfer function G (s), the unstable
poles of G are the poles in the closed left half-plane {s : fis > 0} U {oo}.

Corollary 6.39 The poles of G(s) in {s : Rs > 0} U {oo} are given by the zeros of
O(s) in{s : Rs > 0} U {oc0}.

Proof Suppose that so € {s : 9is > 0} U {oo} has Q(sg) = 0. Then sp is not a pole
of X (s) or of Y(s), so from the equation P(s)X(s) + Q(s)Y(s) = 1, we deduce
that P(s0) X (so) = 1, so P(sp) # 0 and sg is a pole of G(s). Conversely, the poles
of G(s) = P(s)/Q(s) are either poles of P(s), which are all in L H P, or zeros of

0(s). O

6.11 Controlling Rational Systems

Proposition 6.40 Ler G = P/Q be a complex rational function, as in Proposi-
tion 6.36. Then the rational K = X /Y is such that

G K 1 GK
, , , (6.48)
14+ GK 14+ GK 14+ GK 14+ GK
are all stable rational functions.
Proof We recall that PX + QY = 1, we we have
G P
= /9 = PY;
1+GK 1+ PX/QY
K X/Y
= =X0;
1+GK 1+ PX/QY
1 1
= = QY;
1+GK 1+ PX/QY
GK PX/QY
= /Q = PX. (6.49)

1+GK 1+PX/QY

Given any rational SISO, we have produced an algorithm for finding a controller to
stabilize it. |
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n
e
! z \+>
r @ X X @ y G O output

Wellposedness of the SF L diagram
The standard form of the rational simple feedback loop linear system has inputs
r, d and n and states x, y and z so that

X=r—z
y=d+ Kx
z=n+ Gy (6.50)

for some rational functions G and K, hence

1 01 X r
—K 1 0||y|=1]d]|. (6.51)
0 —-G1 Z n

Definition 6.41 (Well Posed) The system is said to be well posed if the inputs
(r, d, n) uniquely determine the states (x, y, z).

Lemma 6.42 The SF L system is well posed if and only if 1 + GK # 0, and in this
case, the inputs determine the states by

X 1 1 -G —1 r
yl|= K 1 -K||d]. (6.52)
Z I+ Gk GK G 1 n

We abbreviate this to X = ®U.

Proof The proof consists of calculating the inverse of the matrix above. O
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Definition 6.43 (Internal Stability of SFL) The SFL system is internally stable
if all the transfer functions in the matrix & are stable, so

1 G GK K

) , ; , (6.53)
1+GK 1+GK 1+GK 1+GK
all belong to S.
This is equivalent to having the all entries of the matrix
1 GK K
6.54
1+GK [ G 1:| (6.54)

in S. This matrix does not have any particular physical interpretation, but its entries
are all stable if and only if the entries of ® are all stable, where ® is physically
meaningful. The idea is that we want all the junctions in the diagram of the SFL to
be stable. (Think of the x, y, z as representing the temperature of the components of
a tumble drier; we need to ensure that these do not overheat.)

Consider a SISO system (A, B, C, D) with transfer function G (s), and consider
the corresponding simple feedback loop with rational controller K. We now allow
G (s) to be an arbitrary rational function, and write it in the form G = P/Q with
coprime P, Q € S.

_ 4—0
T Bl
y
u (+) P/O : Y
N ~

By previous results, there exists another SISO such that K is the corresponding
transfer function, so in this sense we have shown that any SISO with rational
transfer function can be stabilized by a rational (possibly unstable) controller. In
applications, one may have other criteria in mind when selecting a controller. In
applications, one can tune controllers so that they ensure stability, but allow the
system to be responsive.

Theorem 6.44 (Youla’s Parametrization of Stabilizing Controllers) Suppose
that G = P/Q has a coprime factorization PX+ QY = 1 where P, 0, X, Y € S.

(i) Then K = X/Y internally stabilizes SF L.
(ii) The set of all rational controllers K that internally stabilize SF L is

{ _ X+OR

_Y_PR:RG&Y—PR¢0} (6.55)
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Proof (i) Suppose that K = X /Y. Then,

XP _YO+XP 1

I+GK =1 = = ; 6.56
+ + Y 0 YO YO ( )
$0 +g x=YQ0 and hence ® has all entries in S, since
1 —-P/Q -1 YO -YP -YQ
d=YQ X/Y 1 —-X/Y|=|X0 Y0 —-XQ|. (6.57)
PX/YQ P/Q 1 XP YP YQ
Suppose that G = P/Q and K = X/Y where PX 4+ QY = 1. Then
1 1
GK K _ PX OX _ X [P Q] (6.58)
1+GK| G 1 PX + QY | PY QY Y

Hence we have found a controller that internally stabilizes the simple feedback loop
system.
(ii) Suppose that K = X /Y. Then, as in Lemma 6.42

XP _YQ+XP 1

I+GK =1 = ; 6.59
+ + Y 0 YO YO ( )
SO 1+1GK = Y Q and hence @ has all entries in S, since
1 -P/0 -1 YO -YP -YQ
d=YQ XY 1 =X/Y|[=|X0 Y0 —-X0|. (6.60)
PX/YQ P/Q 1 XP YP YQ

Hence we have found a controller that internally stabilizes the simple feedback
loop system. Suppose that

K = X+ OR (6.61)
Y — PR
Then
I+GK=1—|—X+QRP= YO+ XP _ 1 ; 6.62)
Y—-PRQ (Y — PR)Q (Y- PR)QO
SO
= -PR)QO (6.63)

1+ GK
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and hence

(Y —PR)O —(Y —PR)P —(Y - PR)Q
®=|(X+Q0R)Q (Y-PR)Q —(X+0OR)O (6.64)
(X+QR)P (Y-PR)P (Y—-PR)Q

has all its entries in S. Conversely, let K be a rational controller that stabilizes SF L;
then

1
Gk G (6.65)
1+KG| K 1

is a submatrix of @, hence has all its entries in S. Hence

1 [GKG][Y
RZRYM+KG[K1}LX] (0.0

belongs to S, and we write this as

R:[XYW?}1+KG)WK1Wj;}
_ (XG+Y)(KY - X)
1+ KG
_ (XP/Q+Y)(KY —X)
1+KP/Q
(PX + QY)(KY —X) KY-X
N O+KP TKP+Q

PKY-PX QY+PX 1

Y-PR=Y— = -
KP+0Q KP+Q KP+Q

# 0; (6.67)
and we solve for K from
(KP+QR=KY —-X (6.68)

to get

_ X+ QR

= . 6.69
Y — PR (6.69)
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6.12 Invariant Factors

The theory of linear algebra is often formulated for matrices with entries in a field.
Much of theory extends to matrices with entries in a principal ideal domain R, so we
are able to introduce the machinery necessary to describe MIMO systems in terms
of transfer functions involving C[s] and C[1/(1 + s)].

Definition 6.45 The elementary row operations on a matrix over R are:

(i) interchanging two rows;
(i) multiplying one row by a unit in R;
(iii) adding a multiple of one row to another.

For later use, we prove the following basic results.
Lemma 6.46 Let R be a principal ideal domain.

(i) An n x n matrix X with entries in a principal ideal domain R is invertible in
My «n(R) if and only if det X is a unit in R.

(ii) Forall B € R, there exists X € My,xn(R) with det X a unit in R such that
XB = col[r, 0, ...,0], where (r) is the ideal generated by the entries of B.

Proof

(i) Existence follows from
Xadj(X) = (det X) I, (6.70)

and the forward implication follows from identity det X det(X ') = det I, =
1.

(i) Suppose that B = col[by, ..., b,]. First observe that we can permute the entries
of B by interchanging pairs of neighbouring entries, as in

010 by by
10 : by | =|b (6.71)
0...1]LB B

where B’ = col[bs, ..., b,] and the matrix here has (det X)2 =detX? =1,

so det X is a unit. Now we prove the statement by induction on n, starting with
the crucial case n = 2. Let x, y € R with y # 0. Then

m - [—pb Z} m 6.72)

where the matrix is unimodular in M>4>(R) and r is the generator of the ideal
(x,y) = {wx+zy : w, z € R}. To see this, we introduce (r) = (x, y),sor # 0,
and we write y = ar and x = br for some a, b € R. We have r = py + gx for
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some p, g € R;thenr = par + gbr and 1 = ap + bqg by cancellation; then

[—pb Z} m - m : (6.73)

so we can left multiply by the inverse matrix to solve.
Suppose we have the result for n, and consider n + 1. Then B,y =

col[by, ..., by, byt1] can be written as B,y1 = [By; byt+1] where B, =
col[by, ..., b,], so we have X,, € M, «,(R) with det X,, a unit in R such that
'n
Xn 011 By = 0o |, (6.74)
0 1] [bust
bn+l

where (7,,) is the ideal generated by the entries of B,. We now permute the
entries of the final column vector, and apply the case of n = 2 to find r, 41 =
(ns bug1)-

0O

In particular, when R is a Euclidean domain, we can find the entries of X
by following through the steps in this induction proof and using the Euclidean
algorithm in the case n = 2.

Proposition 6.47 (Unimodular-Upper Triangular Decomposition) Let R be a
principal ideal domain, and A € My, (R). Then there exists a upper triangular
T € Myxn(R) and a unimodular U € My, «,(R) such that A =UT.

Proof By the Lemma 6.46, there exists Xo € M,x,(R) with det X¢ a unit in R
such that

ry s
XoA = , 6.75
0 [0 A1:| (6.75)

so we can introduce X1 € M(,—1yx(n—1)(R) with det X a unit in R such that

Floeernn.
10
XA=10 ... 6.76
[0 XJ ) (6.76)
and repeat until we have an upper triangular matrix 7o and X € M, «,(R) with
det Xo aunitin R such that XA = Tp; thenwelet Uy = X~ so A = UpTp. Finally,

we multiply the first column of Uy by 1/ det Uy to get a unimodular U, and the first
row of Tp by det Uy to get an upper triangular 7 with A = UT. O

Let B = [bj] be an n x m matrix with entries in R. For § C {1,...,n} and
T C{l,...,m} with §§ = T = ¢, let det[b ] jes ker be the determinant formed
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from the submatrix of B, known as an £- minor. Then let

Jo = (detlbji)jes ker : 1S = §T = 0) (6.77)

be the ideal generated by all of these ¢-minors. By considering the determinant
expansion of each minor in terms of smaller minors, we observe that

Jp CJp—1 € - C 4, (6.78)

where J is simply the ideal generated by the individual entries of B. Since R is a
principal ideal domain, we have J, = (Ay), with A1 | Az | --- | A,. Recall that
Ay is uniquely determined up to multiplication by a unitin R. With A, = d,, A, —1,
the additive quotient group J,—1/J, is naturally isomorphic to the additive quotient
group R/(d,), namely the group with addition modulo (d,). To see this, use the
group homomorphism R — J,—1 : p — pA,_; followed by the quotient map
Jn—1 = Ju—1/Jn which is a group homomorphism. Note that A, | A,_1p if and
onlyifd, | p.

The divisibility conditions can be made more precise by a theorem which was
proved by H.J.S. Smith for R = Z.

Theorem 6.48 (Invariant Factors) Let R be a principal ideal domain and B €
My xm(R). Then there exist unimodular matrices X € M,x,(R) and Y €
M, m (R) and a n x m matrix D such that B = X DY, where

d 0...0
D= 0 -0
ody o
0...... 0
withr < min{m,n}anddy |dy | --- | dr, and Ay, = dy,d> .. .d,. The sequence
(d1,...,dy) is called an invariant factor sequence and D is an invariant factor

matrix. The factors are unique up to multiplication by units.

Proof The proof is a considerable refinement of the method used to prove
unimodular-upper triangular factorization, and is given in detail in [20]. By
calculating the A,, one can find the dy via Ay = di,...d, and hence find D.
Uniqueness can be proved from determinants identities, as in Exercise 6.18. For
small matrices with entries in C[s] we can use the algorithm of Proposition 6.24 to
compute the Ag. O

Example 6.49 For G, K € R, the matrix
1 -G -1

K 1 —K (6.79)
GK G 1



200 6 Algebraic Characterizations of Stability

has ideals
J=(1+GK)?), h=0+GK), J =), (6.80)

as one easily shows by calculating the minors.
We now revert to the notation used previously.
Proposition 6.50 Letr (A, B, C, D) be a MIMO with A € M,,«,,(C).

(i) Then the transfer function is

T(s) = P(s)

= 6.81
xA(s) (650

where xa(s) is the characteristic polynomial of A and the entries of P(s)
belongs to the ideal J,—| in C[s] that is generated by the n — 1-minors of
sl — A.
(ii) Suppose that J,—1 = (An—1(s)) where the degree of A,,—1(s) is positive. Then
XA () = dn(s)Ap—1(s) and
R(s)

T(s) =D + ) (6.82)

where the fraction is a matrix of strictly proper rational functions.

Proof

(i) In the principal ideal domain C[s] we can write J,, = (x4 (s)), and J,_; for the
ideal generated by the n — 1-minors of s/ — A, or equivalently by the entries of
adj(sI — A). Then the result follows from the formula

T(s) = XA(S)_I()(A(S)D + Cadj(sI — A)B). (6.83)

(1) If J,—1 = (A,—1(s)) where the degree of A,_1(s) is positive, then we can
write x4(s) = dn(s)An—1(s) and d,,(s) € C[s] is a new common denominator
for the entries of 7' (s) of lower degree less than n. By the Euclidean algorithm,
a typical p(s) € J,—1 has the form p(s) = xa(q)q(s) + An—1(s)r(s) where
q(s) € C[s] and r(s) € C[s] has either r(s) = 0 or the degree of r(s) is less
than the degree of d,,(s). We apply this to the entries p(s) of P(s) in (i).

This applies in particular to cases in which A has Jordan block decomposition as

in

210
A=|0xr0], (6.84)
00x

and J, = (s — A) with J3 = ((s — A)?), so d3(s) = (s — ). O
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Let R be an integral domain. The matrix identity

=] 639
—q pllgx 01 '

is equivalent to px —gy = 1 forx, y, p,q € R. So given p, g € R we can look for
x,y € R to make the matrices on the left-hand side invertible. Equivalently, given
P,q € R we can look for x, y € R to make the determinants of matrices on the
left-hand side be units in R. If p # 0, we can then consider the element g/p as a

fraction in its lower terms in the quotient field over R. Note that this involves an
additional assumption on p, since the matrix identity

[(1) <1)] [(1) é] - [é (1)] (6.86)

does not lead to such a fraction.
We now consider coprime factorization in M, x,(R) for n > 1 which is not
commutative and has zero divisors. We need to respect left and right factors.

Definition 6.51

(i) Given P, Q € M, x,(R), we say that [ P; Q] are right coprime if there exist
X,Y € My, (R) suchthat XP — Y Q = I,; so that

[X —Y] [g} = I. (6.87)

(i) Given W, Z € M,x,(R), we say that [W, Z] are left coprime if there exist
R,S e M,,x,(R) suchthat —-WR + ZS = I,,; so that

[-W Z] [ﬂ = I,. (6.88)

Note that [ P; Q] are right coprime if and only if [P T, Q"] are left coprime, as
we see by taking the transpose of XP — Y Q = I,,.

Lemma 6.52 The following data are equivalent in My, «, (R):

(i) aright coprime[P; Q], and aleft coprime [—W, Z] suchthat —W P+Z Q = 0;
(ii) given P, Q, W, Z € M, «x,,(R) such that the block matrix identity

X —-Y||PR I, O
[—W z } [Q S} - [0 I,J (659

holds for some X, Y, R, S € Mpyx,(R).
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Proof Given (ii), we immediately have (i) by considering the block diagonal and
bottom left entries. Conversely, given (i) we have X, Y, R, S € M, «,(R) such that

X —-Y||PR I, E
[—W z } [Q S} - [0 I,J (690

I —E to obtain
0 I,

X —-Y||PR-PE _ I, 0 6.91)
-W Z 0S—QE 01,
which gives a matrix factorization with P, Q, —W, Z in the required positions.

Suppose that we have a factorization as in the Lemma 6.52 for R = C[1/(1+5)],
and suppose further that P and Z are invertible; then

where E = XR — Y S. To remove this term, we postmultiply by |:

G=0opP '=z"'w (6.92)

is an n X n matrix with entries in the quotient field over R. O

~ 1 K=RS ' +— O

(+) G=0QP'=2zw ©)

Proposition 6.53 (Stabilizing MIMOs) Given the data as in the Lemma6.52,
suppose further that X, P € My x,(R) are invertible in My, »,,(C(s)). Then

(i) G = QP~! = Z~'W has a doubly coprime factorization;
(ii) The simple feedback loop with plant G is stabilized with controller K =
—RS™!, 50 that

(I+GK)'G =SW € Myn(S),
(I+GK) ' =58Z € Myun(S),
(I +KG) 'K = —PY € Myn(S),
(I+KG)™'=PX € Myyn(S).

Proof Proposition 3.16 Schur complements, S — RP'Q € M, (C(s)) is
invertible with inverse Z € M,x,(S); likewise Z — WX —ly is invertible in
M, (C(s)) with inverse S € M, »,(S). In the simple feedback loop, suppose that
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G =Z7'Wand K = —RS~!. Then we have a sequence of identities:

(I + GK)y =Gu
I—-Z'"WRS Hy=27""wu
Zz7 Y zs-—wWR)S 'y=2z""wu
y=SWu;
the case of (I + GK) ™! is similar. Likewise we use G = QP_1 and K = —X"1y,
SO
(I +KG)y=Ku
I-X"'yor YHy=—-x"yu
(XP-YQ)P 'y=—Yu
y=—PYu,
and (I + KG)~! is found similarly. We can carry out all the calculations within the

domain R C S, and express the hypothesis as det X # 0, and det P # 0.
The results also apply to

X -Y P R kxk kxm
[—W Zi|’|:Q Si| |:m><kmxmi| (6.93)
where G € M,,xx(C(s)) and K € My, (C(s)) so that GK and K G are defined.
O

We can use these results in cases of interest due to the following theorem.

Theorem 6.54 (Coprime Factorization) Ler R be a principal ideal domain with
field of fractions QR. Then for all G € M, xk(QR), there exist a left coprime
factorization and a right coprime factorization.

Proof Let Gj¢ = qj¢/pj,¢ be a nonzero entry of G, written as a fraction where
pj.e and q; ¢ are coprime; then let y be the least common multiple of all the p; ¢.
Then P = yly € Mixk(R) and Q = yG € M,k (R) have G = QP~!. Then
by the unimodular-triangular decomposition result, there exists a unimodular U €
M(k+m)><(k+m) (R) with block form

Ui Up 2}
U=\ "L (6.94)
|:U2,1 %)
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such that
U1 Ui 2] |:y1k:| |:T:|
’ ’ = (6.95)
|:U2,1 Uxp | O 0
where T is upper triangular. Then we introduce the inverse of U in block form
[U1,1 U1,2} [51,1 51,2} _ [1 0} (6.96)
Uzt Uz2] LS2,1 52,2 017

where yly = S117 and Q = $217T, so Si1,1 and T are invertible, and G =
Q)™ = STT™IS[| = $.1871. Also Up1S11 + Ur2Sa1 = Ik, so we
have a right coprime factorization of G. O

6.14 Inverse Laplace Transforms of Strictly Proper Rational
Functions

In the final three sections of this chapter, we reinterpret the results in terms of
the state space functions via the Laplace transform and its inverse. We introduce
a complex vector space V of functions f(t) satisfying (E) and a complex vector
space of R of functions F (s) that are holomorphic near to co. The Laplace transform
takes £ : V — R, and we also introduce a inverse Laplace transform via a contour
integral such that J/ : R — V,such that LJ = I : R — R, as one can verify
by computing the formulas. Further, for all f € V, we introduce g = JLf — f
which has Lg = 0, so by the Laplace uniqueness theorem 4.11, g = 0, hence
JL=1:V — V,so L hasinverse J.

Proposition 6.55 (Laplace Inversion for Rationals) Ler F(s) be a strictly proper
rational function with poles at distinct A of order d; +1 (j = 1,...,m) and let
o >MNAjforall j=1,...,m. Then F(s) is the Laplace transform of

o+iR
f@t) = lim . / e’ F(s)ds (t >0 (6.97)
R—o0 27T o—iR
where
m
f@) =" Res{e"" F(s):5s =1} (6.98)
j=1
is a complex linear combination of t*e*i' where £ = 0, . . ., diforj=1,...,m.

Proof This result is more general but less explicit than Proposition 4.27. To
calculate the integral, we need to know the poles and then we can compute the
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necessary partial fractions by the Euclidean algorithm of Proposition 6.24 . We
write F'(s) = p(s)/q(s) where the degree of p(s) is less than the degree of ¢(s),
and g(s) =[]} (s — 2 )%+1 where A; are the poles of multiplicity d; + 1. Then

qj(s) = TTimi. j (s — M) %! give an ideal

J = (ql(s), ceesqm (s)) (6.99)

in C[s], so J = (p) for some p € C[s] such that p divides g; for all j =
1,...,m; since the A; are distinct, p is a unit, so J = (1). Hence the algorithm
of Proposition 6.24 gives hj(s) € C[s] such that 1 = Z;’Ll hj(s)q;(s). Now we
apply the division algorithm and obtain g;(s), r;(s) € Cl[s] such that p(s)h;(s) =
gj(s)(s — Aj)df+1 + rj(s) and degree of r(s) is less than d; + 1; hence

ON i P($)hj(5)q;(s)

F
YT TE o
:Zm:gj(s)—i-zn: r/(s)d_H. (6.100)
j=1 j=1 6T AT

We note that 7 (s) is nonzero since F(s) does have a pole at A, but F(s) — 0 as
s — 00 S0 Z;’Ll gj(s) = 0. We can introduce constants a; ¢ such that F'(s) has
partial fractions decomposition

m dj
ajoe
F(s) = J: ) (6.101)

We proceed to calculate the contour integral round a semicircular contour I'g
with centre o and large radius R > 0 that goes into the left half-plane and encircles
all the poles; see Fig. 4.2 in Exercise 4.13 for this Bromwich contour. We have

1 ‘ - ,
- /FR 'F(s)ds = ZRes{e”F(s) s =Aj)

j=1
d.
_zm: : aj.e d* st
- | Y2 .
=1 1=0 2! ds v_kj
m dj a;
= é;‘ tlerit (1> 0) (6.102)
j=1¢=0

by Cauchy’s integral formula. Without changing the value of the integral, we can
replace the integral round I'g by an (improper) integral up the line from o — ico
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to o + ioo since the integral round the semicircular arc Sg parametrized by s =
o + Re' forx /2 <0 < 3m/2 and a typical summand contributes
ts d to 3m/2 tR i R i0d9
/ ¢ o / exp(tRe™)Re (6.103)
sp (s =227 2w Jon (0 + Ret? — )]

which converges to 0 as R — o00. As in Corollary 4.23, the Laplace transform
of f(t)is F(s). If F(s) = O(1/s?) as s — oo, then the integral is absolutely
convergent. ]

Corollary 6.56 (Laplace Transforms and Stable Rational Functions) The
Laplace transform gives a bijection between

span{t"e” n=0,1,...: 0 < O} (6.104)

and the set of strictly proper complex rational functions that have all their poles in
the open left half-plane {\ : R1 < 0}. All stable strictly proper rational functions
arise as transfer functions of SISOs (A, B, C, 0) where A has all its eigenvalues X
in LHP.

Proof The Laplace transform of ¢"¢* is n!/(s — )", which is a strictly proper
rational function that has a pole of order » + 1 at A in the open left half-
plane. Conversely, any strictly proper rational function has a partial fractions
decomposition as in the preceding proof. With & = 0, Proposition 6.55 gives
an inverse formula for the Laplace transform, hence the Laplace transform is
bijective between these sets of functions. The final statement is immediate from
the realization result in Sect. 2.11. O

Example 6.57 Let (A, B, C, D) be a SISO with stable transfer function 7 (s).
Suppose that u(t) = Z?[:l aje'®i" with aj € C and distinct w; € R is chosen
as the input so that the output y(¢) has Laplace transform

aj

N
Y(s) =T(s) .
;s—le

By a slight extension of Proposition 4.27, one can show that

N
Y1) =Y T(iwjaje ™" +z(1) (6.105)
j=1

where z(f) — 0 as t — o00. Suppose that we wish to pick out the part of the
signal that has angular frequency w;. Then we choose T'(s) so that T'(iw;) = 1 and
T(iwj)=0forj=2,...,N,s0 y(t) =aie'®" +z(1).
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Proposition 6.58 The set S of stable rational functions forms a differential ring,
s0

(i) S is a ring under pointwise multiplication and addition, so that F(s), G(s) €
Sand i, u € Cimply F(s)G(s) € Sand LF(s) + uG(s) € S;
(ii) multiplication is commutative F (s)G(s) = G(s)F (s), and there is 1 € S;
(iii) F(s)G(s) =0 foralls € RHP implies F(s) =0o0r G(s) =0on RHP, so
S is an integral domain;
(iv) the units in S are P/Q where P and Q are nonzero stable polynomials of
equal degree; S is not a field.
(v) Matrix X € Myx,(S) has inverse Y € My, x,(S) if and only if det X is a unit
inS.
(vi) For all F(s) € S the derivative dF /ds also belongs to S and is strictly
proper;
(vii) foralla € RH P, the shifted function F (s + a) also belongs to S;
(viii) Let G(s) € S be strictly proper with inverse Laplace transform g(t); then
dG/ds is the Laplace transform of —tg(t), and G(s + a) is the Laplace
transform of e~ g(1).

Proof

(i) Multiplication and addition: Given Fi(s) = Gi(s)/Hi(s) and Fp(s) =
Go(s)/Hx(s) with degree(G1(s)) < degree(H;(s)) and degree(Ga(s)) <
degree(H>(s)) we have

G G
ARG = o 2 ; ng (6.106)

where degree(G1(s)Ga(s)) < degree(Hi(s)H>(s)). Also, the zeros of

Hi(s)H>(s) are either zeros of Hi(s) or zeros of H»(s), hence are in LHP.
By partial fractions, we can write F € S as

FO =0+ =17, (6.107)

where here Q € C is a constant since F' € S is proper, and all the A; have
A ; < 0. So we can take linear combinations of such F, and stay in S. Also

Fi(s) + Fa(s) = GI(S)H;{(IS()S;FH?S(;) 020 s, (6.108)

(il)) Commutativity of multiplication follows from the corresponding property for
polynomials;
(iii) likewise.
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(iv) Whereas 1/(s+1) belongs to S, the inverse s+ 1 is not proper, hence notin S.
Note that P/Q € S if and only if Q is a nonzero stable polynomial of degree
greater than or equal to the degree of P. Hence P/Q and Q/P both belong
to S if and only if P and Q are both nonzero, stable and of equal degree.

(v) For X,Y € M,(S) the equation XY = I, implies det X detY = 1, so det X
is a unit in S and X has inverse X ! = (det X )’ladj(X ) = Y. The converse
also holds.

(vi) We can differentiate

N

dF —nja;
s = E s -2 4)nj+1 , (6.109)
Jj=1 J

which is strictly proper and the poles are at A ; in open left half-plane.
(vii) NotethatA € LH P isapoleof F(s) ifandonlyif A —a € LH P is a pole of
F (s + a). In terms of linear systems, this amounts to replacing (A, B, C, D)
by (A+al, B,C, D).
(viii) The inverse Laplace transform is given by Propositions 6.55, 4.6 and Corol-
lary 6.56.
0

Theorem 6.59 With the usual multiplication and differentiation, let:

* H be the set of complex functions that are holomorphic near co;

» C(s)p be the set of proper rational functions;

e S be the set of stable rational functions;

e R be the set of proper rational functions with poles only at —1; so

RcScC(s), CH. (6.110)

(i) Let R be one of these. Then R is a differential ring of holomorphic functions
and Ry = {F(s) € R : F(oc0) = 0} is an ideal.
(ii) Under the inverse Laplace transform

o+ir
f(t) = lim 1/ S F(s)ds (¢ > 0) 6.111)

r—00 271 Jo_ir
with large o > 0, this Ry corresponds to a complex vector space V
of functions f satisfying the exponential growth condition (E) such that
frg e Vimpliestf(t)y e Vand fxgeV.

Proof This is similar to Proposition 6.58. When F' is holomorphic near infinity
and F(s) - 0ass — oo, we have F(s) = O(l/s) and the contour integral
for the inverse Laplace transform is well defined. Given f, g € H, there exist
neighbourhoods {s : |s| > r1} on which f is holomorphic and {s : |s| > 2} on
which g is holomorphic, so both f and g are holomorphicon {s : |s| > max{r, r}}.
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The particular spaces V are specified in Propositions 4.12, 6.55, Corollary 6.56 and
Exercise 4.6. By the remarks preceding Proposition 6.55, the Laplace transform
gives a bijection £ : V — R. |

In the case of H, we are still dealing with transcendental objects such as infinite
power series. However, in special cases, we can reduce to algebraic functions, as in
the following section.

6.16 Bessel Functions of Integral Order

The definitive account the theory of Bessel functions remains [59], a copy of which
was chained to a table at the University of Chicago during the construction of the
first atomic pile [39]. Here we are concerned with Bessel functions of the first kind
of integral order. These have the remarkable property that their Laplace transforms
are algebraic functions, which leads to some significant applications, and greatly
simplifies the analysis. In this section, we introduce Bessel functions of integral
order by one convenient definition, then discuss their properties, and conclude with
an application to signal transmission.

Definition 6.60 The Bessel function of the first kind of integer order n may be
defined as in [61] page 362 by

TP
Jn(x) — / etxsm97m92 . (6112)
o b4

(i) Note that Jn (x) is bounded and real for all real x. Then the function
fe(0) = €*si"? js continuously differentiable and 27 periodic with n'"
Fourier coefficient J,(x), so

o0
el = N g, (e (6.113)

n=—0o0
We have with 6 = m — ¢ the identities

T . do
Ju(x) = / cos(x sinf — n6)
0 T

T ) do
:/ cos(x sin¢g + n¢ — nmw)
0 T

= (=" /n cos(x sin¢ + n¢) 9
0

T

= (=D"J-n(x).
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(ii)) We have the identities

T 0 dO dJ,
Jnp1(x) = Ju_1(x) = —Zi/ ¥ ginge™ T = 277" (6.114)
- 2 dx
and by integration by parts

T

o .o db
ix (Jn+1(x) + Jn_l(x)) = 2ixf cos Pt sint p=ind

- 2
_ [1eix sinee—ine]” 1 2in /ﬂ ixsind ,—ind do
T - 7 27
=2inJ,(x)

between the Bessel functions of various orders.
(iii) By expanding the exponential as a series, we have forn > 0

jx)k o d0
Ja(x) = / (;;) sink @ ¢~"?

2
T k=0

; ; ino 4O
i _ ,—if0\k ,—inf
/ k'(2 )k (@ =) e

and we can use the binomial theorem to express this as

(ix) i(k—20—mp 40
Jn(x) Z/_nlg)k'(Zl)k Z_ZO<E>E (k—2¢ )627_[

B i (ix)"t2e 1) (n + 2@)
4 (n+20)120)mH2 ¢
00 (_I)an-l—ZZ

= 6.115
; 2142L (n + £)10) (6.113)

Itis easy to justify the change in order of the integration and summation, since
the series are uniformly convergent.

(iv) By differentiating the power series and comparing coefficients, one checks
that y(x) = J,(x) satisfies Bessel’s differential equation

d’y dy
22 2 2y, —
dx 2—|—xdx+(x —n7)y =0. (6.116)
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Since J,(x) = (—=1)*J_,(x), we have found only one independent solution;
the other solution is a Bessel function of the second kind, which is unbounded
att = 0; see [61] p 370.

(v) The Laplace transform of J, (x) is

0 ) T . do
Y, (s) — / efsx/ Pas sinf—in6 o dx
-
/ / tx sinf—inf —vxdxd
. o

—in6
=/ e db. (6.117)

oS —isinf 2w’

so with the substitution z = ¢!’ we obtain a contour integral round C (0, 1)

with

Y, (s) -1 f dz
s) =
" i C(0,1) (22 — 257 — 1)z

—1/ ( 1 1 ) dz
i Jeoy \z—z—  z—z4/ (2 — 2"

where 7+ = 5 &+ Vs2 + 1 are the quadratic roots. For n < 0, there is only a
simple pole at z = z_ inside C(0, 1), so by Cauchy’s theorem

Y, (s) —12mi 1 1 6.118)
s)= . = ; .
" i 2241 (s =2+ D)ns2 41
whereas for n > 0, we have an n'”" order pole at z = 0, so we write
) 00 k
7 z dz
ne= (- +
! i Jeo.n kZ:: 2! z:;) il ) (z— —z$)2"
_ 1
(s ++/s2+ D/s2+1
2 1 —¢)"
_ (=) (6.119)
Vs2+1

by Cauchy’s residue theorem. This Y, (s) is holomorphic near to co, on
account of (6.117), so in (vi) we clarify the interpretation of the square root.



212

(vi)

(vii)

(viii)

6 Algebraic Characterizations of Stability

Using the binomial expansion, we can define the appropriate square root
function by

/1+s2_s=z<1/2>szkll (Is| > 1) (6.120)

k=1 k

where the series converges and determines a holomorphic function near co
which vanishes at oo. Then we can extend the definition of v/1 +s2 — s to a
holomorphic function on C \ [—i, i] so that /1 + s2 takes values 4/1 — y2
for s = iy &£ 0 on either side of the cut [—i, i]. In the Laplace inversion
formula, the integrand Y,,(s)e*’ is holomorphic on C \ [—i, ], so we can
replace the the Bromwich contour integral 4.2 by

ST(Vs2+1—5)" ds
Jn (1) = .
B V1+s2 2mi

where B is the dog-bone contour that goes from —i + § to i + &, goes round i
on an arc of a circle, then goes down from i — é to —i — 4, then goes round —i
on a semicircular arc back to —i + §; see Exercise 4.13 and [61] page 365. By
substituting s = i sin#, one can check consistency with the above definition
of J,(1).

We have Jp(0) = 1, J1(t) = —dJp/dt and J,(0) = Oforalln =1,2,...,
so from (ii) there is a recursion formula for the Laplace transforms

[Yﬁl(s)} _ |:—25 1} { Yo(s) ] [mn] _ [dl + 52 —si| ©6.121)
Yo (s) 1 0] [Yae1(s) Yo(s)| V1452 1

forn = 1,2, ..., which is slightly different from a recursion formula that we
will encounter for the Chebyshev polynomials (8.30).

The Bessel functions J,41/2(¢) are also of interest in signal processing.

These may be written as J,41,2(t) = P,(1/4/t)sint + Q,(1/4/1) cost for
polynomials P, and Q.

Proposition 6.61 (Differential Ring for Bessel Functions Transforms) Under
the usual pointwise operations,

B={f(s)+ g(s)vV1 452 f(s), g(s) € Cs)) (6.122)

gives a differential field of meromorphic functions on C \ [—i, i].

Proof We have Yy(s) = V1+ s2/(1 + s2) and related formulas for Y,(s). The
polynomial equation Z2 = 1 + s may be viewed as an irreducible equation in
C(s)[Z] for indeterminate Z with coefficients in the field C(s), and we can create
anew field B = C(s)[Z]/(Z? — 1 — 5?) to solve it. By (6.120) of the Example, the
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elements of B are holomorphic functions on C \ [—i, i] apart from possible poles
from the rational functions.

(i) Addition is the rule

A(f108) + &1 ()V/1+s2) + u(fa(s) + gz(s)\/l +52)
= A1) + 1fa(s) + (g1 (s) + puga (V1 + 52

(i) multiplication works as

(f1(5) + g1V 1+ 52 (fo(5) + g2V 1 +52)
= fi(s) o + g1(5)g2(s) (1 + 52 + (fi(s)g2(s) + fz(S)gl(S))\/l + s2;
(iii) differentiation is

d df dg 58(s)
2\ — 2 2
ds(f(s)+g(s)\/1+s )= s +dSJ1+s + 1+S2\/1+s ,

(iv) and since V1 + 52 is not a rational function, we can take reciprocals

1 s) — o(s \/1 + S2
= /¢ 3 8 )2 oy (6.123)
F&) +g@V14+s2 (=821 +5%)
where the denominator is a nonzero rational function.
O

Example 6.62 (Periodic Signals) Returning to the time domain, we can use Bessel
functions to express periodic signals. Suppose that g : R — R is periodic with
period p and [ g(t)dt = 0, so ¢ () = fé g(u)du is also periodic with period
p. Then f(1) = €/?® is periodic with period p and has a Fourier representation
f(@) = Z;.lo:—oo f(n)eZJrint/p where f(l/l) — fOP eid)(t)—Znint/pdt/p.

In particular, the single tone g(¢#) = x cost gives ¢ (t) = x sin ¢ which is periodic
in ¢ with period 27, so the Fourier coefficients are

A T dt
fn) :/ !X sint—int o = J,(x), (6.124)
-7

where we recognize the Bessel function of integral order n as the n'” Fourier
coefficient 6.112 , so as in [61] page 358

NI = N L ()e™ = Jo(x) +2 ) Jaa(x) cos2nt +2i Y Japo1 (x)sin@n— . (6.125)

n=-—00 n=1 n=1
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Note that cos 2nt and sin(2n — 1)t involve higher harmonics than were present in
the original sin¢. For x with |x| small, we can approximate J,(x) by the first few

terms in the Maclaurin expansion J,, (x) = (x /2" )"+ ..., s0
' 2 2 3 -3
d”m=1—2+2cmm+(x—§)mr+;;m&+0w5 (6.126)

which gives an approximate formula involving the first few harmonics. The main
term in (6.126) is in the polynomial ring C[sint, cost, x], so is well suited for
calculation for reasons discussed in (8.30). One can express the trigonometric
functions in terms of t = tan(z/2), so that

1 —1? . 27
cost = , sint = .
1412 1+ 12
This is a familiar, though unpopular, device from elementary calculus for expressing
the circle as a rational curve. See also [3] page 68.

6.17 Exercises

Exercise 6.1 Let K be the matrix
K:[mlﬂ, (6.127)

where m, n, x, y are all integers.

(i) Write down a formula for the inverse matrix K ~!, assuming it exists. By

considering det K —1 Show that K has an inverse K ! with integer entries,
if and only if my + xn = %1.

(i) Show the condition of (i) is equivalent to m and n having highest common
factor 1.

(iii)) Show conversely that if m and n have highest common factor 1, then one can
choose integers x and y such that K as above is invertible and K ~! has integer
entries.

Exercise 6.2 Let K be the matrix

_[ P& 06
to [—X(s) Y(sJ ’ (@12

where P(s), Q(s), X (s), Y (s) are all complex polynomials.
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(i) Write down an expression for the inverse matrix K ~!. By considering det K ~!,
show that K has an inverse with polynomial entries, if and only if P(s)Y (s) +
X (s)Q(s) = k for some k # 0 a constant.

(i) Show that given P(s) and Q(s), there exist X(s) and Y(s) such that
P(s)Y(s)+ X(s)Q(s) = « for some k # 0, if and only if P(s) and Q(s) have
highest common factor 1.

(iii) Show conversely that if P(s) and Q(s) have no common zeros, then one can
choose polynomials X (s) and Y (s) as entries of K such that K is invertible
and K ~! has polynomial entries.

(iv) Given P(s) = s> +3s +2 and Q(s) = s® 4+ 2s — 3, find a K as in (i).

Exercise 6.3 An amplifier and its controller have transfer functions

o
GO = 1 ps

where «, 8, b, ¢ are real constants with o, 8 # 0.

. K@) =b+ ", (6.129)
S

(i) State conditions under which G (s) is stable.
(i) Compute the entries of

U= ! G (6.130)
" 14+ GK |K GK |’ ’

and state conditions for all the entries to be stable.
(iii) Deduce that for all G there exists K such that W is stable.

Exercise 6.4

(i) Find the zeros of the polynomial
p(s) = s> + 1052 4 16s + 160. (6.131)
(i) Obtain numerical approximations to the zeros of
q(s) = s> + 115> + 165 + 160, (6.132)
r(s) = s> + 952 + 165 + 160. (6.133)

(iii) Discuss which of these polynomials p, g, r is stable.

Exercise 6.5 (Descartes’s Rule of Signs) Let o be the number of changes in sign
in the real sequence ay, . .., an, ignoring 0. Let r be the number of positive roots
of

ap+aix + - +ax" =0. (6.134)

Then r < o, and o — r is even.
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Deduce the possible value of r for the polynomial equations:

(i) —2+43x+5x2+x%=0;
(i) 243x —4x?+ (1/2)x3 +x* — x> +6x2 —x7 = 0.
(iii) Find the roots of

2 43x+5x2+x>=0

numerically; hence find r.
(iv) Likewise, find the roots of

243 x —4x?+ (1) +xt =X +6x0 —xT =0 (6.135)
numerically; hence find r.
Exercise 6.6 Show that R is a commutative ring with 1, where

R:”?) b:|:a,be(C}, (6.136)

a

and find the units in R.
Exercise 6.7

(i) Let f, g € C[s]\ {0}. Show that

(for < (HN@ <o), (6.137)

and interpret the ideals in terms of the zeros of f and g.
(i) Show that f has simple zeros if and only if (f, df/ds) = (1).

Exercise 6.8 Express the rational function

2
s +s4+1
G(s) = 6.138
=", (6.138)
as the quotient G = P/ Q of stable rational functions P and Q that are coprime in
S.

Exercise 6.9 Let A be a nonzero n x n matrix with entries in C[s], and d(A) the
degree of the nonzero polynomial of minimal degree in A.

(1) Show that one can find the greatest common divisor of the entries of A in at
most d(A)(n> — 1) applications of the Euclidean algorithm.

(i) Let J; be the ideal in C[s] that is generated by the k x k minors of A. Estimate
the number of applications of the Euclidean algorithm needed to find py such
that Jy = (pr) fork =1,2,...,n.
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Exercise 6.10

(i) Show that the following are principal ideal domains: (1) C, (2) C(s), (3) C(s)[1]
the polynomials in A with coefficients that are rational functions in s.

(i) Let T (s) be the transfer function of a a MIMO with input space C" and output
space C". Show that det(Al,, — T (s)) belongs to C(s)[1].

Exercise 6.11 Use Hurwitz’s criterion Theorem 6.12 to show that the real polyno-
mial
s*+ As> + Bs>+Cs+ D
is stable if and only if
A,B,C,D >0,
AB — D* >0,

ABC — A’D — C? > 0.

Exercise 6.12 Maxwell sought necessary and sufficient conditions for a real quintic
to be stable. Using Hurwitz’s criterion Theorem 6.12, find conditions on the
coefficients for all the roots of

s>+ As*+ B’ +Cs> +Ds+E =0 (6.139)
to have negative real parts. Consider the leading minors of

ACEO0O
1BDO0OO
0OACEDQ
01BDO
00ACE

Exercise 6.13 Consider the matrices

11 -1 110
A=|41 1|, F=|[-130 (6.140)
5-2 4 —-112

and the matrices s/ — A and sI — F over C[s].

(1) Show that the ideals generated by the k-minorsof s/ —A are J; = (1), J, = (1)
and J3 = ((s — 2)3).
(ii)) Compare these with the ideals generated by the k-minors of s/ — F.
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Exercise 6.14 Let R be a principal ideal domain , and A € M, «,,(R), and B €
My, <, (R) where m > n. The Cauchy—Binet formula states that

det(AB) = ZdetA“n]xS det B|sx[n], (6.141)
s
where [n] = {1, 2, ..., n}, S ranges over all the subsets of {1, ..., m} that have n

elements, and A|[,]xs is the submatrix of A = [ax ¢] with (k, £) € [n] x S.
Let X € Myxn(R) and Y € M« (R) be unimodular matrices such that B =
XAY.

(i) Show that the ideal generated by the k-minors of A and AY satisfy Jx(A) C
Je(AY) fork =1,...,nand Jy(AY) C Ji(A).
(i) Deduce that the ideal generated by the k-minors of A and B satisfy J;(A) =
Jy(B) fork=1,...,n.
(iii)) Show that the invariant factors of A are unique up multiplication by units of
R.

Exercise 6.15 Consider Laguerre’s differential equation

d> L (1) dLn(1) _
ar +1—-1 dt +nL,(t) =0.

(i) Show that the Laplace transform of this equation is

dL .
S B e )
ds
and that
(s —1)"
Ln (S) Sn+l

gives a strictly proper rational solution of this equation.
(i1) Deduce that

1+iR (s = D" ds 1 4"
L,t)= 1 st — — 1)t
n(®) P 1—iR et 2mi T oplds (G5 = 1)

5s=0
is a polynomial of degree n with L, (0) = 1 that satisfies Laguerre’s equation.

(iii) By multiplying Laguerre’s equation by e ' L,,(t) and integrating by parts,
show that

foo e Ly(O)L(H)dt =0 (n % m).
0

(iv) Find the Laplace transform of e "L, (21).
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Exercise 6.16 Let SP be the space of monic complex stable polynomials in C[s],
and introduce the ring of fractions Soo = {f/p : f € C[s], p € SP}.

(i) Show that S C Seo C C(s), S0 S in an integral domain.

(i) Show that for s, € RH P, there is a well-defined homomorphism Sy —
C given by f/p — f(s:)/p(sy) for p € SP and f € C[s]. Deduce that
for a finite subset § = {s1, ..., s,} with distinct points s; € RH P, we can
introduce J = {f € Seo : f(s;) = 0,j = 1,...,n}. This is an ideal, and
J=((s—s51)...(5 —sp)).

(iii) Let ¢ : C[s] — S be the natural homomorphism f + f/1, and J be a
nonzero ideal in Sso. Show that «=1(J) = {f € C[s] : f/1 € J} is an ideal
in C[s], which is a principal ideal domain, so there exists f; € C[s] such that
(f7) = = 1(J) and that J = (.(fy)), so J is generated by (the image of) a
polynomial. This point is discussed in [29] page 146.

(iv) Deduce that Sy is a principal ideal domain.

(v) Let P, Q € Sx be nonzero. By considering the ideal (P, Q) in Sy, show that
either

(1) there exist X, Y € S0 such that PX + QY = 1; or
(2) there exists so € RH P such that P(sg) = Q(so) = 0.

Exercise 6.17 (Finite-Rank Hankel Operators) For A; € LHP and d; €
{0,1,...}forj=1,...,m,let

V =span{t"e*' :n=0,1,....d;;j=1,...,m} (6.142)
which is a subspace of the space that appears in Corollary 6.56. For ¢ € V, let
(0.¢]
Fof0 = [~ o+
0

for bounded continuous functions f. Show that I'y f € V. This Iy gives a Hankel
integral operator in the time domain.



Chapter 7 m)
Stability and Transfer Functions via Shethie
Linear Algebra

This chapter considers stability criteria for linear systems that involve linear algebra
for a MIMO system (A, B, C, D). As in Chaps. 5 and 6, we are concerned
with stability of transfer functions, but this time focus attention on the matrix
formulation, especially the main transformation A.

* The aim is to have criteria that are computationally effective for large matrices,
and apply to MIMO systems.

e The new tools are linear matrix inequalities Riccati’s matrix inequality and
Lyapunov’s equation.

* We also consider how transfer functions can be added and multiplied by
combining linear systems (A, B, C, D).

* Continuing the theme of matrix algebra, the chapter also includes some periodic
linear systems and the discrete Fourier transform.

7.1 Lyapunov’s Criterion

Theorem 7.1 Suppose that A is a complex n x n matrix and that there exists a
positive definite matrix K such that Q = —(A’K + K A) is also positive definite.
Then all the solutions of

dXx
= AX (7.1)
dt

are bounded on (0, 00).

Note that a positive definite K satisfies K = K’ and (A’K + KA)) =
(KA + A’K), so the issue is whether Q satisfies the equivalent conditions (i)—(iii)
of Theorem 3.23. One can either (i) try many positive definite K, and test whether
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Q is also positive definite, or (ii) choose a positive definite O, and try to find K such
that KA+ A'K + Q = 0.

Proof To show that (X (z), X(¢)) is bounded, the trick is to consider V() =
(KX (t), X()). Observe that V(t) > Oforall # > 0, and use the differential equation
to find

dv dX dXx

dr <K dt ’X(t)>+<KX’ dt >
=(KAX (1), X(0))+ (KX (1), AX (1))
=(KAX(1), X))+ (AKX @), X(1))
=((A'K + KA)X(1), X(1)) <0.

Hence V (¢) is decreasing on (0, 00). Since K is positive definite, the eigenvalues of
K are k1 > ko > --- > Ky, where k;, > 0; so

0 < kn(X(1), X(1)) = (KX (1), X(1)) = (KX(0), X(0)),

and so | X (1)|| < ((K Xo, Xo)/Kkn)'/* forall £ > 0. O

7.2 Sylvester’s Equation AY + YB +C =0

Given n x n matrices A, B and C, the problem is to find a n x n matrix Y such that
AY +YB = —C; (7.2)

this is called Sylvester’s equation see [8] .
Proposition 7.2 There are three possibilities for Sylvester’s equation: either

(i) there exists a unique solution;
(ii) there exist infinitely many solutions;
(iii) there does not exist any solution.

Proof In terms of the matrix entries, we can writte A = [aj], B = [bjr] and

C = [cj], and then the unknown Y = [y ;] is given by the system

n

n
Z ajeyer + Z vjebek = —cjk, (7.3)

=1 =1

which is a linear system of n? equations in the n? unknowns [vjk]. So the
above possibilities arise from the general theory of linear equations. Gauss—Jordan
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elimination reduces this system to reduced echelon form and gives the solutions in
cases (i) and (ii). In case (iii), the system is inconsistent, so there is no solution. O

Proof (Another of the Same) There is an equivalent way of expressing the preceding
proof in terms of linear transformations. Fix A and B, regard C as a matrix of
parameters and Y as a variable. Then the transformation 7 : M, x, — Mux, :
Y — AY + Y B is linear on the n2-dimensional vector space M, x,, so either:

(i) T is invertible, and for all C there exists a unique Y such that 7(Y) = —C; or
@i1) T is not invertible and hence does not have full rank, so T(Y) = —C has no
solution for some C. More precisely, the rank of T is r where 0 < r < nZ, so
there is an r-dimensional subspace R = {T'(Y) : Y € M, x,} suchthat T (Y) =
—C has a solution if and only if C € R. The nullspace K = {Z : T(Z) = 0} is
subspace of dimension n? —r,sofor C € R, the general solution has the form
Z + Y where Z € K and Y is some solution of 7(Y) = —C.
(iii) When C is not an element of R, there is no solution.

O

Proposition 7.3 (Sylvester’s Criterion) Given A and B, Sylvester’s equation
AY +YB = —C has a unique solution Y for all C if and only if A and —B have no
common eigenvalues.

Proof

(i) First suppose that A and —B have no common eigenvalues, so that their
characteristic polynomials x4(X) and x_p(A) have highest common factor 1;
so by Proposition 6.26, there exist polynomials p(1) and g (1) such that

P xa@) +gM)x-pA) = 1. (7.4)

By the Cayley—Hamilton theorem 2.29, x_p(—B) = 0 and x4(A) = 0, so
x—B(A)g(A) = I.Let Y be any solution of 7(Y) = 0,s0 AY = —Y B. Hence
x-B(A)Y =Y x_p(—=B) =0,s0

Y =q(A)x-p(A)Y =q(A)Y x—p(—=B) =0; (1.5)
hence T is one-to-one. By the rank-nullity theorem 2.2, T is also invertible, so
for all C, there exists a unique Y such that T(Y) = —C,hence AY+Y B = —C.
(i) Conversely, suppose that ¢ is a common eigenvalue of A and — B; then
0 =det(ul — A) =det(ul —AT), (7.6)
so 1 is also an eigenvalue of A T; hence there exist nonzero vectors v and w such

that ATw = pw and Bv = —pw. Choose C to satisfy —Cv = ), and suppose
with a view to obtaining a contradiction that Y satisfies AY 4+ Y B = —C; then
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with the bilinear pairing (v, w) = Z?:l vjw;, we have

((AY + YB)v, w) = (- Cv, w)
(Yv, ATw) + (—pYv, w) = (0, w)

(Yv, pw) + (—uYv, w) = lw|* > 0, (1.7)

a contradiction, since (Yv, pw) + (—uYv, w) = 0.
O

Proposition 7.4 (An Integral Solution of Sylvester’s Equation) Suppose that all
the eigenvalues of A and B are in the open left half-plane {» € C : R\ < 0}. Then

Y = / exp(tA)C exp(tB) dt (7.8)
0

gives the unique solution to
AY +YB =—-C. (7.9)

The formula in this Proposition is often not the most practical way of finding Y’;
instead one can use the systems of linear equations in (7.3). The reference [5] gives
alternative expressions for the solution. One can also use computer packages.

MATLAB takes the standard form of Sylvester’s equationtobe AY + Y B+ C =
0, consistent with this book, and gives the solution Y = lyap(A, B, C).

Proof First observe that by Lemma 3.6 there exist M, M, 81,2 > 0 such that
llexp(tA)|| < Mie™®" and ||exp(rB)|| < M»e™%', so the integral is convergent.
Also

o0
AY + YB = / (A exp(tA)C exp(tB) + exp(tA)C exp(tB)B) dt
0

_ /OO j; (exp(tA)C exp(tB))dt
0

= [exp(tA)C exp(tB)]

=—C.

[}
0

This shows that the map ¥ + AY + Y B from M,,x,, — M, «, is surjective, so by
the rank-nullity theorem 2.2, the map is also injective. Hence the solution exists and
is unique. O
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7.3 A Solution of Lyapunov’s Equation AL + LA’ 4+ P =0

Corollary 7.5 Suppose that A is a n x n complex matrix such all its eigenvalues
are in the open left half-plane {). € C : R\ < 0}. Then for all positive definite P,
there exists a unique positive definite L such that

AL+ LA = —P. (7.10)

Proof From th_e characteristic equation, it follows that A is an eigenvalue of A,
if and only if A is an eigenvalue of A’, so we can introduce M, > 0 such that
lexp(tA)|| < Me™" and | exp(rA’)|| < Me™%, so the integral

L= / exp(tA) P exp(tA')dt (7.11)
0

converges and gives a solution of (7.10) for any matrix P. Hence the map ¥
AP + PA’is surjective, and by the rank plus nullity theorem is also injective, so the
solution is unique. In particular, let P be positive definite. Then exp(t A) P exp(t A”)
is positive definite by exercise since

(exp(tA)P exp(tA)Y, Y) = (P exp(tA)Y, exp(tA)Y) (7.12)

which is positive and continuous for ¢ > 0 and Y # 0. Hence L is a positive definite
solution, whenever P is positive definite, and is the unique solution, as observed.
O

For a more advanced discussion of this topic, see [42]. We have chosen a
slightly different form for Lyapunov’s equation in this Corollary than in the proof
of Theorem 7.1, so as to conform with the MATLAB convention. MATLAB takes
the standard form of Lyapunov’s equation to be AL + LA’ + P = 0 where A = A’
for positive definite P so L = lyap(A, P) or equivalently L = lyap(A, A’, P). In
Theorem 7.1, we used KA + A’K + Q = 0,s0 K = lyap(A’, Q).

For K positive definite, let ((v, w)) = (Kv, w), which defines an inner product
of C". For A € My,x»(C) let A°> = K~1A'K, so

spec(A®) = spec(A’) = {A : A € spec(A)}, (7.13)
and
((Av, w)) = (KAv, w) = (v, A Kw) = (v, KA°w) = ((v, A%w)), (7.14)
so A° is the adjoint of A with respect to ({, -)}), and
(A + A%, w)) = (KA + KA®)v, w) = (KA + A'K)v, w). (7.15)

When K and A are as in Corollary 7.5, A is strictly dissipative with respect to ((, -)).
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7.4 Stable and Dissipative Linear Systems

For the standard norm on C**!, the following sets
{ A negative definite} C {A strictly dissipative} C {A stable}. (7.16)

have strict containments, but for each A in the largest set, we can change the norm
to move into the middle set.

Theorem 7.6 The following conditions are equivalent for a n x n complex matrix
A.

(i) A is stable, so all eigenvalues of A are in LHP;
(ii) for all positive definite P, there exists a positive definite K such that K A 4
A'K =—P;
(iii) there exist k, M > 0 such that || exp(tA)|| < Me ™" forallt > 0.

Proof (i) = (iii) Use the Jordan decomposition of A, as in Theorem 3.5.

(iii) = (i) Use resolvent formula for exponentials (3.10).

(ii) = (iii) Apply Lyapunov’s criterion 7.1 to dissipative A + «I for some
K > 0.

(iii) = (ii) Corollary 7.5, giving solution of Lyapunov’s criterion 7.1.

(i) = (ii) From (i) and Sylvester’s criterion 7.3, there exists K such KA +
A’K = —P, and by uniqueness K = K'. Unfortunately, it is not evident that K is
positive definite, so we need to proceed by the route (i) = (iii) = (ii).

We remark that Proposition 3.34 (viii) and (ix) show that we can take M = 1 if and
only if A is dissipative, which is the case in which K = I gives a positive definite
P=(—-A-A). O

7.5 Almost Stable Linear Systems

In some cases, it is possible to stabilize a system that has a single pole in RHP, by
perturbing the main transformation as follows.

Lemma 7.7 Let (A, B, C, D) be a SISO such that A has an eigenvalue Ao with
algebraic multiplicity one and corresponding eigenvector V. Then either:

(i) CAKV =0fork=0,1,...; 0r
(ii) there exists o € C such that the transfer function of (A — aV C, B, C, D) does
not have a pole at L.
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Proof
(i) If CV =0, then CAkY = ASCV = 0. For C € C'*"_ we also observe that this

condition implies

C
CA

rank . <n, (7.17)
CA.n—l

so the system (A, B, C, D) is not observable.
(ii) Otherwise, we choose « such that CV = Ao + v for some v € (0, 00); then
V C is a rank-one matrix such that

(sI—A)'sI—A+aVC)=T+a(sI —A)'VC=T+a(s— 1) 'VC,

(7.18)
so as in Exercise 3.17 the determinants satisfy
det(s] — A) "' det(sI — A+aVC) =det (I +a(s — 1)~ 'VC)
=1+ a(s — i) traceVC
=14a(s — Ao)_ltraceCV
=1+ (s =)~ (o +v)
so that
s+v
det(s] —A+aVC(C) = N det(sl — A) (7.19)
s — Ao
and the simple zero of det(s/ — A) at 1 is canceled out.
O
Theorem 7.8 Suppose that (A, B, C, D) is an observable SISO, where A has
distinct eigenvalues A1, ..., Ay. Let V be an eigenvector of A for eigenvalue \i.
Then there exists o such {hat Yo = (A—aVC(C, ];’3, C, D) is an observable SISO,
with distinct eigenvalues Ay, A2, ..., A, where R\ < 0. The transfer function of

Yo IS

— A)To(s) — aDCV
T, = s?ﬁ@a;; : (7.20)
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Proof Suppose that (A, B, C, D) is observable. We observe that

C(A—aVC)W = CAW —aCVCW
C(A —aVC)’W = CA*>W —aCVCAW —aCACVW +a*CVCVCW

C(A — OlVC)n71W = CAn71W + -+ (_a)nfl(cv)nflcw.

Suppose that C(A — aVC)XW = 0fork = 0,...,n — 1. Then CA*W = 0 for
k =0,...,n — 1. To see this, we proceed by recursion from one line to the next.
Given that CA*W = 0 for k = 0,...,j — 1, then at line j, we see that 0 =
C(A —aVC)W = CA/W since the other summands involve factors CA'W =0
for¢ < j.

Since (A, B, C, D) is observable, the only solution to CA*W = 0 fork =
0,...,n—11is W = 0. Hence (A — aVC, B, C, D) is also observable. We have
freedom to choose o and v € (0, co) as in the Lemma 7.7 so that E)iil < 0 and the
eigenvalues are all distinct.

There are various formulas relating the transfer function 7, of the new system
(A —aVC(C, B, C, D) with the transfer function Ty(s) of the old one (A, B, C, D).
For instance, we start with

I —A+aVC)=(sI —A)+aVC (7.21)
and premultiply by (s — A)~! and postmultiply by (sI — A +«V C)~!; this gives
sI—A)'=@GI—A+aVC) ' 4aGI—A)'VC(sI—A+aV0)™!,  (7.22)
hence
GI—A+aVO) ' =1 —asI —A)'VvO) T s1 — A7 (7.23)
The matrix (sI — A)’1 V C has rank one, so we can compute the middle inverse
matrix by a special argument. With 8 = a(1 — «C(s] — A)~'v)~ ! we find that
(I+B6I—A)"VC)I —asI—A)7'VC) =1, (7.24)
SO

a(sI —A)~'ve

(s —A+aVO)™ = (1 o aCsI— A Y

)(sl — AL (7.25)
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hence

aC(sI — A~V

C(sI— A VC_le(l
(s +ave) T aCsI — A Y

)C(sl —A)~'B,  (7.26)

and the transfer function satisfy

To(s) aC(sI —A)~'VD

To(s) = — :
«O) = G — AV 1 —aCGsI — A1V

(7.27)

this discussion applies to a typical V, and since in our case AV = A1V we can
simplify the expression to obtain (7.20). O

This result can be applied repeatedly, to remove troublesome eigenvalues one by
one, but the main transformation, hence the eigenvectors, change at each step. In
Corollary 7.15, we consider an alternative approach based upon linear systems, and
in Sect. 9.12 we look again at the determinants.

Example 7.9 Let
1-3—4 1
(A,B,C,D)=( 0—-1-1|,]2 ,[10—1],0) (7.28)
00 -5 3

eigenvalues 1, —1, —5 and transfer function

15 13 5
T(s) = — — . (7.29)
8(s+1) 4(s—-1) 8(s+Y5)
To remove the unstable pole at 1, we introduce
1
V=|0 (7.30)
0

and consider

l—a -3a—-4 1
(A—aVC,B,C,D):( 0 -1 -1 [,|2 ,[10—1],0> (7.31)
0 0 -5 3

with transfer function

15 15 202 — 160 + 19

— — . (7.32)
da—6)(s+35) 4da—2@E+1) (—1+a)(a?—8a+12)
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By computing

C
det| C(A—aVC) | =15, (7.33)
C(A —aV()?

we deduce that these linear systems are observable for all «.

7.6 Simultaneous Diagonalization

Say that self-adjoint matrices Lo and L are congruent if there exists an invertible
S such that L1 = S'LgS. If we can choose S to be unitary, so that §’S = I and
L1 = S'LoS, then we say that L; and Lg are unitarily equivalent. Given a pair
of self-adjoint n x n matrices K and L, we can reduce K to a diagonal matrix by
unitary conjugation, and L to a diagonal matrix by unitary conjugation. If K and L
commute, then we can introduce a unitary W such that W/ K W and W LW are both
diagonal matrices. This is possible only if K and L commute. The following result
is a partial substitute for simultaneous diagonalization.

Proposition 7.10 Suppose that K is a positive definite n x n matrix and L is a
self-adjoint n x n matrix. Then there exist real diagonal matrices Dk and Dy, such
that D is unitarily equivalent to K , Dy is congruent to L and

det(AK — L) =det(ADg — Dr) r e C). (7.34)

Proof We introduce a unitary matrix U such that U'KU = Dg, where Dg =
diag(A;) is a diagonal matrix with positive entries A; on the leading diagonal,

1/2

)
Dl/2 = D and has an inverse Dy 12 dlag(A/ ). Then
Kl/ 2U'LU Dy 1/ is self-adjoint, so there exists a unitary matrix V such that

v’ D_l/zU LUD_l/ZV = D, is a real diagonal matrix; we then define Dy =
Dk D2 Since dlagonal matrices commute, we can write

which are given by the eigenvalues of K. Then we introduce D 12 _ dlag(k

which satisfies Dl/ 2

1/2

L=UD/*VDg'DLV' DU,

1/2 1/2

K =UDgU' =UD/*VV'D/*U' =UD/*VDg' Dk V' DU,
so that

AK — L =UD/*VD{"*(Dx — D1)Dg'*V' DU’ (7.35)
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We observe that det U D}ngDgl/ 2 = det U det V, and the multiplicative property

of determinants also gives

det(AK — L) = detU det V det(ADg — Dy)detV'detU’ = det(ADg — Dy).
(7.36)

Observe that if we can choose V = I, then L and K commute and L is unitarily
equivalent to Dy and we achieve simultaneous diagonalization. O

7.7 A Linear Matrix Inequality

See [23] and [24]. Consider real matrices (A, B, C, 0), and P positive definite.
Previously, we considered the equality PA+ A’ P+ C’C = 0 for P positive definite.
Here we consider the condition

PA+A'P+C'C+PBB'P <0 (7.37)

in the sense that the matrix on the left-hand side is negative definite. We introduce

(7.38)

[ _[PA+AP+CCPB
B B'P 1]

and observe that

c'c 0 PO||AB A 0||PO
L= 7.39
o S+ oollo o]+ [ol[0o] 029
which is an affine linear expression in P.

Proposition 7.11 (Riccati Matrix Inequality) The matrix L is negative definite if
and only if the Schur complement of —I in L is negative definite, that is

L<0&C'C+PA+A'P+PBB'P<0. (7.40)

Proof Then by completing the squares, we obtain

{7 | M)

((C’C + PA+ A'P)x, x> + (x, PBu> + (B/Px, u> — <u, u>

=((C'C+PA+ AP+ PBB'P)x,x)—(u— B'Px,u — B'Px).
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We maximize this expression by choosing u = B’ Px, removing the final term and
leaving

(C'C+PA+ AP+ PBB'P)x,x). (7.41)
Suppose that L is negative definite; then choosing u = 0, we deduce that
(C'C+PA+A'P+PBB'P)x,x) <0 x#0) (7.42)

so C'C+ PA+ A’P + PBB’P is negative definite. Suppose conversely, that C'C +
PA+ A'P+ PBB’P is negative definite. If x = 0 and u # 0, then (L [x:| ; [x:|> <
u u

0. Otherwise x # 0, so (L [xi| ; [x}) < 0 by the preceding calculations.
u u
In this case, (A, B, C, 0) has

d
dt (Px, x)+(Cx,Cx) — (u, u)

= (P(Ax + Bu),x) + (Px, Ax + Bu) 4+ (Cx, Cx) — (u, u)
=((PA+ AP+ C'C)x,x)+ (PBu,x) + (B'Px,u) — (u, u)
<0

for all nonzero inputs u. O

7.8 Differential Equations Relating to Sylvester’s Equation

There are various matrix differential equations relating to Sylvester’s equation. In
the following result, we use an R; that satisfies the differential equation

dR

t
= AR, + R/A 7.43
di t + Ry ( )

with initial condition dRy/dt = —BC, so Ro gives a solution of Sylvester’s
equation ARy + RopA = —BC.

Proposition 7.12 Let (A, B,C,0) be a SISO with A stable. Let ¢(t) =
Cexp(tA)B and

o
R, :/ exp(uA)BC exp(uA)du, (7.44)
13
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and let
T({t,u)=—Cexp(tA)(I + R[)_1 exp(uA)B. (7.45)

Then there exists to > O such that T (¢, u) satisfies
o
¢(t+u)+T(t,u)+/ T, v)p(w+u)dv=0 (to <t <u (7.46)
t
and

d
T(t.1)=  logdet +R) (1<) (7.47)

Proof There exist k, M > 0 such that || exp(tA)| < Me™*' for all t > 0. Hence
the integral for R; converges, and there exists 7o > O such that

o0 o
= /0 | exp(uA) I BCIlllexp(uA) |du < / M2|BClle " du
t

_ M2 ”BC”e—Zkt
N 2K ’

so there exists 7o such that || R;|| < 1 for all # > #9. Then I + R, has an inverse, and
T(t, u) is defined. Then

Gt +u)+ T, u)+ /too T(t, v)p (v + u)dv
— Cexp(tA) exp(uA)B — Cexp(tA)(I + R) ' exp(uA)B
— Cexp(tA)I + R)™! /t "~ exp(vA) BC exp(uA) exp(uA) B du
= Cexp(tA)(I —U+R) 'R+ Rt)_l) exp(uA)B = 0.

Observe that

dR;

d o0
dt = dr / exp(uA)BC exp(uA)du = —exp(tA)BC exp(tA),
t
by the fundamental theorem of calculus. We write

T(t,1) = —trace(C exp(tA)(I + R;)~ ' exp(tA)B)
= —trace(exp(tA)BC exp(tA)(I + R,)fl)



234 7 Stability and Transfer Functions via Linear Algebra

dR[ -1
=t I+ R
race( i (I+R)™)
_ 4 tracelog(! + R;)
Cdt 5 !

d
= logdet(! + R;).
dtog et(l + Ry)

O

Example 7.13 (Duhamel’s Formula) Suppose that A and D are stable matrices and
consider a block matrix

A B

0D

Then by Schur complements (3.34), we have

-1
s—A —B [T =A)7"(s1—A)'B(sI —D)7!
[ 0 sI-— D} - [ 0 (sI —D)7! } (7.48)
From this, we deduce that
exp <t [A B:| > _ [exp(tA) fé exp((t — 1)A)B exp(rD)dr] . (7.49)
0D 0 exp(tD)

The Laplace transforms of both sides of this equation are equal to the right-hand
side of the previous formula (7.48).

Mainly in this book we are interested in systems that are autonomous, so that the
coefficients of the differential equations do not depend upon time. However, some
of the formulas can be adapted to deal with systems that have specific types of time
dependence. Given a block matrix

A B
2]

with A and D square, and a bounded input u, the system

dx
dr = Ax + Bexp(tD)u

y=Cx
x(0) =x9, y(0)=Cxg
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has solution
t
y() = Cexp(tA)xg —l—/ Cexp((t — 1)A)Bexp(tD)u(r)dr.
0

If A and D are stable, then the output y is bounded.

7.9 Transfer Functions tf

Rational linear systems can be described in terms of matrices (A, B, C, D) or
transfer functions 7'(s). The transfer functions have the advantage that there are
natural operations of multiplication and addition, by which rational functions
form an algebra. The matrix description also has advantages in terms of ease of
computations. In this section, we consider various ways of building new transfer
functions from old, in terms of (A, B, C, D). The advantage of the following
formulas is that they can be carried out in exact arithmetic, where possible. We
do not need to solve eigenvalue equations or compute partial fractions, which can
involve solving polynomial equations.

Suppose £ = (A,B,C,D) hastf T(s) = D + C(sI — A)"'B, and ¢ (1) =
Dép + C exp(tA) B. Note that T (s) is the Laplace transform of ¢ () since

L(P)(s) = / ” e™*"(D3o + C exp(tA)B)dt
0

=D+ C/ exp(1(A — sI))dtB
0
=D+ C(sI —A)'B=T().

(i) Adding transfer functions

O D) Tas)u
u
u © i) T1(s)u @ y

The idea is to have devices represented by linear systems ¥; and X, in parallel,
combined into a single linear system. Suppose that ¥; = (A1, By, C1, D1) has tf

Ti(s) = Dy + C1(sI — A))"' By,
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and ¢1(t) = Crexp(tA1)By, and £y = (Ay, By, Ca, Do) has tf To(s) = Dy +
Co(sl — Az)lez, and ¢, (t) = Crexp(tAz)B;. Then

A O B
([0 AJ , [BJ [c1 ¢ D1+ Dz) (7.50)

has transfer function
T(s) =Ti(s) + Ta(s) (7.51)

and ¢ (1) = ¢1(1) + $2(2).
(ii) Multiplying transfer functions

u(s) Ti(s) T1(s)u(s) Tos) T2 (s)T1(s)u(s)

The idea is to have devices represented by linear systems X; and X, in series,
combined into a single linear system. In the notation of (i), we write the differential
equation for X as

X+ u
dt ! !
U—C1X+D1M

and for input u and state variable x, and use the output v of X as the input for X,
which has differential equation

d§

=A B
A1 26 + Bov
y = C2€ 4+ Dyv

with state variable £ and output y. We eliminate v, and use x and & for the state
variables in the combined differential equation

0 1) = Lot o) [2] # Loah)
dr |e| T | By Ax ||| T | BoDy |®

y =[DxC1 3] [ﬂ + D>Dyu.
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From the differential equations, or by direct verification, we deduce that the linear
system

Al 0 Bl
(|:BZC1 AJ ’ |:32D1i| ) [D2C1 Cz] , [D2D1]> (7.52)

has transfer function 75 (s) T} (s).

(iii) Multiplying transtfer functions: an alternative

This approach uses Sylvester’s equation to produce a type of partial fraction
decomposition for products of transfer functions. Suppose that we have SISO
systems (A1, By, C1, D1) has tf

Ti(s) = Dy + C(sI — A)) "' By,
and (A», By, Cp, D)) has tf
Ta(s) = Dy + Ca(sI — A2) ™' By,
where A1 and A; are n X n matrices such that spec(A1) Nspec(As) = @. Then there
exists X such that BjCy) = A1 X — XA),50 B1Cy = —(sI —ADX + X(sI — Aj);
then
(sI — AN 'BICasT — Ay) ' = —X(sI — A) "' + (sT — AD 7L X;

hence

Ti(s)Ta(s) = D1 D2+ Ci(sI — A1) "B D2+ D1Ca(sI — A2) "' By
+ Ci(sI — ADT'BICa(sT — A2) 7 'By
=DiDy + Ci(sI — A1) 'BiDy + D1Ca(sI — Ap) " 'By — C1 X (sI — A2) "' By

+Ci(sI —A)'XB,
which is the transfer function of

A1 O B1D>) + XB»

: [c1 DiCy — X,DD). 7.53
([0A2:||: - }[Cllczcl]lz (7.53)
More generally, we can use similar formulas to multiply transfer functions of
MIMOs of appropriate shapes whenever A1, By and B;C; are n X n matrices such
that BjC> = A1 X — XA, has a solution X.
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(iv) Inverting transfer functions

u(s) () T (s)u(s) ) u(s)

A radio station takes a message U and uses a rational transfer function 7'(s) to
convert the message into a signal Y which it broadcasts. The receiver wishes to take
the signal Y and recover U. Presumably, the receiver should use a transfer function
such as T'(s)~!. Here is how to realize this inverse as a linear system.

5 1 DU
® D O

U o
U @i@%@e

DU

Y
e
T (D ex o O I FOpd s <
X AXX
o] '
DXY D" ] ©

Proposition 7.14 (Inverse System) Suppose that ¥ = (A, B, C, D) has D invert-
ible. Then

. [AX B* A—BD™'C BD!
X7 = X x| = _n-1 -1
C* D pD~'c D

has transfer function T*(s) = D* 4+ C*(sI — A*)™' B> such that

TT*(s) =T*()T(s) =1.

Proof To see this, we take the usual differential equation

dX
. =AX +BU

Y =CX+ DU (7.54)
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with input U and output Y, and then solve for U so that the input becomes U and
the output becomes Y. This gives

U=-D'cx+D'y (7.55)

dX

P =AX+B(-D7'cx+ DY), (7.56)

which we can rearrange to give

dX

= (A—BD7'C)X+BD 'Y (7.57)

U=-D'cx+ D'y, (7.58)

so we obtain X *.
We can also use the Schur complement formula (3.34) to show that for a SISO
system (A, B, C, D) with transfer function 7 (s), the inverse is

-1
T(s)"' =[01] [A_C” g} m (7.59)

O

The purpose of the following result is to replace the main transformation A by A +
BF in cases in which A + BF is stable; see Lemma 7.7 and Theorem 7.8. Note that
the choice F = 0 gives T>(s) = [ and T'(s) = T1(s).

Corollary 7.15 Suppose that

A B
T(s) =tf [C D} , (7.60)
. [A+BF B]. _ . [A+BFB
Tl(s)_tf[C+DF D] Tz(s)_tf|: i 1} (7.61)
Then
T(s) = T1(s)Ta(s)"". (7.62)

Proof In particular, we have

|:A+BF B] Z[A B:| .
F 1 -F 1
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SO

To()Ta(s) ' = (I + F(sI —A—BF) 'B)(I - FGsI—A)'B)=1. (7.64)
Hence

Ti(s)Ta(s) ' = (D + (C+ DF)(sI —A— BF)"'B)(I — F(sI — A)"'B)
=D+C(sI—A-BF)"'—(sI—A—BF)"'BF(s1 - A)™")B
+DF(—(sI —A) '+ (I —A-BF)™!
—(I—A—BF)'BF(s1-A)"")B
=D+C(sI—A"'B
=T(s).

O

Example 7.16 (An Input-Output Closed System) Suppose that SISO (A, B, C, D)
has transfer function 7'(s) and (A*, B*, C*, D*) has transfer function T*(s),
where T (s)T (s)* = 1. Find a SISO that has transfer function —7 *(s).

Consider the diagram

ui Y1

O Ts) —O
Y1
—1
-1

O——-1T76) =70

y2 uz

Show that

yi| _|0—=1|]|um

vl L1 0 ]lua]’
It is instructive to consider the cases in which T'(s) and 7 *(s) individually are
stable.
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(v) Transter functions for controllers

—Ky
y
u y
@ G O,

Suppose that we have a plant G = (A, B, C, D) with transfer function
G(s)=D+C(sI—A)'B (7.65)
which is to be controlled by another plant K = (a, b, ¢, d) with transfer function
K(s)=d+c(sI —a)~'b (7.66)
is a simple feedback loop, so that the combined system has transfer function
H(s)=(1+G(s)K(s) ' G(s). (7.67)

We wish to represent this as the transfer function of a single linear system. The
differential equation for G is

dx
= Ax+ Bv
dt *
y=Cx+ Dv
while the differential equation for K is
dé§
—af+b
gy = tby
w=c&+dy

The combined system is to have input # and output y, and we use x and & as the
new state variables. Suppose for the moment that d = 0. Then the output of K is w,
which is multiplied by —1, then added to the input u of the whole system, so that
v = u — w is the input into G. We eliminate v and w by writing w = c£€ and the
input for the x differential equation becomes

v=u—w=u—ck, (7.68)
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and we have an input for the £ differential equation
y=Cx+ Dv=Cx+ Du — cé),

then we have our new differential equations

i) =le o b [ )
y=[C =Dc] m + Du

representing the feedback loop system as in the following block matrix.

A -Bc | B
bC a—bDc | bD

(7.69)
Ifd # 0and 1 + dD is invertible, we use
w=cE+dy

to eliminate w, then substitute this into the equations for v

v=u—w=u—cE—dy=u—c&—d(Cx+ Dv)
and solve this

v=(1 +dD)_1(u —cE — dCx)

With g = (1 + d D)™}, the differential equations become

dl:xi|:|:A—quC —qBc :||:xi|+|:qBi|u

dr [ & bC —gbDdC a — gbDc | | & qgbD
X

y= [C —qgDdC —ch] |:§

:|+un.

Note that matrices denoted with lower case a, b, ¢, d multiply matrices with upper
case A, B,C, D.
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(vii) Conjugating transfer functions

We consider
A B A C
ze[CD],z/e[B,D,}

and the corresponding transfer functions.

Suppose ¥ = (A,B,C,D) hastf T(s) = D + C(sI — A)~'B, and o)
Cexp(tA)B.
Then £’ = (A',C’,B’,D') has tf T(s) = D' 4+ B'(sI — A")"'C’ and ¢(1)
B’ exp(tA")C’,
so T(s) = T(5) and ¢(¢) = ¢(t)'.

Also
« (A0 0 B| [CO 0D
X = ([0 A’} ’ [C’ 0} ’ [0 B’:| ’ |:D’ 0}) (7.70)

has transfer function

| 0 T(s)
F(s) = [T(s) 0 } (7.71)
and
_|1Cco A0 0B| [ 0 ¢
v = [0 B’} e (1 [0 A’D[C’ 0} - [¢(r)’ 0 } 772

where F(5) = F(s) and ®(t) = ®(¢)’ fort € (0, 00).

This produces a symmetrical looking transfer function, but the matrices in X*
are not themselves self-adjoint.
(vi) Conjugating transfer functions for square matrices

There is a variant for I, A, B, C, D all n x n matrices. Let

0r1
J = 7.73
[, 0} .73
A AA A A 0 A 0B 0cC 0D
$=(A B C D) = , , , ) 7.74
anch=(35] o] eo) o)) o
which are all self-adjoint, and consider
d A A
J =AX+ BU
dt

Y =CX + DU. (7.75)
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Then the corresponding transfer function is
T(s)=D+C(sJ — A 'B, (7.76)

which is expressed in terms of self-adjoint matrices, and reduces to

: (7.77)

-1
f(s):[ 0 D+ C(sI —A) B}

D +C'(sl —A) !B 0

which is not self-adjoint.

7.10 Small Groups of Matrices

Example 7.17

(i) The identity matrix and reflection in the origin give a group D, with two

elements
10 01
BN& a8

(i1) There s also a cyclic group Cy4 of order four, given by rotations about the origin
through 0, w /2, 7w, 3w /2

10 0-—1 -1 0 01
R ) )

all of which have determinant one.
(iii) By adding elements, we can introduce the quaternion group Qg with elements

oo S Ll Bl Lo S LB 1S

(7.80)

which is a subgroup of SU (2).
(iv) Alternatively, we can introduce the dihedral group of order 8, given by the
symmetries of the square from the products of elements of D, and Cj.

‘We can choose

o] [ir o 01 0l
JZ[OI] [0 —iI:|’ [—10}’ [il 0] (7:81)

and consider the differential equation and transfer function as in (7.75).



7.11 How to Convert Complex Matrices into Real Matrices 245
7.11 How to Convert Complex Matrices into Real Matrices

In some cases, it is easier to work with matrices with entries that real numbers rather
than complex numbers. The following result shows one way of converting real into
larger complex matrices. We observe that

. a—b 10 0-1
a+lb(_>|:ba:|_a|:01j|+b|:l 0j| (a,b e R)

gives a bijective correspondence between the complex number a + ib and the
matrix al 4+ bJ, where J2 = —1, so {1,J,—1,—J} gives a group isomorphic
to {1, i, —1, —i}, or the group C4 of rotations through multiples of right angles. We
extend this idea as follows. Let RA = (A + A)/2 and JA = (A — A)/(2i) be
the matrices given by the real and imaginary parts of the entries of a matrix A, so
A =NA+IiSA.

Lemma 7.18 There is a homomorphism M, «,, (C) — M2, x2,(R)
A A RA —JA
JA NRA

which is

(i) real linear, so LA — )uﬁifor allh e R, and A € M,,»,(C);

(ii) additive A+ B +— A+ B forall A, B € Myx,(C);

(iii) multiplicative, so AB Aéfor all A, B € M, «,(C);

(iv) unital, so I, — Iy,

(v) Hermitian matrices A = A’ are mapped to real symmetric matrices, so A=
AT’.

(vi) detA = |det A|?> for all A € M,(C), so an invertible A is mapped to an
invertible A.

Proof (i), (ii) and (iv) are straightforward.
(iii) We have

AB = MA+iSA)RB+iIB) = RARB—IAIB+i (RAIB+IANRB)  (7.82)

while for comparison

(7.83)

NA —JA| |RB —3IB| | RARB — JAIB —NATIB — IANB
JA RA | |[SB RB | [RAIB +IARB RARB — JAJIB |’

(v) For Hermitian A, we have A = A/,A s0 MA +iJA) = NA +iJA), so
NA = (MA)" and SA = —(JA) . Hence A is symmetric.



246 7 Stability and Transfer Functions via Linear Algebra

(vi) Working in M, (C), we have a similarity of matrices

det A =det< Ll A =S AN T =il ):det A0 (7.84)
07[[JIA RA |0 T JA A

so detA = det AAdetA’ = |AdetA|2. Also, for an invertible matrix A, we have

det A #£ 0,sodet A # 0, and A is also invertible. m]

Let M be an x n complex matrix. Then

~ oM
M = 7.85
o] =
is a self-adjoint matrix, and for A € C \ R, there is an inverse
o —m7! [ AT = MM M2 - M M)™!
M Al TAMOE = MM AR M M) |
(7.86)

(M — M) = [

Note that A>] — M’M and A>I — MM’ are invertible, since A> > 0 implies A € R.

Definition 7.19 Let M be a n x n complex matrix. Say that ¢ > 0 is a singular
number of M if there exists v € C"*! such that v # 0 and M’Mv = o>v. We can
list them according to multiplicity as o1 > 02 > -+ - > 0.

Usually singular numbers of M are defined to be the eigenvalues of (M’M)'/2, but
it is possible to avoid the complication of square roots, on account of the following
lemma.

Lemma 7.20 Let o > 0. Then o is a singular number of M if and only if there exist
eigenvectors of M of the form

w_| |[—Mv/o wy |  [Mv/o
v | v ’ v | | v
corresponding to —o and o respectively. Conversely, all the eigenvectors corre-

sponding to nonzero eigenvalue of M arise in pairs of this form.

Proof Let v # 0 satisfy M’ Mv = ov; then

0

0 M||Mv/jo| |Mv/o

o [_M”/a} , (7.87)

v
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and we have an eigenvalue pair for M for eigenvalues +o. Conversely, suppose that
we have an eigenvector equation

FHIEEH

with A # 0, so A is real, and 22 > 0; then Mv = 2w and M'w = Av; hence
M’'Mv = )*v. We take ¢ = |A| > 0 and a pair of non zero vector w_ = —Mv/o
and w4 = Mv/o.These are distinct, w = £w4, according to whether A < 0 or
A > 0. This we obtain a pair of eigenvectors corresponding to £A, where o = |A]| is
a singular number of M. O

7.12 Periods

Forwj €e Rand a; € C, the sum
n
(1) = Za jeleit (7.90)
j=1

represents a signal with periodic summands /i’ of various periods. To describe the
behaviour of the sum it is helpful to determine the relationship between the periods,
as we do here by some algebra. The following results are special cases of the main
theorem of [20], which provide an algorithm for computing all the quantities we
mention here. Let

A=lkio1 +kwr+ - -+ ko, : ki,...,k, €7} (7.91)

be the additive group that is generated by the w;. We note thatg : A — {s : |s| = 1}

g(kiwi + kawy + - - + kywy) = exp (i(kiw1 + kowp + -+ + kywp))  (7.92)

is a group homomorphism to the circle, and ¢ (kjw1 +kowa +- - -+ ky,w,) = 1 if and

only if kw1 + kows + - - - + kyw, = 27wk for some k € Z. We therefore introduce

the subgroup A N 27 Z and the quotient group M = A/(A N2xZ). We can interpret
the elements of M as sums 27k + kiw1 + kowy + - - - + kjw, modulo 2 Z.

Then M is a finitely generated Abelian group, and by general theory has a
decomposition as a direct sum of nonzero subgroups

M=M &M, & ---®M, (7.93)
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where M; = {ko; : k € Z} is generated by a single element o; and 6(M;) =
{k € Z : koj = 0} is a proper subgroup of Z, so 0(M;) = (d;) = d;Z, and M; is
isomorphic as a group to Z/(d;).

If d; = 0, then M; is isomorphic as a group to Z, and we have an infinite group.
If dj # 0, then we can assume that d; > 1, and M| is isomorphic as a group to
Z/(d}), the cyclic group of order d;.

By the theory, we can take 1 < s < r, and arrange the indices so that the positive
d; appear first, with di|d>]| ... |d, followed by dyy1 = --- = d, = 0. This gives
two possibilities:

Proposition 7.21

(i) Eitherr = s, and M is a finite group such that d.m = 0 for all m € M; this is
equivalent to

exp (itkioy + kown + -+ kywn)dy) =1 (ki,... ko €Z).  (1.94)

In particular, wj = 2mq;/d, for some q; € Zandall j = 1,...,r and 27 d,
is the period of sums such as f (t).
(ii) Alternatively, s < r and M contains an infinite subgroup isomorphic to Z"~5.

Proof See [20] for a general discussion of finitely generated Abelian groups. O

In case (ii), we cannot describe the frequencies simply in terms of fractions with
a single common denominator. The sum f(¢) is an almost periodic function, as
described in Bohr’s theory. We refer the reader to [33] and [9] for the general theory
and to [45] for application to linear systems. In the next section return to case (i)
and consider further the notion of sums of terms ¢/“i’ with a common period.

7.13 Discrete Fourier Transform

Consider a time interval [0, 2] and split this into N equal parts by introducing the
times t; = 27 j/N for j = 0,..., N — 1. Given a function f : [0,27] — C, we
can introduce samples f(¢;). The set of indices {0, 1, ..., N — 1} can be regarded as
a group under addition modulo N, namely the additive group Z/(N). Equivalently,
we can introduce the multiplicative group

GN:{1,@27Ti/N,€47Ti/N,...,ez(Nil)ni/N} (795)
in which e27/1/N 2mki/N — 27 (j+K)i/N and ¢27jt/N = ¢27ki/N if and only if j = k
modulo N. Then (Gy, -) and (Z/(N), +) give the cyclic group with N elements. It
might appear strange to have a cyclical structure for time; however, cyclic patterns
are common in music.

Let V be the complex vector space of functions F : {0, 1, ..., N —1} — C, with
the usual pointwise addition and scalar multiplication. We also introduce the scalar
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product

N—-1

(F,G) = Z F(jHG() (F,GeV). (7.96)
/ =0

Lemma 7.22 Let Ex(j) = e*%/N for j k € {0,1,...,N — 1}. Then (Ej)j.V:j}
gives a complete orthonormal basis for V.

Proof We have

N—1 N—-1
(Ex. Ex) = Z Ex(j)Er(j) = Z =1
j=0 j=0

whereas for k # ¢, we have —N < j — £ < N, so ¢?**=0Oi/N

the geometric sum formula

# 1 and we can use

1 N—-1

(Eks E() — ezﬂ(kfe)ji/N
j=0
N—-1

— 27r(k Z)t/N
/=0

1 1= e27‘r(kfﬁ)i
N1-— e27r(kfl)i/N
=0.
The space V evidently has dimension N since we can specify any F' € V by its
values at N points; so we have a complete orthonormal basis. O

Proposition 7.23 Forall F € V, there is an orthogonal expansion

N-—1
F=Y ak (7.97)
k=0
where ay = (F, Ey) and
N—1
=3 el (7.98)
k=0

Proof This is an immediate consequence of the Lemma 7.22 and basic facts about
orthogonal bases. O
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The ay are known as discrete Fourier coefficients and the sequence (ak)ljyz})l as
the discrete Fourier transform. Note also that E; : {0, 1,..., N — 1} — C satisfies
Ex(m +n) = Ex(m)E(n) and |Ex(n)| = 1, hence Ej is a multiplicative character
on{0,1,...,N -1} =Z/(N). We also have Ej¢(n) = E;(n)E¢(n).

Using {0, 1, ..., N — 1} to index the rows and columns, we introduce the matrix
v | [e2”f’<i/N]N_l . (7.99)
/N 7. k=0
Corollary 7.24 The Fourier expansion of F € V is
ap
F=VJNU]| : (7.100)
an—1
where U has the properties:
(i) UU =1,
(ii) U?is a permutation matrix on the basis {E; : j =0,1,..., N —1};
(iii) U* = 1.
Proof

(i) We observe that Ex(j) = e2mIKI/N "g0 writing the Ej as columns, we have

U= E)Ei ... En_1], (7.101)

|
VN
where the columns are orthonormal in V by the Lemma7.22; equivalently,
U'U = [(Ej, Ex)] is the identity matrix. By the Proposition 7.23, F =
Z,,](V;OI ai Ex.
(ii) The (j, £) entry of U? is

N—1
! -
(W20 = D NN = (B4, Eo), (7.102)
k=0

so we apply the Lemma 7.22 . In the case k = £ = 0, we have (E ¢, Eo) =
1; in the case j = N — £, we have j + £ = 0 modulo (N), and we have
(Ejyn—j, Eo) = (Eo, Eo) = 1; in all other cases, j + £ is not congruent to 0
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modulo (N), so (Ej1¢, Eg) = 0. Hence U? has the form

10 ...... 0
0 01

Uvr=|: 10]. (7.103)
01 . 0

The effect of U? is to fix Eo, and take Ej to Ey_; for j = 1,..., N — 1.
(iii) Given the shape of E 2 itis clear that U* = I.

O
7.14 Exercises
Exercise 7.1 For
10
A=B= , 7.104
ool (7.104)
let T : Max2(C) — M3%2(C) be the operator
T(X)=AX+ XB (X € M2 (0)). (7.105)
(i) Show that T is linear.
(i) Find mull(T) = {X : T(X) = 0} and range(T) = {T(X) : X € M>2,2(C)}.
Exercise 7.2 Consider the matrix
123
A=—-1251]|. (7.106)
127

(i) Show that —A — A’ is not positive definite, by considering the determinant or
otherwise.
(i1)) Show that there exists a positive definite K such that
—AK —KA =1 (7.107)

has a solution, and find K numerically. (Use appropriate computer programs.)
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Exercise 7.3 Let S : C — M34«»(C) be a matrix function such that
SK)S(—k) =l, Sk =Sk, S(—k)=Sk  (keO),
where the last matrix has entries that are the complex conjugates of the entries of
S(k).
(i) Show that for k real, S(k) is unitary.
(i1) For

St — [r(k) (k)

1 —r(k)t(—k) t(—k)
() r(k)} et 20 [ ] '

Tir—k |tk —r(=kik)

Show that trace ® (k) = 0 and det & (k) = —1 forall k € C.
(iil) For
S(k) = £l9®) | €O8 Y (k) isiny (k)
i siny (k) cosy(k) |’

find conditions on 6, ¢ : C — C that ensure that S satisfies the stipulated
conditions, and compute (k).

In scattering theory, S(k) is known as the scattering matrix, while ® (k) is the
transfer matrix.

Exercise 7.4 (Gramians in continuous time)

(1) Suppose that the controllability Gramian
o
Kc = / exp(tA)BB exp(tA)dt
0
converges. Show that
o
G(t) = / exp(uA)BB' exp(uA’)du
t
gives a solution of
dG ,
P AG+GA', G0O)=Kc.

(i) Suppose that the observability Gramian in continuous time

o
Ko :/ exp(tA)C'C exp(tA)dt
0
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converges. Show that
o0
H() = / exp(uA’)C'C exp(uA)du
t
gives a solution of

dH
, =AH+HA HO)=Ko.

Exercise 7.5 By considering the trace, show that the equation
AX -XA=1,

has no solution with A, X € M,,»,, (C).
Exercise 7.6 (Pauli Matrices)

(i) Show that
ool _fo] __ro] _ _[o-1
"Tlo1] T =10l P lo-1 P l-10)
(7.108)

give a linear basis for M, (C).
(i) Let[A, X] = AX — XA. Show that

[00, 01 = 0; [01, 02] = 203, [01, 03] = =202, [02, 03] = —207.
(iii) For A = Y3_gajo;, C = Y i_gcjoj and X = Y }_gx;0;, deduce that

the equation AX — XA + C = 0 has a solution if and only if cp = 0 and
—ajci + axcy + azcz = 0. Find this solution.



Chapter 8 m)
Discrete Time Systems s

» This chapter considers linear systems in discrete time which are specified by a
difference equation. Initially, the results are similar to those achieved in previous
chapters for continuous time linear systems, and involve tools such as the z-
transform which is analogous to the Laplace transform of previous chapters.
There is a corresponding notion of transfer function.

* There is a particularly important difference equation called the three term
recurrence relation for orthogonal polynomials. This provides us with a route
into the classical theory of orthogonal polynomials on bounded intervals of the
real line. Orthogonal polynomials are important in signal processing as they can
be used to construct filters. The exercises cover examples such as Bessel filters.

* We consider some classical examples of orthogonal polynomials such as the
Chebyshev polynomials of the first kind, the Laguerre polynomials and the
Hermite polynomials. In Chap.9, we will use the Chebyshev polynomials and
variants to solve some random linear systems and models from physics. In
Chap. 10, we use the Laguerre polynomials and their Laplace transforms to study
signals in wireless communication.

8.1 Discrete-Time Linear Systems

In this chapter we consider time as a variable which takes values 0, 1,2, ..., as
if viewing the system at unit time intervals. By rescaling, one can adjust the time
interval to be & > 0. The system under consideration has inputs ug, ug, ..., € C,
and outputs yp, y1, - -+ € C, and the corresponding states are xg, x1,--- € CNxL,
Given constant matrices

AB N xN N x1
: (8.1)
CcD IxN 1Ix1
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 255
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the corresponding linear system is the system of difference equations

Xn+1 = Axy + Buy

yn = Cx,, + Duy, n=0,1,2,...).

A convenient way to represent the inputs is by way of a power series
oo
(Un)ylg < u(z) =Y up2™; (8.2)
n=0

if the power series has radius of convergence R > 0, then u(z) represents the Taylor
series of a holomorphic function on D(0, R) = {z € C : |z] < R}. Likewise we
introduce formal power series

Clpg < X@ =) x"s g < Y@ =)y (8.3)
n=0 n=0

to represent the state and the output, and interpret them as holomorphic functions
when the series converge.

Definition 8.1 (Z-Transform) The function X (1/z) = Zgio Xxpz~ " is known as
the unilateral Z-transform of (x,)>2,, and may be regarded as a discrete-time
Laplace transform. This is a Laurent series in negative powers of z, so the natural
domain of convergenceis {z € C : |z| > r} for some r > 0.

8.2 Transfer Function for a Discrete Time Linear System

Definition 8.2 The transfer function of a discrete-time linear system is

T(z) =D +zC(I —zA)"'B. (8.4)

Proposition 8.3

(i) Then T (z) defines a holomorphic function on D(0, 1/||Al]).
(ii) Letr = min{R, 1/| A||}. Then for xo = 0, there exists a unique solution to the
linear system, which is determined by the coefficients in the power series, where

Y2)=T@2)X(2) (z € D(O, r)). (8.5)
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Proof

(i) As in Proposition 2.48, (I — zA)~! has rational entries with possible poles at
the zeros of det(/ — zA). Hence by Proposition 3.11, I — zA is invertible for
IzIIAll < 1, and (I — zA)™! generates a convergent power series Z?‘;o 7/ AJ,
so we have an unambiguous interpretation of 7 (z) as a holomorphic function
via the convergent power series

]
T(z)=D+ ) CA"BZ"*!. (8.6)
n=0

(i) We multiply the state difference equation by z*! and sum over n to obtain

o o o0
anﬂznﬂ = zZAxnz" —i—zBZunz" (8.7
n=0 n=0 n=0
SO
X (z) —x0 = zAX(2) + zBu(z), (8.8)

where by assumption xo = 0. Now I — zA is invertible for |z|||A]| < 1, so we
obtain

X(z) =z — ZA)*IBu(z), (8.9)

where the right-hand side is holomorphic on ID(0, ) since u(z) and (I — zD)~!
may be expressed as convergent power series. Multiplying the output equation
by z" and summing over n, we obtain

Y(z) = CX(2) + Du(z), (8.10)
hence we obtain the solution
Y(z) =z2CU —zA) " 'Bu(z) + Du(z)  (z € D0, r)), (8.11)

which immediately gives Y (z) = T (2)u(z).

Given the convergent power series X (z) and Y (z) we can recover the coefficients
from Taylor’s formula

1d"X 1d"'Y
= 0 s =
Xn 0) Yn nl dzn

n! dzt 0 n=0,1,2,...) (8.12)

so we have a unique solution for the system of difference equations. O
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Example 8.4 Suppose that A € M+2(C). Then the characteristic equation of A is
the quadratic

det(s] — A) = s> — trace As + det A

where the eigenvalues A and p of A satisfy A + u = trace A and Apu = det A; so
either:

(i) A =\l forsome A € C;
(i1) A is similar to

A0
8.13
[0 IJ 613
for some distinct A, u € C; or
(iii) A is similar to the Jordan block
Al
8.14
[0 J 5.14)

for some A € C.

Based upon this, one can easily compute A" and hence the coefficients of the power
series T'(z). For instance, in case (iii), we have

zé 1—xz z ~
T(z) =D B 8.15
@=D+ | 52 [ 0 1- Az} (8.15)

for vectors C and B, so T'(z) has a possible double pole.
This Example arises in applications such as (8.30), (6.121) and Proposition 8.27.

Remark 8.5

(i) Proposition 8.3 has a converse Proposition 10.29 which realizes a holomor-
phic function on the disc as the transfer function of a discrete-time linear
system.

(i) The results in this chapter have been formulated so far for SISO systems.
The extension to MIMO systems is straightforward and only involves allowing
matrices (A, B, C, D) with suitable shapes. We carry this out in the remain-
der of this section. The reader can check that Proposition 8.3 extends as
required.



8.3 Correspondence Between Continuous- and Discrete-Time Systems 259

8.3 Correspondence Between Continuous- and
Discrete-Time Systems

First we recapitulate some previous concepts. We consider the matrix

A B nxnnxk
. 8.16
[C D] |:m X nm X ki| (8.16)
and observe that the sequence (C A/ B)?io arises in the following situations:

(i) The continuous time linear system (A, B, C, D) has a transfer function 7 (s)
with a Laurent series

00 .
CA’B
— —lp _ .
T(s) =D+ C(sI — A) B_D—l—Z 1 (8.17)
j=0
(i) the scattering function of (A, B, C, D) has a Taylor series
0 S
CA’ Bt/
$(1)=D+CexptAB=D+y " ; (8.18)
; J:
Jj=0

(iii) the discrete time linear system (A, B, C, D) has a transfer function with Taylor
series

o0
Ty(z) =D+ Cz(I —zA)'B=D+) /*'CATB; (8.19)
j=0

(iv) the operators L and K of Sect. 3.11 have product
C CB CAB CA’B ...

CA ) CAB CA%’B CA3B ...
LK = | ca2 |[B.AB,A’B,...] = | cA2B CAB CA*B ...

(8.20)

(v) If A is similar to a diagonal matrix with eigenvalues Ae, SO A = SDS™!, then
CA’/B = CSD/ S~ B involves the powers A} .

These statements indicate that the continuous time and discrete time systems are
related via the sequence (C A/ B);‘;O. In the remainder of this section, we consider
a more profound connection between the transfer functions.
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Example 8.6 (Matrix Mobius Transforms) Suppose that Ay, By, Cy and Dy be
complex matrices such that

Ag By nxnnxk 8.21)
Cy Dy kxnkxk

is unitary. This relates to Exercise 3.9. Then

5 = —Cq Dy kxnkxk (8.22)
—Ay By nxnnxk

is also unitary. This matrix is associated with a map
Wy : Myyn(C) = My (C) : Z > Dy + CaZ(I — AgZ) ' By (8.23)

known as the (matrix) Mobius transform, which is discussed in [65, page 146]. By
calculation, one shows that

I — Ws(Z)Y W5 (Z) = By(ly — Z’Ap) ™ Iy — Z'Z)(Iy — AaZ) "' Ba,  (8.24)
which has the consequence that
IL—72'7Z>~0=1,—Vs(Z)¥s(Z) > 0. (8.25)
In particular, we can take Z = zI,, and recover the transfer function

Ws(zly) = Dg + Caz(I — zA0) "' By = Tu(2). (8.26)

Proposition 8.7 Suppose that X is unitary. Then T4(z) is holomorphic on D, with

(i) T4l < 1 forall z € D;
(ii) Ty(z) is a unitary k x k matrix for all 7 such that |z| = 1.

Proof

(1) This follows since

I —Ty(2) Ty(z) = I — (D + ZBy(I — ZA) ™' C))(Dy + 2Cal — zA0) "' By)
=1— DDy —ZBy(I —ZA,) ' C)yDg — 2DyCa(I — zAg) "By
—2zBy(I —ZA)TICLCa(I — zAa) ' By
= BBy +ZB,(I —7A)) "' AL B + 2B, Aq(I — 7A4) " By
— ZZB)(I —ZA) NI — A AT —zA0) " By

=By = 2AD ™ (U = 24U = 240+ ZAYU = 240+ 2(] = 2A)DAg
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— 12U = AyAD ) = 2A0) ™ By
=1 —zP)ByI —zA) "I —zA0) "By
> 0.
(ii) Note that T'(z) is a k x k matrix and when |z| = 1, we have T (2)'T (z) = I, so

T (z) is unitary.
O

This Proposition8.7 gives a way of constructing transfer functions that are
bounded and holomorphic on the unit disc. We can deduce a similar result for
continuous time linear systems.

Theorem 8.8 (Discrete-Time and Continuous-Time Transfer Functions)

(i) Suppose that ¥ has the block form

Agq By nxnnxk
= 8.27
|:C,1 Ddi| [kxnkxk:| ( )

where 1 is not an eigenvalue of Ay4. Then

AB] [(Aa+DAc—D7"  24s—D"'By (8.28)
cp| | Cil—-Ap~" D+ Call —Ad)""'By '
gives a continuous-time linear system with transfer function T(s) = D +

C(sI —A)!'B.

(ii) If Ag has all its eigenvalues in D, then A has all its eigenvalues in LH P so
T (s) is stable.

(iii) If X is unitary, then T (s) is holomorphic for s € RH P and

1T <1 (s€ RHP), (8.29)

and T (s) is unitary for all s = iw with w € R.
Proof

(i) The transfer function T;(z) for the discrete-time system X is defined as in
Sect. 8.2, while the transfer function 7' (s) for (A, B, C, D) is defined as in
Sect. 2.10, and we need to show that these match up. For s € RH P we write
z=(s— (s + 17! soz €D, and we calculate

Ti(z) = Dg+ zCa(I — ZAd)led

= Dy + (s — DCa((s + DI — (s — Ag) ' By
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=Dg+ (s — DCa(s(I — Ag) +1 + Ad)ile

= Dy + (s — DCaI — Ag)~'(sT — A) "' By
thenweuse (s — 1)/ =sI —A+A—Tand A — 1 =2(Ag — 1)~} to write

Ti(z) = Dg + Ca(I— Ag) "By +2C4(I— Ag) "' (sT— A" (Ay — D 'By
=D+ C(sI—A'B
= T(s).

(ii)) We observe thatif A € D, then (A — 1)/(A+1) € RHPso(A+1)/(A—1) €
LH P. This is relevant for the eigenvalues A of Ay and A.

(ili) Since ¥ is unitary, we have A, Ay + C,Cq = I, so A4l < 1 and all the
eigenvalues of A, are in D. Hence T,(z) is homomorphic on D, and T (s) =
T4(z) is holomorphic for s € RH P. By the Proposition 8.7, we have || T (s)|| =
IT4(z)|l < 1foralls € RHP. Also with ¢! = (iw — 1)/(iw + 1) we have
T(iw)T(iw) = Ty T ) = 1.

]
8.4 Chebyshev Polynomials and Filters
Example 8.9 (Chebyshev Polynomials) Consider the linear system
A=[21s_01] B=0, C=[01], D=0 (8.30)
where s is here regarded as a complex parameter, so
Xnt1 = Axp
yn = Cxp (8.31)

and we choose xg = [i:| . Then y, = CA"x¢ gives the solution, which is well

adapted for computer algebra. For instance, one can compute

[y0, 1, ¥2, ¥3]1 = C * [x0, A % x0, A % A *x0, A x A % A * xo] (8.32)
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to find Cy, ..., C3.

®

(i)

(iii)

(iv)

Observe that A has characteristic equation A> — 2sA + 1 = 0 with roots s T
Vs2 — 1505 = cosb gives eigenvalues ¢ for A; whereas s = cosh@ gives
eigenvalues e . This suggests we use the substitution s = cos 6.

Then we define C,, as the Chebyshev polynomial of the first kind of degree n by
the output y, = C,(s). These polynomials are characterized by the property
that C,(cosf) = cos(nf), since one can show by induction that, with s =
coso,

X, = [COS(” + 1)9} n=0,1,...). (8.33)

"7 | cosnb
Of course, the induction step is the trigonometric addition rule
cos(n + 1)8 4 cos(n — 1)0 = 2 cos6 cosnb. (8.34)

The zeros of C,, are given by s = cos6 such that cosnf = 0, so there are n
zeros in [—1, 1] from the equally spaced angles

T 3w 2n—-1rm
= 9 9 . 8-35
2n 2n 2n ( )
We also have the rule
sin(n + 1)0 + sin(n — 1)0 = 2 cos O sinnb, (8.36)

which suggests the definition of the Chebyshev polynomials (Uy)72 , such that
U,(cos@) = sin(n + 1)8/sin 6. These are generated by the same recurrence
relation (8.30), but the initial condition is

[Ul (S)} = [ZS] (8.37)
Uo(s) 1
Chebyshev Filters (Fig. 8.1)

Suppose that we require a filter that cuts off signals like the indicator func-
tion Il(_1, 1)(x), which has a rectangular graph. We cannot find a meromorphic
function T in the RHP such that |7 (iw)| = I(_1,1)(®), since this conflicts with
results about the boundary values of holomorphic functions. However, we can
approximate the indicator function by using the Chebyshev polynomials. Let
& > 0, and introduce a transfer function 7, (s) = 1/(1 + €iC,(s/i)), so the
frequency response function is

S 1
T,(iw) = | 4 £iCy () (w € R). (8.38)



264 8 Discrete Time Systems

Fig. 8.1 Chebyshev filter Chebyshev filter with C 4 and varepsilon=0.1

1 —

0.8

06

Gain

04 r

0.2 r

-5 0 5
angular frequency w

Thenfor —1 < w < 1, we can write w = cos 8 forsome 6§ € R, so C,,(cosh) =
cosnf and |C, (w)| < 1; hence the gain is

1 1

L2 TE= ) e o ™ Vige

(we[-1,1]), (8.39)

while the phase has tan¢ = —eCp,(w), so |p| < €.

For w > 1 we write @ = cosh 8 for some 8 > 0, so C,,(coshf) = coshnf and
by induction we have C,, (cosh ) > cosh” 6, so the gain is

1

IT(iw)| = <
V1+482C, ()2 ~ V1420

(@ € (1, 00)). (8.40)

Forw < —1 we write w = — cosh = cosh(6+im) forsome 6 > 0, so C, (cosh(6+
i)) = coshn(@ + im) = (—1)" coshné and we argue as in the previous case.

For large n, the gain has a graph which resembles the graph of the indicator
function. The Chebysheyv filter is easy to compute as the iteration scheme in (8.30)
is simple. On the interval [—1, 1] the graph of the gain exhibits a slight ripple
effect.

This example is the simplest instance of a rather general result that applies to
orthogonal polynomials with respect to weights, which we discuss next.
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8.5 Hankel Matrices and Moments

Let w : R — [0, co) be an integrable function such that

o0
0< f Ix|*w(x)dx < oo (8.41)
—0Q
forallk = 0,1,2,.... Then w is called a weight, and we can generate a sequence
of moments
o0
Wi = / Fwxydx  (k=0,1,...) (8.42)
—0o0

such that ;i € R. Clearly the even moments satisfy pox > 0; whereas there is no
reason to suppose that the odd moments (241 are nonnegative. We introduce the
Hankel matrix

Mo M1 M2 - .-
M1 U2 (U3 ...

U= (il fpmg = | #2 H3 R4 - (8.43)
U3 4 (1S ...

where the top row gives the sequence of moments. Then I is real and symmetric,
and has the characteristic property of Hankel matrices that the cross diagonals
are constant. In this section we use the subscript N to refer to (N + 1) x (N +
1) complex matrices, and entries will be indexed with indices j starting from
j=0.

Lemma 8.10 The top left block Ty = [ j+k]§\{ k—o 18 a positive definite matrix.

Proof Let f(t) = Z;v:o ajt/ and g(t) = Z;v:o bt/ be complex polynomials of
degree N. Then

N

<F(aj)§'v:o» (bj)7:o> = Z ajbifejrk
Jj,k=0

N 0o
= Z ajEk/ R w(r)dt
—0Q

J:k=0

/ FOgw)dt,



266 8 Discrete Time Systems

so in particular

(F@pYo @)= [ Ir@Puwwar (8.44)

Ifa; # O forsome j, then | f(¢) |? is a continuous function that is zero at only finitely
many points hence the integral is strictly positive, hence I'y is positive definite. O

8.6 Orthogonal Polynomials

We introduce an inner product

(f. 8w =/ FOgwr)de (8.45)

on the complex polynomials f, g.

Proposition 8.11 There exists a sequence of real orthogonal polynomials

n

)y =>"at (8.46)

j=0

such that (i) (fj, fi) = 0 for all j # k;
(ii) the matrix Uy = [a;k)]y r—o 18 upper triangular with positive diagonal
entries a,ﬁ") > (),
(iii) Uy TN Uy is diagonal with positive entries on the diagonal.

Proof

(i) We can apply the Gram-Schmidt process [51, page 258] to (/ )?/:0 to produce

the required f;(¢).
(i1) The matrix of coefficients has the form

a® .. a®
6] (N)
0 a’...q
Uyv=| . . ], (8.47)
. 0 . :
(N)
0o ...... ay

and the jth diagonal entry is the leading coefficients of f;(z).
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(iii)) We take an arbitrary pair of complex polynomials of degree < N, and write

f@) =108 50 and g(t) = Y )_g mx fi (1), so that

N N
(f 8w =Y &S fidw =) &iljhj (8.48)
j.k=0 =0
where we have introduced
OO 2
hj =f Lfi @O w@dt = (fj, fiw- (3.49)
—00
We can also write (e j)jvzo for the standard orthonormal basis for CN+Dx1,
and then
Un = [Ul(eo) Uler) ... Ulen)]. (8.50)
SO
N
Y Ejiijh = (f. &)w = (TNUEN N, UM ) (8.51)

J=0

as in the Lemma 8.10. Hence we have a diagonal matrix

ho 0 ... 0

U\, TyUy = 9 4 9 (8.52)
0 ... 0 hy

O

There are two common choices for the diagonal constants as in the following
Corollary, which correspond to two commonly used normalizations for orthogonal
polynomials. For some classical orthogonal polynomials, there are other special
normalizations, as in the example of Chebyshev polynomials of the first kind or
the Laguerre polynomials. So it is always worth checking which normalization an
author is using.
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8.7 Hankel Determinants

Corollary 8.12 (Hankel Determinants) The normalizing constants of the orthog-
onal polynomials are determined by the sequence of Hankel determinants (An)%_
in the following distinct cases.

(i) Let (Pj)j.V:O be the unique sequence of monic orthogonal polynomials with
hj = (Pj, Pj)w. Then

N
Ay =detTy =[] h;. (8.53)
j=0

(ii) Let (fj)j'v:o be the orthonormal sequence with (f;, fj)w = 1 where f; has
leading coefficient kj > 0. Then

N
Ay =detTy = ]—[ kj_z. (8.54)
j=0
Proof
(i) We can select a(.j) = 1forj=0,..., N, sothat P; is a monic polynomial of

degree j and Uy has ones on the leading diagonal. Then matrix Uy is upper
triangular, with ones on its leading diagonal, so det Uy = 1 = det U},. Hence
from the formula (8.52), we have

N
detIy = det Uy detTy detUy = [ [ h;. (8.55)
j=0

Of course, we can recover h, from hg = Agand hy = Ay/An—1 for N > 1.
(ii)) We can choose hj = 1forall j =0,..., N, so that (fj)’/.V:O is an orthonormal

sequence, and then we write k; = aﬁ.j ) for the leading coefficients and

UpyTnUyn = I. Inthis case Uy is upper triangular with entries & ; on the leading
diagonal. Then U 1’\, I'yUn = Iy, so taking determinants, we see that

N
1 =detUy detTy detUy = det Ty [ [ &7 (8.56)
j=0

Of course, we can recover k; from k0_2 = Agand k;,z = An/An—1for N > 1.
O
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Exercise Show that there exists an upper triangular (N + 1) x (N + 1) matrix G
such that 'y = G'G.

Definition 8.13 (Completeness) Let w : [a,b] — [0,00) be a weight, and
(Pn(1));2, the corresponding sequence of monic orthogonal polynomials for w,

and suppose that fab | f (t)lzw(t)dt converges. We say that (P, (t))zozo is complete if

b
/ fOP,dt=0 (n=0,1,...)

implies that f(t) = 0 on [a, b].

8.8 Laguerre Polynomials

Example 8.14 (Laguerre Polynomials) We introduce the weight w(r) = e~ for
t > 0, so that the moments are the factorials

o
Mk = / t*e~ldt = k! (k=0,1,...). (8.57)
0
The corresponding sequence of monic orthogonal polynomials begins with

O =1, A0 =t—1, f@)=1>—4+2, (8.58)

with the corresponding

ho=1,h =1,hy =4 (8.59)
hence
1-1 2 112 100
Uy=[01 —4|, To=[1261|, UU,={010]. (8.60)
00 1 2624 004

The standard Laguerre polynomials L, (¢) are defined as in Exercise 6.15 by
t n

d
Lo(t) = Z, o (), (8.61)

so that f,,(t) = (—1)"n!L,(¢) is a monic polynomial of degree n. The standard
Laguerre polynomials are normalized so that L, (0) = 1, and the leading coefficients
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are negative for odd n. One can show that

frr @] _[t=1-=2n —nzﬂfm} 8.62
K | A (562

Let the nth Laguerre function be y,(t) = e /2L, (t), which has Laplace
transform

1 [ d"
(s—1/2)t —t
Y, (s) = l /0 eV o (e t")dt (8.63)

so we integrate by parts n times over to get

_ 1 2 n o0
Y, (s) = (s '/ ) / e G/ gy (8.64)
n. 0

so with the substitution u = (s + 1/2)¢, we get

v = 2

(s 412t (8.65)

which is a stable rational function with zero of order n at 1/2 and a pole of order
n+1at —1/2 in LHP. For this reason, the scaled Laguerre functions ' 2y, (21));2,
are a particularly convenient orthonormal basis for L(0, co). They have Laplace
transforms

(s = D"

—t _
LW2e7' L, (20))(s) = \/z(s + Dntl’

(8.66)

which match with the functions from Exercise 6.15 as follows. From Lemma 6.33,
we recall the algebra R of proper rational functions with only poles at —1. We
observe that

(s — DE

k:O,...,n} =Spani‘/2(s+1)k+1

:k:O,...,n}

1
span{ (14 s)e+ :

forn = 0,1,.... We prove this by induction on n. The case n = 0 is trivially

true, so we suppose the identity has been established for all cases up ton — 1, and
consider the case n. The new function in the left-hand space can be written as

" (+D—G-)" ¢ (—1)"<n)(s+l)""(s—l)k
(s + D+l 21 (s + 1 B 2n \k (s + Dl

k=0
—i(_l)k <n) (s = D
= 20 \k) (s + D
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hence belongs to the space on the right-hand side, and the spaces are of equal
dimension n 4 1.

The advantage of this basis is that the latest function is the Laplace transform of
the following sum of orthogonal functions in L?(0, co), namely

n _1\k
3 (232 (Z) V2 Ly (21). (8.67)
k=0

In Chap. 10, we will show that the Laguerre orthogonal polynomials (L),
are complete for the weight e~ on (0, 00), or equivalently that Laguerre functions
(e /2L, (t))zio give a complete orthonormal basis of L?(0, 00). This is the key
step in our proof of the Paley—Wiener Theorem 10.36. Our proof also uses the
uniqueness of Fourier transforms of L'-functions. In [50, p. 350] there is an
alternative approach, which uses Vitali’s completeness theorem from [50, p. 25] as
in Exercise 8.12. This uses some special identities for the Laguerre polynomials and
has the advantage of being more elementary, but more specialized. In Exercise 8.4,
we consider another approach based upon Green’s functions which is suitable for
Legendre and Chebyshev polynomials which live on bounded intervals.

8.9 Three-Term Recurrence Relation

Proposition 8.15 (Three-Term Recurrence Relation) Suppose that (f,,) is as in
Corollary 8.12 and let
kn Ay _ knkn—2

A, = , B,=—-A,{tfn-1, fu- , C,= = =2,3,...).
n n n{tfa—t1, fa—1)w n Api 2 (n )

n—1

(8.68)

Then the ( f,) satisfy the recurrence relation

fn+1(t) AnJrlt + Bn+1 _Cn+1 fn(t)
= =1,2,...). 8.69
[ fult) } [ 1 0 } [fnl(t)} g o B

We can regard the three-term recurrence relation as generating a discrete time
process in which the matrix depends upon the discrete time n, and has ¢ as a
parameter.

Proof Szego [54] gives the three-term recurrence relation in the style

fn(t) = (At + Bn)fnfl(t) - Cnfn72(t)v (8-70)
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which is equivalent to the matrix version here. To establish this relation, we observe
that the given A, makes f;,(#) — A,tf,—1(¢) a polynomial of degree < n — 1, since
we have canceled out the leading coefficients. Hence there exist constants &; such
that

n—1

Fu®) = Antfai() =) & f5(0). (8.71)

J=0

Now for j =0, ...,n—3 wehave (f,, fj)w = 0and (tf,—1(?), f;(#))w = 0, since
tf;(t) is of degree less than n — 1. We take the inner product of both sides of (8.71)
with f; and we find §; =0 for j =0, ...,n — 3. This leaves us with

Jn(@) = Antfrn1(t) = Ent fu—1(t) + En—2 frn—2(0). (8.72)
By taking the inner product with f;,_; we obtain
— Ap(tfu-1(0), fu—1())w = En—1 = B. (8.73)
We then take the inner product with f,,_» and obtain
—Cp =&n2 = —An(tfu-1, fn—2)w

k’l—2 n—1
=—A,_1 r (fn,l, kn—1t + terms of lower degree>

n—1 w
kan An
:—A _ -1, _ = — .
n 1kn_l(fn 1> fa—Dw A

O

Corollary 8.16 With respect to the space spanned by the basis (fu),2, the
operation of multiplication by t is represented by a real symmetric tridiagonal
matrix such that the entries on the diagonal below the leading diagonal are positive
and the entries on the diagonal are real.

Proof Here 1/A; 1 = C;/A; > 0. Hence the matrix J is real symmetric and
tridiagonal with entries on the diagonal below the leading diagonal that are positive;
such a matrix is called a Jacobi matrix. O

Definition 8.17 A (n + 1) x (n + 1) Jacobi matrix looks like

by ag

da by a (8.74)
: L ap-y

0 ...an—1 by

withb; € Randa; > 0.
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Such a Jacobi matrix has real eigenvalues. Given (k)7 ;, we can generate the
sequences (A,)52, and (Cy);2 | by the recursion formula. Then given (B,) we can
compute the entire sequence ( f,(¢));° , from this recurrence relation. An equivalent
form of the three-term recurrence relation is

1 By, Cn
1fn-1(1) = A n(®) — A fn—l(t)+A Jn—2(1) (8.75)

which expresses the operation of multiplication by ¢ as a tridiagonal matrix with
respect to the orthonormal sequence (f;)52,.

[—B1/A1 C2/A2 0
1/A1 —By/Ay C3/A3
0 1/Ay —B3/As3 . (8.76)
: 0 1/A3

Corollary 8.18 Suppose that w is even, so w(t) = w(—t).

(i) Then the odd moments vanish pu2j—1 = 0and B; =0 forall j =1,2,....

(ii) The sequence of monic orthogonal polynomials (f;) is determined by the
recurrence relation (8.70) in which the coefficients A, and C,, are determined
by the Hankel determinants (A N)IO\,O:O.

Proof We have psj—1 = [°0 1>’ “'w(t)dt = 0. The even indexed polynomials
(f2; (t))iio are all even functions involving only even powers of ¢, whereas the odd
indexed polynomials (f> j,l)?‘;l are all odd functions involving only odd powers of
t,50 frj—1(—t) = —f2;—1(¢). One can check these facts from the Gram-Schmidt
construction [51, page 258], and make a formal proof by induction on the degree. In
either case we have f,_;(¢)% even, so

o0
B, = —A, / o1 ()*w(t)dt = 0. (8.77)

—00
The other coefficients in the recurrence relation are

kn Ai—l 172 An
Ap= " = )= 8.78
" kn—1 (AnAan " ( )
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Powers of Infinite Jacobi Matrices

A matrix is fundamentally a table of data. For instance, the outputs of a linear system
can be listed in an infinite column vector [y;]?2,. When all the y; belong to a
vector space V we can carry out addition and scalar multiplication on the entries
coordinatewise, so that

Myj152o + ulzj152y = [hyj + 1zl (8.79)
Likewise, given a doubly-indexed collection of scalars a; x, we can form an infinite
matrix A = [a j’k]iok:() and carry out scalar addition and multiplication on the
entries of such matrices. However, forming the product AB of infinite matrices
A = [aj-k]i,ok:o and B = [bj,k]szo involves the series Z/fioaj,kbk,é for
Jj,£ =0,1,..., and we need to ensure that these converge. In the special case in

which most of the entries are zero, then this problem is less significant. The identity
matrix / with 1 on the leading diagonal and O in all the off-diagonal entries satisfies
Al =1A = A.If Aand B have AB = BA = I, then A is said to be invertible with
inverse B.

In the remainder of this section we consider matrices A that are tridiagonal, so
that the entries are all zero, apart from those on the leading diagonal or directly
beside the leading diagonal. It is easy to multiply matrices of this special shape, and
most importantly they arise in the theory of orthogonal polynomials, as follows.

Let w be a weight on a bounded interval [a, b] such that fab w(t)dt = 1, and
let (f j)?io be the system of orthonormal polynomials where f; has degree j and
positive leading coefficient. There is a three term recurrence relation

tfi() =a;fij+1@) + b fi (@) +aj-1fj-1(t) (8.80)
where f_; = 0 and the coefficients are

by ag ...
ap b1 ai

A= ' (8.81)
0 an b2 .

where a; > 0.
Proposition 8.19

(i) The operation of left multiplication by A" on the column vector [ f; (t)]?io
represents multiplication by t", so the (j, k)th entry of A" is given by

b
[A"]e = / " fi () fe(w(t)dt (n,j,£=0,1,...). (8.82)
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(ii) Suppose that (sI — A) is invertible for some s € C with |s| > |a|, |b|. Then the
(j, k)th entry of (sI — A)~! is given by

b or.

s—1

Proof
(i) We write the entries of A as [A];x for j,k = 0,1,..., so the three-term
recurrence relation becomes
o0
tfi(6) =Y _[ALx fi (), (8.84)
k=0

where only finitely many of the terms in this sum are nonzero since A is
tridiagonal. Hence we have

2ri0) =Y [Altfi) = Y [ALjalAlk e fo@) = Y [AMj 0 fe(0),
k=0 k,£=0 =0
(8.85)
and generally by induction on n we have
@ =) (A" fe@) (G =01,...). (8.86)
k=0

where all but finitely many terms in the series are zero. From (8.86) we have
the formula

b o b
/ " fi(0) fe(w(n)dt = Z[An]jk/ Ji@) fe@w(t)dt = [A"] ¢
a k=0 a

(8.87)

which follows by orthogonality.
(il) We can express the infinite identity matrix as = [ fah fi@® fx (t)w(t)dt]szo.
Then by geometric series we have

b f. d 0 1 b
a =0 a
o0 1 .
= (A

(=)

n=
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e¢]

= [nX:(:)s_n_lAn]j,k
=[61 =7, (8.88)

To check the final identity, one can estimate the entries of (s — A)A" /s"+! as
n — oo and prove they converge to zero.
O

Remark 8.20 Classical orthogonal polynomials

In this book, we mention classical orthogonal polynomials associated with
Chebyshev, Legendre, Hermite and Laguerre. Classical orthogonal polynomials
have some additional special features, and can be introduced in various ways.

(i) They are orthogonal with respect to weights w(x) defined in terms of elemen-
tary functions. In many examples, (dw/dx)/w(x) = 2V (x)/W(x) where V
and W are polynomials with W not zero.

(i) The classical orthogonal polynomials they satisfy differential equations with
polynomial coefficients. This is important in applications to physics, and many
classical orthogonal polynomials were discovered as solutions of differential
equations in various geometrical coordinates. Also, one can classify second-
order differential equations with polynomial coefficients according to the
singular points where the coefficients are zero; see [61]. There are various
results dating back to Laguerre regarding the weights and the differential
equations.

(iii)) Bochner considered sequences of polynomials (P, (x));ozo where P, has
degree n that satisfy the differential equation

d* P, dP,

po(x) +pi1(x) + p2(x) Pa(x) + 2, Py (x) =0

dx dx

for all x in some common real interval where po(x), p1(x) and py(x) are real
polynomials and A,, € R. After scaling transformations, he concluded that the
only cases are essentially:

(1) Legendre polynomials, as in (8.90), and related examples of hypergeomet-
ric functions;

(2) Laguerre polynomials, as in (8.61), which we use several times in this
book;

(3) Hermite polynomials as in (8.111), which are important in the quantum
harmonic oscillator;

(4) Bessel type polynomials, as in (8.127) and (8.128) which are related to the
Bessel functions Jy, 11,2 and used in linear filters.

(iv) We emphasize the recurrence relations, since these provide an efficient way
to calculate orthogonal polynomials. For the above classical polynomials,
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the recurrence coefficients are rational, so the polynomials can be computed
in exact arithmetic. Generally, the coefficients of the three-term recurrence
relation (8.70) also determine the properties of the orthogonal polynomials
themselves. In particular, the distribution of the zeros of orthogonal polyno-
mials of high degree and the asymptotic form of the polynomials are described
in Szegd’s theory. In the next chapter we consider G(s) = [ w(x)dx /(s — x),
which is the Cauchy transform of the weight w and the moment generating
function of (u,). We remark that in classical examples

dG
W(s) ds = 2V (s)G(s) + U(s) (8.89)
S
for polynomials U, V and W with W nonzero. For a modern discussion of

(i),(ii) and (iv), see [37].

Example 8.21 Legendre polynomials
We introduce the Legendre polynomials by

n

Bal) = gy dx"<

(x2 — 1)"). (8.90)

From the binomial expansion, we deduce that

1 - n\  (2k)! ek
2 2 (k)(Zk—n)!(_l) S 8.91)

k=0;2k>n

so in particular P, has degree n. From this, we deduce that P, satisfies Legendre’s
differential equation

d*p,

2
(l_x)dx2

dp,
=20 "+ DEy) =0, (8.92)
X

By integrating by parts for m > n, we see that

1 1 1 dm ) m 1 av ) ) B
/_1 PO Pa0dx = /_1 2Mm) dxm (&= )Z"n! dxn (= 1)dx =0,
(8.93)

We also have

1 _1\n 1 2n
f P Py)dx = D f L ((x2 _ 1)")dx
—1 —1

22n(p1)2 dx?n

(—D"@n)! ! "
= sy ﬁl(xz—l) dx
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2n)! m
= zz(n(r;)')z / sin?"t1 g do
D= Jo

2
T 410

where we have used the substitution x = cos#. For small values of n, one can
compute the Legendre polynomials by applying the Gram—Schmidt process to the
polynomials (x")7° | in L*[—1, 1] for the weight w(x) = 1/2. More generally, one
can consider the differential equation

dzs, ds,

1 —x%) P 2x P 2x28,(x) — pinSn =0 (8.94)

which has solutions given by the prolate spheroidal wave functions; see page 295
of [7], page 99 of [43] and page 213 of [36]. These functions have applications to
signal processing. See also [35].

8.10 Moments via Discrete Time Linear Systems

Example 8.22 (Moments from a Discrete Time Linear System) Suppose that w is a
weight on [—1, 1], and introduce an inner produce by ( f, g) f f(®)g@)dt. This

inner product is associated with the space L>[—1, 1] and does not involve w. Then
we introduce

A:L?[—1,1]1 > L*[—1,1]: f(t) ¥ tf (1) (f € L*[—1,1)),

B:C— L*[-1,1]: b Jw@nb  (beC),
1
C:L*[-1,1]1> C: - / FOVwdt  (f € L [—1,1)),
-1
D:C— C: c—0 (c e O).

Then we have

1
CA"B = f 1 "w(t)dt = (8.95)
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and the transfer function is

o0 o0
T@=D+) 'caA"B= / > Hrw(ndt
n=0 —lu—0

1
Z
= t)dt.
/_1 1—le()

This transfer function is commonly studied in a slightly different form, since

L |
T(1/z) =/1 Z_tw(t)dt (8.96)

is the Cauchy transform of w. This example is a realization of a transfer function
via a discrete time system, which is different from the situation of Proposition 8.3
since the state space L>[—1, 1] is infinite-dimensional. This extra flexibility allows
us to consider a wider range of examples, and we will pursue this idea in
Proposition 10.29.

Example 8.23 (Chebyshev Polynomials) For example, let

1
w(t) = (-1l<t<1) (8.97)
V1—12
be the Chebyshev weight on (—1, 1). The corresponding transfer function is
T(2) /1 ¢ b (8.98)
7) = .
41—zt «/1 —12
which reduces with the substitution t = sin 6 to
T(2) / T e (8.99)
z7) = . = . .
,n/zl—ZSIHQ \/1_Z2

The final step is given by contour integration, or a tan 6 /2 substitution.
The Chebyshev polynomials of the first kind are the orthogonal polynomials with
respect to this weight, with the normalization C, (cos8) = cos(n6). Then

1 T
Un = dt (8.100)
" /71 V1=12

can be computed using the substitution # = sin 6 or otherwise to give

sin?* 0do = T (8.101)

_/”/2 Qk— 12k —3)...1
=) k) 2k —2)...2
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and pok—1 = 0. Then the Hankel matrix has the characteristic banded pattern arising
from an even weight

1 0 12 o0 3/8 0

0 1/2 0 3/8 0 5/16
12 0 3/8 0 5/16 0

0 3/8 0 5/16 0 35/128
3/8 0 5/16 0 35/128 0
| 0 5/16 0 35/128 0 63/256

(8.102)

The coefficients of the Chebyshev polynomials are given by the columns of

10-10 1 0
010 -30 5
002 0 -8 0
Us = 8.103
1000 4 0 —20 (8.103)
000 0 8 0
000 0 0 16 |
as in Th(u) = 2u® — 1, so that
(10 0 0 0 0]
01/20 0 0 0
001/20 0 0
UllsUs = 0 0 (/)1/2 o o | (8.104)
00 0 0 1/20
00 0 0 0 1/2]

where the diagonal entries arise from the special choice of normalization.
(i1) Let & be a random variable such that P[§ < x] = ffl w(t)dt/m. Then £ is
called an arc sine random variable, and —¢£ is distributed as &.

Example 8.24 (Semicircle Moments) The transfer function of the moment sequence
of S(0, 2) is given by expanding the geometric series

1 2 1 [P
T(z) = / ¢ V4 x2dx = f sz+1xk\/4 —x2dx  (8.105)
27 J_o 1 —xz 27 2175
and substituting x = 2sin6 to give
2 72 0
T(2) = / > 2t sint 01 — sin® 0)do (8.106)
T J_n/2 =0
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in which only the even powers contribute, so we obtain

T() = Z(zz)zkﬂzkl Ck+1D@2k=1)...3-1 _ Z(zz)zk+1(_l)k< 1/2 )
k=0 k=0

+1 2k +2)(2k)...2 k+1
(8.107)
so by the binomial theorem we conclude that
1—+1—422
T(z) = N ¢ (Iz] < 1/2). (8.108)
Example 8.25 (Gaussian Weight) The weight
e,xz/z
(x) = (8.109)
v 27
is even and the even moments are
2n)!
om = 2 — D@n—3)...1= 2 (8.110)
2"n!

This weight gives rise to an orthogonal sequence of monic polynomials called the
Hermite polynomials He;. These satisfy the recurrence relation

Hepy1(x) _[x—n He,(x) . @8.111)
He,(x) 10 He,_1(x)
This y is the probability density function for a Gaussian or normal N (0, 1) random
variable X with mean O and variance 1.

8.11 Floquet Multipliers

Let g : R — R be a continuous and periodic function with period 27 ; then Hill’s
equation is

d*x

~ +q()x(1) = Ax(1) (teR), (8.112)

where A € C is a complex parameter and x : (0, co) — C is a solution. There may
or may not be a periodic solution; so given a solution, we can consider how x (¢)
relates to x (2m). To do this systematically, the basic idea is to link the continuous
time differential equation with a discrete time process determined by a 2 x 2 matrix
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A, which is variously called the transit matrix or the monodromy matrix. The matrix
A depends upon A, but we often suppress this in the notation; likewise, we consider
the discrete-time process (X (0), X (2w), X (4r7) ..., ), where the vectors X (2rj) €
C2*! also depend upon 1. We write the differential equation as

dX 0 1 x
P [q(t) _y O] X, X = [?1);:| (8.113)

so that the matrix is periodic in ¢ and has zeros on the leading diagonal. We can
build 2 x 2 matrix solutions by taking vectors X1 and X that satisfy the differential
equation, and forming F = [X1, X2].

Lemma 8.26

(i) There exists a unique 2 x 2 matrix F that satisfies this differential equation and
the initial condition F(0) = I.
(ii) Let A = F(2m), so

ab
A= |:c di| . (8.114)

Then the characteristic equation of A is
s?—(a+d)s+1=0, (8.115)

with Hill’s discriminant Ay, = a + b.

Proof By basic theory of differential equations [26], there exists a unique 2 x 2
matrix F that satisfies this differential equation and the initial condition F(0) = .
Since the matrix in the differential equation has zero trace, the Wronskian

det F (1) = det [leﬁf) x[gg)} (8.116)
dt dt

is a constant, and we can prove directly since the differential equation gives

d dx, dxi d’xy;  d*x;
t - 1)) = t - t
S0 = nm) = a0 = e

=x1(0)x2()(q(t) =2 —q(®) + 1) =0.
The initial condition gives det F(0) = 1. The matrix F (¢ + 2m) also satisfies the
differential equation, so by uniqueness, we have F (2w + t) = F(t)A for some

matrix A that is independent of . Hence F(27) = F(0)A = A. Also

1 = det F(2m + 0) = det F(0) det A = det A. (8.117)
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Hence we have where det A = ad — bc = 1 and trace(A) = a + d. See [38] for a
discussion of Floquet theory. O

Proposition 8.27 Suppose that X is real. Then A is also real, and there are four
cases for the roots of the characteristic equation.

(i) If (a + d)? < 4, then A has a pair of complex conjugate eigenvalues on the
circle {s : |s| = 1}.
(ii) If (a + d)*> > 4, then A has a pair of real eigenvalues of the same sign, one
inside {s : |s| = 1}, the other outside.
(iii) If a +d = —2, then A has an eigenvalue s = 1, and (8.113) has a periodic

solution.
(iv) If a +d = 2, then A has an eigenvalue s = —1, and (8.113) has an anti
periodic solution such that x(t + 2w) = —x(t).
Proof
(i) Here

(a+d) +/(a+d?—4
Ay =

) (8.118)

and the eigenvalues have product 1 so are a pair of complex conjugate roots on
the unit circle.

(i) Here the eigenvalues are real and have product 1, hence are of the same sign,
and exactly one of them is inside the unit circle.

(iii)) Let V, be a nonzero vector such that AV, = V,; then X(#) = F(t)V4 i
a solution of the differential equation that satisfies X 27) = AV, = V; =
X (0), so X (¢) gives a periodic solution.

(iv) We let V. be a nonzero vector such that AV, = V. and choose X (¢)
F()V_so X(2n) = AV_ = -V_ = -X(0).

w2

The fundamental solution satisfies F'(2rn) = A", so we expect to have bounded
solutions in case (i) and unbounded solutions in case (ii). Hill’s discriminant
determines the eigenvalues via (8.118), hence describes the nature of the solutions.

O
8.12 Exercises
Exercise 8.1 (Fibonacci Sequence) For the recurrence relation
11 1
n+1 |:1 0:| n 0 |:1:| ( )

compute the first few terms, and the eigenvalues of the matrix.
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Exercise 8.2 (Legendre Polynomials) For the weight w(¢) = 1 forr € (0, 1) and
w(t) = 0 otherwise, calculate the first few monic orthogonal polynomials.

In the notation of the section, introduce the coefficients of the polynomials and
the moments by

1-1/21/6 1 1/21/3
Up=1|0 1 —1|.Ta=]|1/21/31/4 (8.120)
00 1 1/31/41/5

such that the normalizing coefficients satisfy

10 0
UjGaUy = |01/12 0 |. (8.121)
0 0 1/180

Exercise 8.3 See [47]. Let w(¢t) = 1/2 fort € (—1, 1) and w(¢) = 0 otherwise.

(i) Show that the moment sequence of w is (1,0, 1/3,0,1/5,...).
(i) Show that the Cauchy transform G(s) = fil w(x)dx /(s — x) satisfies

1 s+1
G(s):zlog(;i—l) (s € C\[~1,1]). (8.122)

Exercise 8.4 See [47]. Let w be a weight on [—1, 1], and

U zwx)dx

T(z)=D +f . (8.123)

1 l—xz

Show that the change of variables z = (s — 1)/(s + 1) and x = (+ — 1)/(t + 1)
transforms this to

s—1 [ W@)dt

2o =p+" 0 [T (8.124)

where
Wiy = 2 r-1 £>0 8.125
()_(1+t)2w<t+1) >0, (8.125)

and the new integral involves a Carleman integral.
Exercise 8.5 (Chebyshev Filter)

(i) Use the recursion formula to compute the Chebyshev polynomial C¢(s).
(i) Plot the gain of the frequency response function Ts(iw) = 1/(1 + ieCq(w))
where ¢ = 0.1.
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Exercise 8.6 (Bessel Polynomials) The Bessel polynomials may be defined by the
recurrence relation

yo) =1, yi(x) =1+x
Ynr1(x) = 2n + Dxyn(x) + yp—1(x). (8.126)

(i) Compare this with the recurrence relation for Bessel functions of integral order,
and show that

n

(n+k)! /x\k
yn(x):Zk!(n—k)!(z) (8.127)
k=0

satisfies this relation.
(ii)) Compute the Laplace transform Y, (s) of y,(x).

Exercise 8.7 (Reverse Bessel Polynomials) Let8,(x) = x"y,(1/x) be the reverse
Bessel polynomial where y, is as in Exercise 8.6.

(i) Show that
n

(n+k)! x"*
O, (x) = ;} Kln— o 24 (8.128)

and find the Laplace transform of 6, (x).
(i) Show that the reverse Bessel polynomials may be defined by

O1(s)| _|s+1
[QO(S)} _[ 1 ] (8129

and the recursion formula

Opi1()] _ [2n+ 152 6u(s) B
[ On(s) } B [ 1 o} [enl(s)} n=12...). (8.130)

(iii) Show that 6, is a monic polynomial of degree n with positive coefficients, and
find an expression for 6, (0).
The Bessel filter has transfer function

O, (s) = 6 (0)

= , 8.131
On (s /o) ( )

where wp > 0 is a scaling parameter for the frequency.
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Exercise 8.8 (Laguerre Polynomials) The Laguerre polynomial of order o and

degreen foroe,n =0, 1, ... is Lf,a)(x) which satisfies the differential equation
@ W d ;@ (@
xdxz L7 x)+(a+1—-x) dx L (x)+nL;"(x)=0. (8.132)

() Let b9 (x) = x%e=*L* (x), and show that
2

d d
deQh,S“)(xH (-a) () +Qn+14+a—0)h®x) =0. (8.133)

(ii) Show that the Laplace transform H.% (s) of h{*’ (x) satisfies

(s = D"

(@) _
Hna (s) = Cn,(x (s + 1)n+1+aa

(8.134)

for some constant Cy, 4.

Exercise 8.9 (Toda’s Equation) Suppose that orthogonal polynomials (P)52
make vectors

X, (s) = [P;jés()s )} (8.135)

that satisfies the system of equations
Xn+1(8) = An($) Xn(s),

jan(s) = Q,(s)Xn(s) n=0,1,...), (8.136)

where A, (s) and 2,,(s) are 2 x 2 matrices with rational function entries. Show that
these are consistent, provided that

;s An(8) = Qnp1(5)An(s) — An($)2,(s). (8.137)

Exercise 8.10 (Uniqueness of Moment Sequences) Suppose that w is a weight on
R such that

/oo cosh(wot)w(t) dt

—00
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converges for some wp > 0.
(i) Show that
0 .
f(x + ly) — / e*(ert,V)tw(t)dt
—0o0

defines a holomorphic function on the vertical strip {x + iy : —wp < x < wp}
with

k 00
le{(O) = (—i)k/ fwydt  (k=0,1,...).

—00

(ii) Show that d* f/dz* )(0))72, uniquely determines f, and hence determines w.

Exercise 8.11 (Prolate Spheroidal Wave Functions) For L € R, let K be the
differential operator

2
Kf(x)=(1 —x2)d J; o A2x2 f(x), (8.138)
dx dx
and let
1
Uf(x) = / e fF(y)dy. (8.139)
-1
Show that
1
KUf(x) = / (W2x2y? — A%y? — A%x? = 2idxy)e™ £ (y)dy (8.140)

and show by integration by parts that UKf(x) = KUf(x) for all f €
C2([—1, 1]; C). This calculation can be used to show that the eigenfunctions of
U'U are eigenfunctions of K, satisfying

2
&>f _ df

PR e e (ORI O} (8.141)

(1—x?

for some p = w(A). The integral operator U'U is computed in Exercise 10.11.

Exercise 8.12 (Vitali’s Completeness Theorem; See [50, p. 25]) Let w be a
weight on [a, b] and let (f; (t));’lio be the sequence of orthonormal polynomials
for w. Show that

/x wndt = (/x fn(t)w(t)dt)2 (x € [a, b]).
a n=0 a



288 8 Discrete Time Systems

Vitali’s theorem states that (f,(1));2, is a complete sequence of orthogonal
polynomials, if and only if equality holds for all x € [a, b].

Exercise 8.13 Prove the identity (8.24). The method is similar to Exercise 3.16
regarding the second resolvent identity.

Exercise 8.14 Theorem 8.8 gives a map ¥ +— (A, B, C, D) from discrete to
continuous-time linear systems. Find the inverse map, and obtain converse state-
ments for Theorem 8.8 (i) and (ii). The starting point is to show that A4 is the
Cayley transform of A.

Exercise 8.15

(i) Find the eigenvalues and eigenvectors for the matrix A in (8.30).
(ii) Do likewise for the matrix in (6.121).



Chapter 9 m)
Random Linear Systems and Green’s Shethie
Functions

In this chapter we consider some applications of discrete time linear systems to
various models. We consider a case in which either the input to the linear systems
is random, known as the ARMA process. Then we consider the Cauchy transform
of Green’s function associated with a distribution. This enables us to use results
of complex analysis and we can use ideas from the preceding chapter regarding
orthogonal polynomials. We consider models in which the main transformation
is a random matrix, and achieve results in specific cases where we can carry out
calculations explicitly. These include results on the semicircle distribution, which
is an important topic in modern wireless communication. Another application is to
population dynamics, namely the May—Wigner model.

9.1 ARMA Process

Auto-regressive moving average models are commonly used in economics. The
input is taken to be random, to reflect changing economic circumstances. The output
involves outputs from the recent past and inputs from the recent past; for instance;
current process can be affected by prices from the recent past. The relationship
between these quantities is expressed in a linear equation with constant coefficient.
More specifically, let (ex)72, be a sequence of mutually independent random
variables with identical distribution, with mean Eg; = 0 and variance ]Es,% =1.We
take constants ai, ..., a, and cy, ..., ¢y, and suppose that the outputs and inputs
from the recent past are related by the linear equation

Ykt aiye—1+ -+ anyk—n = ek tcrex—1 + -+ emek-m (k=1,2,...).
9.1
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In Chap. 2, we showed how an nth order differential equation could be transformed
into a first-order matrix differential equation. In a similar way, we can transform a
difference equation in several variables into a matrix difference equation. We let the

state be

Yk—1

Yk—-2
X = . ,

Yk—n

and the random input be

Uk . )

—a) —ay ...... —day
10 ... 0
A= 0 1 ...... 0 € Myxn(C)
Lo . 10
Bl
B — €1 0 Cmi| € Mysxn+1)(C)
(n—1)xm

C=[10...0] € M1, (C)
D=0

Then (9.1) is equivalent to

Xk+1 = AXy + BUg
Yi—1 = CXy.

We have

det(s] — A) = s" +a;s" ' +

...+an.

9.2)

9.3)

9.4)

9.5)

(9.6)

Suppose that all the eigenvalues A of A satisfy |A| < 1. Then (I — zA) is invertible

for all z € D(0, 1).
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9.2 Distributions on a Bounded Interval

Proposition 9.1 The following data are equivalent, and define the notion of an
distribution on [—M, M ]:

(1) An increasing function F : [-M, M] — [0, 1] such that F(—M) = 0 and
F(M) =1, where F is right-continuous so that limy_, . F(y) = F(x) for all
x e€[—M,M);

(2) A positive linear functional ¢ : C([—M, M]; R) — R such that

Of +ng) =rd(f) + ne(g) (A ueR; f,g € C([-M, M]; R)),
9.7)

such that ¢(1) = 1 and ¢(h) > O for all h € C([—M, M]; R) such that
h(x) > Oforallx € [-M, M];

(3) A probability measure v on [—M, M ];

(4) The cumulative distribution function F of a bounded random variable & : Q —
[—M, M] on a probability space (2, P) such that F (x) = P[§ < x].

Proof The details of this equivalence are discussed in books on measure theory, so
we give only a brief indication of how the quantities relate to one another. Given (1)
illustrated by Fig. 9.1, we can construct a Stieltjes integral, which defines ¢ via

#(g) = / g)dF(x) (g € C([-M, M]; R)); 9-8)
[—M.M]

and one easily show that ¢ satisfies the conditions of (2). Conversely, F. Riesz
showed that all ¢ from (2) arise from an integral in this ways; this is the representation
theorem for linear functionals. Here we make essential use of the assumption that
[—M, M] is closed and bounded.

(3) The Stieltjes integral can equivalently be defined in terms of a probability
measure v such that v(a, b] = F(b) — F(a).

Suppose as in (4) that £ is a bounded random variable on a probability space
with probability measure IP. Then the distribution of £ is specified by the cumulative
distribution function F on [—M, M] so that P[§ < x] = F(x), and we can write
the expectation of the random variable g o £ as

Eg(§) = / g)dF(x) (g € C([-M, M]; R)). 9.9)
[-M.M]

Observe that ¢ (g) = Eg(&) has the properties of (2).

In particular, £ has expectation or mean given by the first moment, so ©; =
E& = [tdF(t). The second moment is u, = E&> = [2d F(t), and the variance is
02 = Eg? — (Eg)2. Generally, the nth moment E£" arises from g(t) = ¢" . |
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Fig. 9.1 Graph of a 1 T T T T T
cumulative distribution o9 b
function with jumps at —2 ’
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9.3 Cauchy Transforms

In terms of the previous section, the Cauchy transform is equivalently defined by

dF 1
m Go= [0 @ cw=e( ")

N X S —X

v(dx) 1
® co=["" @ cw=5( ")

where we take g(x) = 1/(s — x) forx € [-M, M]and s € C\ [—-M, M]. The set
C\ [—M, M] is known as the one-cut plane, and is a connected open set.

In this section, we focus on (1), and in the following Lemma prove properties (i)—
(iv) of G (s) that reflect the properties of F'. The cumulative distribution function F
can be discontinuous. For instance, there can exist a sequence of x; € [-M, M]
such that P[§ = x;] = F(xj) — F(x;—) > 0, so F jumps up at each x;.
Case (iii) of the following result can be used in this case. Another circumstance
is when F is continuously differentiable on (a, b) so that F(x) = F(a) +
fax f)dt fora < x < b, so F'(x) = f(x). Case (iv) can be used when
& is a continuous random variable with continuous probability density function
dF/dx.

The Cauchy transform proves us with a generating function for moments, with
the following properties.

Lemma 9.2 (Cauchy Transforms) Suppose that F : [-M,M] — [0,1] is
increasing with F(—M) = 0 and F(M) = 1, and right-continuous, so that
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limy .4 F(y) = F(x) for all x € [-M, M). Then the Cauchy transform of F
is

M
G(s) = / dF(x). (9.10)

M S—X

(i) Then G(s) holomorphic on C\ [—M, M] with G(5) = G(s) and IG(s) < 0
for all s such that Is > 0, so —G(s) and G(—s) take the upper half plane
{s : Is > 0} to the upper half plane.

(ii) There is a convergent power series expansion

1O
G = +Zl 1 9.11)
n=

for |s| > M, which is determined by the moments [, = fiWM x"dF(x), so
G (s) is holomorphic near oo.
(iii) Suppose that F jumps at xo. Then the height of the jump is

h
F(xg) — F(xo—) = hg& y (G(xo —ih) — G(xo + ih)). 9.12)

(iv) Suppose that F is differentiable on (xo — ¢, xo + ¢) for some ¢ > 0 and that
the derivative d F /dx is continuous there. Then

dF

I (x0) = hgm (G(xo —ih) — G(xo + ih)). (9.13)

1
0+ 2mi
Proof

(i) The function 1/(s — x) is differentiable with respect to the complex variable s
forx € [—M, M]ands € C\ [—M, M]. We check that

dG M dF(x)
5= —/_M (s — 172 (C\[-M, M]) (9.14)
and
(M dF(x) (M —x—io)dF(x)
G(t—i_m)_/,Mt—i—ia—x_/,M -2 toe? (9.15)
SO
N (M —0dF(x)
IG(t+ic) = [M D 402 (9.16)
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(i)

(iii)

(iv)
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s0 IG(t + io) takes the same sign as —o'.

For |s| > M, the geometric series 1/(s—x) = Y2/ x"/s"*! is absolutely and
uniformly convergent for x € [-M, M], hence can be integrated term by term
against d F'(x). The resulting Laurent series converges for all |s| > M, so the
coefficients (u1,,)50 ; determine G(s) forall s € C\ [-M, M] and conversely.
This is precisely what is meant by G (s) being holomorphic near infinity.

In this case we have

h hoM 1 1
G —ih) -G ih)) = — dF
2i( (xo = ih) (xo +1 )) 2i /;M <x0—ih—x x0+ih—x> @)

_ /M h2dF (x)
S Jom (= x0)2 4 2

and we can take the limit as # — 0+. We have

xX0+38 2
F(x0) — F(xo—) < / WA
xX0—38 (-x - )C())2 + h2

X0+8
< / dF (x)

0—3
= F(xo+98) — F(xo — 9).
We can make the left-hand side and right-hand side as close as we please by

taking 6 > O sufficiently small, since F is right continuous. Having fixed § >
0, we then take

/x0—5+/M thF(x) - h2 /M dF( ) h2
X) =
-M vots (x —x0)2+h2 T 82 [y 82

small by letting 7 — 0.

The method is similar to (iii), except the constants are different. Here
' (Go—ih) - Gxo+im) = " /M( ! )dF@)
X0 —1 - X l = - X
2mi 0 0 27wi J_p \x0 —ih—x xo+ih—x
1 (M hdF
= f (x) h > 0),
7)oy (x —x0)% + h?

which is the Poisson integral of d F, where d F(x) = (dF/dx)dx on (xo —
€, xo0 + €). See [56] and [34]. Taking the limit as 7 — 0+, we recover F’(xo),
as follows. Given n > 0, there exists ¢ > § > 0 such that (d F/dx)(x0) — n <
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(dF/dx)(x) < (dF/dx)(x0) + nforall x € [xg — &, xo + 5], so

((dF/dx)(xg) —n) [*ot? hdx 1 /’CO‘"‘S h(dF /dx)dx
T -8 (x=x0)? +h? T S5 (x —x0)? + A2
_ (@F/dx)(xo) +m) [*F  hdx
- b4 o—s (x —x0)>+h?
Now we fix this § > 0, and split the integral
- /00 /XW / o hdx dx
- oo(x—xo)2+h2 xo+s (0 —x0)2 +h?2
9.17)

in which the final two summands are equal and satisfy

1 /XH hdx 1 /°° hdx _h /°° dx _h
) (x=x0)24h2 7 Jygrs 6 —x0)2+h% T Jyqs (x —x0)2 78’

(9.18)
and as in (iii)
1 [~ hdF h (M
[ N
7 ) ks (6 = x0)2 +h2 = 82
We let & — 0+ and deduce that
1 (X% h(dF/dx)dx dF
. 9.19
b4 /xoé (x — x0)% + h? - dx (x0) ( )
O

Example 9.3 Let A € Myxn(C) satisfy A = A’ and let C¥ have an orthonormal
basis of eigenvectors (ej)?/:l so that Ae; = Aje; where Ay < Ay < --- < An.

Then a typical unit vector X € CV satisfies X = ijzl ajej where a; = (X, ¢j),
so(sI —A)7'X =31 (s —x))laje; and

N
G(s) =((s1 —A)7'X, X) = Z(s — ) Ma;l? (9.20)

is the Cauchy transform of the probability measure
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N
=Y lajs,;. 9.21)
j=1

with cumulative distribution function F(r) = >, o< la 1> Now —G maps the
upper half plane to itself since ‘

N
—2i3G(s) = —G(s) + G(s) = Y
j=1

N
iy — 52" 022

is positive for Js > 0, and the jumps in F occur at the eigenvalues A ;. The heights
of the jumps depend upon X.
In particular, we can choose X = ij:l N_l/zej soaj = 1/+/N and

N
1
-1 -1
Gs)=(6T =7 X, X)= Z(s — i) (9.23)
j=1
is the Cauchy transform of the probability measure

1 n
n=y > 6, (9.24)
j=1

Corollary 9.4 Let w : [—M, M] — [0, 00) be a continuous weight such that
fiv[M w(t)dt = 1. Then the sequence (i,),> , of moments of w determines w.

Proof By (i) and (ii) applied to F(x) = ff y w(D)dt, there is a Cauchy transform
G (s) determined by (M,,);O:O, and we can apply (iv) of the Lemma9.2 to d F /dx =
w(x) to recover w from G (s). O

Corollary 9.5 (Lerch) Suppose that f is a function of class (E) for which there
exist s, £ > 0 such that the Laplace transform F satisfies F(so + nf) = 0 for

n=20,1,2,..., so F is zero on some infinite real arithmetic progression. Then
f(@®) =0forallt > 0.

Proof We have
o
/ e—nlte—sotf(t)dt =0 n=0,1,2,...) (9.25)
0

L

so with the new variable x = ¢~ *!, we have

1
‘ d
/ e og e Y =0 m=0,1,...) (9.26)
0 X
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where
1 dx 00
/ x%0/8) f (= logx) e~ ! :/ e £()|dt < oo. (9.27)
0 X 0
We deduce that
1 Y] —1+4s0/¢ _e—ll
G(s) = / ' g (9.28)
0 S — X

is a holomorphic function for s € C \ [0, 1] such that the Laurent series for
|s| > 0, has coefficient that are all zero. Hence G(s) = O forall s € C\ [0, 1],
and by considering G(x + ih) — G(x — ih) as h — 04, we deduce that
x 10/t f(—g~1logx) = 0 forall x € (0, 1),s0 f(r) =0forallt > 0. O

Example 9.6 The sine function sin z is not the Laplace transform of a bounded
function. Note that sinz = 0 for z = nx forall n € Z.

Remark 9.7

(i) Cases (iii) and (iv) are useful in applications, but do not cover all eventualities
of cumulative distribution functions. The details of the convergence in other
cases are discussed in detail in [34], which presents a theorem of Fatou on the
integral (9.10).

(i1) The connection between distribution functions F on [0, 1] and moment
sequences (Up ;O:O is discussed in the Hausdorff moment problem; see [54].
In some applications, one can change [—M, M] to [0, 1] by a simple linear
scaling. Moment problems for distribution functions on [0, 00) or (—00, 00)
are much more difficult than for [0, 1], and Corollary 9.4 is not always valid
for weights on [0, 00).

(iii) We now have several tools for studying moment sequences.

cdf F —> (n)y2, moments
\ v \ (9.29)
Cauchy transform G I' Hankel matrix

(iv) In Sect. 4.3 and Proposition 6.55 we considered a function that is holomorphic
near oo and the contour integral

o+iR ds
f(@® = lim e'GGs) | (t > 0). (9.30)
2mi

R—o00 Jo—iR
In the context of the Lemma 9.2, we take G to be the Cauchy transform of w

and obtain f(¢) = f in e"*w(x) dx, which is the moment generating function
of w. This appears in basic probability theory.
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Given a nonempty open subset 2 of C, we can consider holomorphic functions
©1, @2 : 2 — 1 and then form their composition ¢ = ¢ o ¢, so that ¢ : Q@ — Q
is also holomorphic. The simplest examples to consider are 2 = D, or the upper
half plane {s : s > 0}. The example we have in mind is 2 = C \ [-M, M], the
plane with the interval [—-M, M] cut out.

9.4 Herglotz Functions

Definition 9.8 Holomorphic functions that take the upper half plane to itself are
known as Nevanlinna or Herglotz functions.

Exercise

(i) Show that the linear fractional transformations

witha, b, c,d € R and ad — bc > 0 are holomorphic on the upper half plane
{s : Is > 0} and take {s : Js > 0} to itself. They also satisfy ¢(s) = ¢(s).
Find the inverse transformation of ¢, and the composition ¢ o ¥ of two such
transformations.

(i) The sum of Herglotz functions is also Herglotz. Let o, ¥y > 0, and x, § € R
and

14

o) =as+p— "
Show that p(5) = ¢(s); Je(s) > 0 for all Js > 0, and ¢(s) is holomorphic
except at x.

(iii) If ¢(s) is a Herglotz function, then s +— @(is)/i takes RHP — RH P; also
s> ip(s/i)takes LHP — LHP.

(iv) The logarithm function logs = log|s| + iargs is a Herglotz function, which
also follows from

S 1
logs = - di (3 > 0), 9.31
ogs /0 <1+t SH) (35 > 0) 9.31)

which we encountered in (3.157).

(v) Another Herglotz function is i ,/z; see Exercise 9.6 and (9.121). By contrast,
z2 is not Herglotz.

(vi) Let G(s) be a Green’s function as in (9.10). It was shown there that the
functions —G(s) and G(—s) are Herglotz functions. (Some authors define the

Cauchy transform with 1/(x — s) to obtain Herglotz functions.) There is a
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converse to the Lemma 9.2 on Cauchy transforms, which shows that a large
collection of Herglotz functions can be built out of examples (i) and (ii).

Proposition 9.9 (Evans) Suppose that for some M > 0 the function ¢ satisfies

(i) @ is holomorphic on C\ [—M, M];
(ii) ¢(s) = @(s);
(iii) Jp(s) > 0 forall Is > 0.
Then there exist unique « > 0, B € R and y > 0 and a cumulative distribution
function F on [—M, M] such that

M
o) =as+B—y / dF@). (9.32)

M S —X

(iv) Also a > 0 if and only if R (s) — L£oo as Rs — Loo.
Proof This is given in [34]. O

There are numerous variants and refinements of this result. Given functions
©1, 2 satisfying (i)—(iv), we can form the composition ¢(s) = ¢1 o @2, which also
satisfies (i)—(iv), for some possibly different M > 0. The original (o1, B1, 1, F1)
and (o2, B2, y2, F2) are composed to produce new data (, 8, y, F). The functions
have Laurent series beginning with

1
</)1(S)=011S+/31—J;1+0<s2) (s — 00),

V2

1
@ =ast+ph-"10(,) 6>, (9.33)
N N

Then by substitution we obtain
a2+ yi/o 1
0(s) = araas +aifo+ pr — SW 2+ 0<s2) (s > 00).  (9.34)

This determines («, B, ¥), and in favourable cases one can also find F via (iii) and
(iv) of the Lemma 9.2. We can associate (1, 1, y1) with the matrix

ar B v
01 O , (9.35)
0 0 1/ag

and use the usual matrix multiplication.
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9.5 Green’s Functions

In the physics literature, the term Green’s function can mean the average value of the
resolvent (s/ — A)~! with respect to sums of entries or some underlying probability
measure. Here we consider some examples. (The term Green’s function can also
refer to the integral kernel of (s/ — A)~!, particularly when A is a differential
operator. Also, different authors have diverse sign conventions.)

(1) Let A be an N x N complex matrix, with eigenvalues Ay, ..., Ay listed
according to algebraic multiplicity. Then we define

G(s) = ;]trace((sl - A)h. (9.36)

We have the important formula

o]

1 1
G =) et Ntrace(A”) (s > Al (9.37)
n=0

which shows that the Green’s function is determined by the moments trace(A”)/N
and conversely.
The Green’s function may be expressed as

1Y
G(s) =
) NZS—)»]'
j=1

N
= ;} Ze}—(sl —A)le; (9.38)
j=1
where (e j)j.vzl is the standard basis for C"*1. Then G (s) is known as the Green’s
function or the Cauchy transform of the eigenvalue distribution of A; compare
(9.23). Using the final formula, we can realize this as the transfer function of the
linear system

AO0O...0

el
0 A . 1 | e 1
( RV ,\/N[eire;—...e;]ﬁ). (9.39)
0...... A eN

Here B and C are vectors of norm one with C = B’ soCB = 1.

Proposition 9.10 The Green’s function and the characteristic polynomial are
related by

1 1d
Ntrace((s] - = N ds logdet(s] — A). (9.40)
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Proof
(i) We have

logdet(sI — A) = tracelog(sI — A) 9.41)

and we can differentiate both sides of this formula. The Green’s function
captures similar information to the characteristic polynomial, and is sometimes
easier to work with.

(ii) In particular, let A be a N x N self-adjoint matrix, with real eigenvalues
M, ..., Ay listed according to algebraic multiplicity. Then the normalized
eigenvalue counting function is

1
Fy@y = olj:hj = x} (9.42)

which has a graph which resembles a staircase of total height one, which
increases from left to right by steps that are of height some positive integer
multiple of 1/N. Then

Ii,trace((sl -A)) = /oo NG s ). (9.43)

oo S—A
0

When the A come from a common family, we can consider convergence of this
expression as N — 0o.

Theorem 9.11 (Helly) Let (Fn)3_, be a sequence of cumulative distribution
functions on a bounded interval [a, b]. Then there exists a subsequence (Fy,) and
a cumulative distribution function F on [a, b] such that:
(i) Fn,(x) = F(x)as Ny — oo forallx € [a,b];
(ii) fah gx)dFn, (x) — fah g(x)dF(x) as Ny — oo for all continuous functions
g :la,b] —> C;
(iii) the corresponding Cauchy integrals converge, so that

b b
/ dFy (%) — / dF(x) s € C\ [a,b]
. S—X e S—X

uniformly for s in closed and bounded subsets of C \ [a, b] as Ny — oo.
Proof

(i) This is Helly’s choice theorem, as in page 56 of [16].
(ii) This if Helly’s convergence theorem, as in page 56 of [16]. It is important for
this application that the Fj live on a common bounded interval [a, b].



302 9 Random Linear Systems and Green’s Functions

(iii) Let K be any closed and bounded subset of C \ [a, b]. We can apply (ii) to
the function g(x) = 1/(s — x) and deduce that the Green’s functions converge
pointwise on K. It is easy to show that the Green’s functions are uniformly
bounded on K. Since the Green’s functions are also holomorphic, we can apply
Vitali’s convergence theorem 5.21 from [56] to obtain uniform convergence on
K.

Suppose that the limiting cumulative distribution function F(x) is continuously
differentiable with derivative f(x) = dF/dx. Then in physical applications, f is
called the density of states. In the following example, we use convergence of the
Green’s functions to identify the density of states. O

Example 9.12 (Green’s Function for a One-Dimensional Periodic Lattice) We
consider N points arranged in a ring, so that each point interacts with its immediate
neighbours, and no others. The interaction is described by the matrix AV : CV —
CN defined for X = (x,,)fl\’:1 by the formula

AW (xy) = (2x0 — Xpg1 — Xa-1)p_y (9.44)
with the convention that xo = x. For N = 4, we have

2 -1 0 —1
12 -10
AL 250 (9.45)

-1 0 -1 2

which is tri-diagonal, apart from —1 in the top right and bottom left entries.

The periodicity of the ring is expressed via an arithmetic condition. A sequence
(exp(in@))fl\’:1 has 1 = exp(iN6) if N6 = 2wk forsome k = 1,2,..., N, so we
introduce

X ( 27'rikn)N (9.46)
=|ex ; .
k P N n=1
then
2mwikn 2wik(n + 1) 2wik(n — 1) 2k 2mwikn
2 exp — exp —exp = (2 —2cos ) ex ,
N N N N N
(9.47)
SO
) 2k
ADX, = (2 ~2cos )Xk. (9.48)

We deduce that X are orthogonal eigenvectors that correspond to eigenvalues Ay =
2 —2cos(2wk/N) € [0, 4] of a real symmetric matrix, and since there are N of
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them, we have an orthogonal basis (X k)livzl. They also give an orthogonal basis for
the matrix (A1) — 1) /2, so we consider the corresponding Green’s function

1
N

1

. (9.49)
s —cos(2nk/N)

M=

G 1
k=1

We can interpret this as a Riemann sum for the integral of 1/(s — cos 8). In the limit
as N — oo, we have

1 [  de
G (s) = / (9.50)
27 Jo s —cos6

with uniform convergence on compact subsets of C \ [—1, 1]. To evaluate this
integral, one can use geometric series or contour integration, to obtain

GW(s) = ! (9.51)
Vs2—1
with the square root so chosen that sGW(s) - 1as |s| — oo. Note that
1! d
GM(s) = / * , (9.52)
T J_i (s —x)V/1 = x2

which is the Cauchy transform of a Chebyshev (or arcsine) random variable.

Example 9.13 (Green’s Function for the Square Lattice) Now consider a square
lattice made of N points in the style of a chess board, with the interpretation that
opposite edges of the square are identified to produce a torus. Each point interacts
with its nearest neighbours and no others on the board, where the interaction is

described by the matrix A : CV 'V

2 N N
A( )(xn,m)n,mzl = (4xn,m —Xn+l,m — Xn—1,m — Xn,m+1 — xn,m—l)n,mzl (9.53)

where x,,0 = x5 and xo,, = Xy, foralln,m =1,..., N. Then
k(N _ 2wijn 2mikn\N
X0k = () = (e T e T )n,m:1 (9.54)
satisfies the periodicity condition for j, k =1, ..., N. We also have

(X7 x4 = N2 (= k= p;

=0 else;
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and

. 2mj 2k :
AD xik — (4—2005 ;\T,J —2cos ; )X”k (,k=1,...,N). (9.55)

Note that the eigenvalues of AW are M fork = 1,..., N, and the eigenvalues of
AD are the pairwise sums A ; + A for j,k =1, ..., N. This can also be seen from
the identity

A® = AD g In+Iv® A (9.56)

and exercise Exercise 3.15.
The Green’s function for (A® — 471)/2 is

Y 1
Gy (s) = > 9.57)

N jk=17 cos(2mj/N) — cos(2mk/N)

Taking the limit as N — oo, we obtain

1 2 2
GH(s) = / / dodg (9.58)
47'[2 0 0

s —cosf — cos ¢

with uniform convergence for s in compact subsets of C \ [—-2, 2].
To evaluate this, we need Jacobi’s complete elliptic integral [41]

/2
K@) = / o (9.59)
0 \/1 — 22sin? ¢

We start the calculation as in the preceding example

2 2
GO = | / ! / 9 do
472 Jo s—cosf Jy 1—(s—cosh) lcosg

I O A 1

- 271/0 s —cos0 /1 — (s — cosh)2
1 de

27 Jo V(s —cos6)? — 1

B 1/77 do
T Jo (s —cosf — 1)(s —cosO + 1)
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we substitute ¢ = tan(6/2) and cosf = (1 — t2)/(1 + t2) SO

@) 2 [ dt
G () = (9.60)
T Jo (s =2+ s2)(s + (s + 2)12)
in which we substitute # = u+/(s — 2)/s to get
2 [ d
GO(s) = f " 9.61)
s Jo (U1 + (52— du/s?)
in which we substitute ¥ = tan ¥ to get
2 /2 2 d
GP(s) = / sec” g dy (9.62)
s Jo /(14 tan2y)(1 + (s> — 4) tan2 ¥ /s2)
and we multiply numerator and denominator by cos ¥ to obtain
2 (72 d
GP(s) = / v
s Jo \/ (cos? ¥ + (s2 — 4) sin” y/s2)
B 2 /J‘[/Z dl//‘
s Jo \/1 — (2/5)%sin? ¥
2 2
= K .
TS <s )
9.6 Random Diagonal Transformations
The following result is a version of the weak law of large numbers.
We consider
£ 0 ...0 (s — &) ! 0 0
- IR :
R TR DRey gy )
Do .0 : 0
0...0 & 0 0 (s—é&n)!
(9.63)

Proposition 9.14 Suppose that & is a bounded random variable with distribution
function F on [—M, M]. Suppose that A is a N x N real diagonal matrix with
diagonal entries &1, ...,Ex which are mutually independent random variables
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distributed as &. Then

M
! trace((sl — A)fl) — f aF® (s e C\[-M, M]) (9.64)
N M S—1

in mean square and in probability as N — oo.

Proof The term
1 1 1
1y _
Ntrace((sl —A)7" )= N jEZI S —¢; (9.65)

is a complex random variable for s € C \ [-M, M]. We aim to show that as N —
o0, these random variables converge to a non-random quantity. The probability and
distribution function are related by P[§ < x] = F(x), where F is increasing from
F(—M)=0to F(M) =1 and F is right-continuous. Here 1/(s — &) has mean

M
G@s)=E ! =/ aF® (s € C\ [-M, M]) (9.66)
s—& Joms—t
and
L (M aF@
]E|s_,3|z —[M s — 12 (s € C\[-M, M]), (9.67)

so the variance is

1
0?=F 5 —
ls —§&]

- /—M /—M <|S —12 (s =G - u))dF(t)dF(”)

_ / / ‘ _ ‘ dF()dFw) (s € C\[-M, M]).
2 mJ_mls—t S —Uu

=, Ll
s—&

By independence, we deduce that
N
1 1
9.68
N Z s —§; ©.68)

j=1 !
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has mean 1 and variance %/ N, so by Chebyshev’s inequality

o2t? 1 & 1 N o?
PHN;S—S]‘ u| > JN] ‘ XZ: ‘ =y 70
(9.69)
Hence
tzp[‘ L race((s7 — A - G(s)‘ . ] <1 (>0, (9.70)
N VN
The stated result follows from these estimates. O

9.7 Wigner Matrices

Definition 9.15 A Wigner matrix is a random matrix W that satisfies the following
conditions.

(i) W isreal and symmetric, with W € My« y (R);
(ii) The entries w; for j > k that lie on or above the leading diagonal are
mutually independent random variables, with w; x = wg,; by (i);
(iii) Ew;x = 0 and Ew2 k= = 1, so the mean is zero and the variance is one;
(iv) either there exists M > 0 such that |w; x| < M for all j, k; or w; has a
standard N (0, 1) normal distribution with probability density function y, for
all j, k, in which case we call W a Gaussian Wigner matrix.

On account of condition (i), the eigenvalues of W are real numbers.
By condition (iii) we have EW = 0, and by (iii) and (ii) we have EW? = NI
since the (j, j)th diagonal entry is

N N
EY wjowe;=EY wi,=N (9.71)

whereas for j # k, the (j, k)th off diagonal entry is

N N N

E Z WjeWe ke = EZ W eWk,e = Z Ewj (Ewk,e = 0. (9.72)
=1 =1 =1

We often use the random matrix j’N W, which satisfies

E  W=0, E_ W?=2, (9.73)
VN N
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where the entries on the right-hand side do not depend upon N.

Exercise Recall that if & and &; are independent normal random variables, where
&; has mean u ; and variance ajz, then &1 + & is also a normal random variable with

mean (1 + > and variance 0'12 ~|—622. Let Wj and W, be independent N x N Wigner
matrices with normal entries.

(i) Show that o1 Wi + o2 W5 has the same distribution as \/ 012 + 022 Wwi.

(ii)) Let U be an N x N orthogonal matrix. Show that UW U T has the same
distribution as Wj.

Normal random variable are widely used in statistical applications. The central limit
theorem of probability theory gives conditions under which a sum of statistically
independent random variables converges in distribution to a normal random vari-
able. In the theory of random matrices, the semicircle distribution is a counterpart
of the normal distribution, and has some analogous properties. The semicircle law
was used by [Wigner, 1958] to model the distribution of energy levels of nucleons in
an atomic nucleus with large atomic number. Recently, the semicircle law has been
used in models of wireless communication, where one considers a large number of
transmitting aerials which broadcast to a large number of receivers. Both the normal
and semicircle laws satisfy special replication properties such as the addition rules
which we establish in this book. See [58] for modern developments of the theory.

Example 9.16 (Semicircle Law) The semicircle law S(a, r) with centre a € R and
radius r > 0 is the probability density function

wx) = 75’2 \/r2 —(x —a)? (—=r <x <r). 9.74)

The Cauchy transform is

a+r 2 _ _ 2
G(s):nzrzf Vr—-a dx (9.75)

—r s —X

in which we substitute x = a + r sin

2 /2 2 cos? 0do
Gs)=_, (9.76)
Tr

g2 8 —a—rsind

and expand as a geometric series

2 w/2 X rk
G(s) = / 1y Sin*O(1 — sin”0)do (9.77)
Tz s — @)t
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in which only the even powers contribute, so we obtain

_ > 272k 1 Qk+DRk—-1...3-1
Gs) _g (s—a)X+1 2% 41  (k+2)(2k)...2

25 —a) o rAH? 1k<1/2)

- r2 (s—a)2k+2(_ ) k+1

k=0

— 2
_ 2(sr2 21 _\/1 o man)
= i((s—a)—/(s—aﬂ—rz).

From this calculation, or otherwise, one checks that the mean is ; = a, and

= a’+r? /4. Writing r = 2v, we deduce that a random variable with distribution

S(a, 2v) therefore has mean a and variance v2.

Theorem 9.17 (Wigner) Let W be an N x N Wigner matrix as above. Then

1 W\ 1 (2 V4—x2
IENtrace<(sI — \/N> ) — o /_2 . dx (s e C\[-2,2D
(9.78)

as N — oc.

Proof See [63]. The proof involves a detailed analysis of u, = E Ibtrace(W/ J/N)"
as N — oo. We computed the cases n = 1 and n = 2; the higher odd powers
n = 2k 4+ 1 give ua4+1 = 0, whereas the higher even powers n = 2k involve
increasingly complicated sums of products of random variables. O

9.8 Pastur’s Theorem

The following theorem combines the result about diagonal matrices in Proposition
9.14 with Wigner’s semicircle law.

Theorem 9.18 (Pastur)

(i) Suppose that & is a bounded random variable with distribution function F on
[—M, M], and let G F be the Cauchy transform of F.

(ii) Suppose that A is a N x N real diagonal matrix with diagonal entries
&1, ..., EN which are mutually independent random variables distributed as
£

(iii) Let W be an N x N Wigner matrix as above, independent of A.
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Then there exists a cumulative distribution function on some bounded interval
[—M1, M1] with Cauchy transform G, such that

E;]trace<<sl —A- ”J;VV)I) - G(s), (9.79)

as N — oo and G(s) satisfies the fixed point equation

G(s) = Gp(s — v*G(s)). (9.80)

Proof See Pastur [46]. O

We present two cases in which we can solve the fixed point equation, and a further
case in which we solve a matrix variant of the fixed point equation.

(1) Let & = Ao be a constant, so d F = 63, and Gr(s) = 1/(s — Ao)

Then the equation

G = 9.81
v(s) 5 — 02Gy(s) — ko (9.81)
gives the quadratic
VG ()2 4+ (Ao — 5)G(s) + 1 =0 (9.82)
with solution
— Ay — —20)2 — 402
Gys)="""" Vs —20? —dv? 9.83)

202

This is the Cauchy transform of the S(X¢, 2v) distribution by Example 9.16.

9.9 May-—Wigner Model

Consider N species of animals living on an isolated island. The population x; of
species j gives the jth entry of a state vector X € RV*! at time > 0. The
environmental conditions on the island encourage proportional growth or decay
of all the populations through time at a common constant rate Ag. Additionally,
there are symmetrical interactions between species j and k which may be mutually
disadvantageous, such as red and grey squirrels competing for the same food supply,
or mutually advantageous, as in sheep and sheep tick. The rate of interaction
between species j and k is represented by a random variable w j; with wy; = wx
where the random variables w ; for j < k are mutually independent and identically
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distributed. In particular, we can consider the interaction matrix to be a Wigner
matrix as above, which gives the May—Wigner model. See [21]

For a N x N real diagonal matrix Ao/ and a constant v > 0, we consider the
differential equation

d v
X = (ol w)X. 9.84
dt <°+\/N ) (9-84)

The associated Green’s function is
G (s) E(tracel ( I—aol — © W>_1> (9.85)
s) = sl — Aol — . .
N N JN

By Wigner’s theorem and Pastur’s theorem [46], the distribution of eigenvalues
converges as N — oo to the S(Xg,2v) distribution, which is supported on
[Ao — 2v, Ao + 2v]. There are therefore two cases concerning the stability of this
system for large N > 0, depending on whether this interval intersects with (0, 00).

(1) If Ao + 2v < 0, then most solutions of the differential equation are bounded.
(il)) Whereas if A9 + 2v > 0, then there are unbounded solutions with positive
probability.

The conclusion is that in case (ii), one population grows unboundedly large.

This model can be refined to address more realistic assumptions regarding the
interaction of species. For instance, one can consider predator-prey relationships in
which wj; and wy; have opposite sign, or models in which each species interacts
with only a bounded number of other species. There is also the question of whether
the solution to the differential equation produces credible values for a population
model, as in the next exercise.

Exercise Let C = [1...1] € RN let A = [ajk]j.\sz1 € Myyn(R) and for

X € RV*! consider the initial value problem

dX

=AX, X() = Xo, 9.86
It 0) = Xo (9.86)

where X represents populations from various species as in the May-Wigner model.

(i) Show that C X gives the total population of all species at time 7.
(i) Show that CX is constant with respect to time for all X, ifand onlyif CA = 0.
Express this as a condition on the entries [a j].
(iii) Suppose that X has nonnegative entries for all X that have nonnegative entries
and all ¢ > 0. Show thataj; > O for all j # k.
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(iv) Let fjx(t) = (exp(tA)ex, ej). Show that

df;
f/k:a

i jfik+ Y ajefex  Gok=1,....N) (9.87)

Cl#]
and deduce the integral equation
t
fir@) = ea.fjt(sjk +/ e%ii (=1 Z ajofer(u)du. (9.88)
0 00£)

See [48] for discussion of this integral equation and [18] for the associated
semigroups. Semigroups that respect positivity conditions arise in probability
theory and were studied by Feller, Kolmogorov, Markov and others.

9.10 Semicircle Addition Law

With F the semicircle S(0, 2«) law, the Cauchy transform of F is

Gp@ =" ‘/ZZ;_ 4o (9.89)
so that with z = s — v2G, the fixed point equation G = Gya(s — v2G) gives
G’ V3G — /(s — v2G)? — 4052’ ©.90)
202
which gives, when we isolate and square the root,
(20% +01)G —5)° = (s — v’ G)? — 4o’ (9.91)
which reduces to a quadratic equation
@ +vHG*—Gs+1=0 (9.92)
with solution
G=Gppls)=" VS? 4 +07) (9.93)

2(a? +v?)

Pastur’s theorem shows that if a random diagonal matrix Hy has entries that satisfy
the S(0,2) law is perturbed by an independent Wigner matrix vW/+/N, then
Hoy + vW/+/N has eigenvalues that satisfy a S(0, 2+/a? + v2) law. The addition
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rule for semicircular distributions is an instance of the composition law for Herglotz
functions from Sect. 9.4.
We observe that

2 _ 492 — 2 _ 492
s—i—«/s v +v2s «/s v _ 9.94)
2 202

SO

1

e 2
Goa(s) =5—0v°G2(s) (9.95)

is a map of the above form, corresponding to (1,0, v2, §(0, 2v)). With K,(s) =
s +1t/s,wehave K,2(1/G,2(s)) = s and

(_”)n). (9.96)

o
u t
KKy =s+" + (1 +Zl o
n=

For this reason, we add the variances o and v? to produce o + v?.

9.11 Matrix Version of Pastur’s Fixed Point Equation

See [31]. Let ¢ : M242(C) — C : A + trace(A) and extend to ® : Mr42(C) ®
M25x2(C) — M2x2(C) : [Ajx] = [¢(A} )] Then we introduce

s 0 m 0 > 0
sl —D—X = — — 9.97
' [0 S} [0 —m} [0 22} ©97
with inverse
-1 [(s=m—=x! 0
I-D—-% = ; .
(S ) [ 0 (s+m—3)"1]" 0-98)
then with
10 00 00 10
E = M M2, 9.99
[0 0[] ctmasme o

we consider the fixed point equation

o((61-D-2"'@R)E) == (9.100)
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so the diagonal entries are

1
:21
s+m— 3
1
=X 9.101
som_ ¥ 2 ( )

giving a pair of quadratic equations

1=3%1(s+m)— 21X,
1= So(s —m) — 5. (9.102)

We find that

1
G =, (%14 %2)
s Vs2—m?—4
= (1- )-
2 V52— m2
Proposition 9.19 This G(s) is the Cauchy transform of the weight function

1 |x|vVx2—=m?

T 0w JA4m? — 2 (€ (—V4+m2, —m) U (m, Vm? + 4)).
m< —Xx

w(x)

Proof To prove this, we observe that the Cauchy transform is

- Vm 4 1 |x|V/x2—m? dx
G(s) = +
—arm?  Im S —X /44 m?—x22m
_/‘/m2+4 2s Ix|vx2 —m? dx
~ 52— x2 /44 m2 —x2 27
/’”2+4 s Vu—m?  du
m2 S2—uJh L m? —y 2w

0 with u = m? + 4 sin? 6, we have

Gs) 4s /”/2 sin? 40
S) =
7 Jo s2—m?—4sin?6

00 k 2
_ A 3 4 " sin®*+2 0 46
- T (s2 _ m2)k+1 0

k=0
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i Qk+ 12k —1).. 4k+1
k:

< (2k+2)2k.. 2 (s2 — m2)k+l

g}(,:fl)( D 2 4k;)k+1
=500 ln))
=

- \/ ;4).

Let G(s) be a Green’s function, as above. Then the Dyson—Schwinger equation

O

1
GR=__ g0 (9.103)

introduces the self-energy ¥(z) = z — 1/G(z). Voiculescu [58] considered the R-
transform

R(2)=G'(2) - 1/z, (9.104)

in which G~! is the functional inverse so G o G~!(z) = z. Substituting z = G(s),
we obtain

R(G(s)) =5 —1/G(s) = £(s) (9.105)

and obtain an alternative formula for the self-energy.

9.12 Rank One Perturbations on Green’s Functions

In Sect.7.5, we considered the effect of adding a rank one operator to A with a
view to making an almost stable system become stable. In this section, we consider
a related question concerning the Green’s functions. The following is based upon
Appendix 1 from [17]. Let Ag = A} € Myxn(C), and let B = C’' € C"™*!. We
introduce

Ay =Ap+1tBC (9.106)

so that (A;) gives a one-parameter family of self-adjoint matrices, obtained by
adding scalar multiples of a rank one operator BC to Ay.
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Proposition 9.20 Ler f;(s) = C(s] — A;) "' B. Then

trace((sl —Ap) ! = (sT — A,)—1> - CZ log(1 — 1£o(s)). (9.107)

Proof We start with the formula
sl — Ay =51 — Ap —tBC, (9.108)
and multiply by (s/ — Ag)~! on the left and (s/ — A;)~! on the right. This gives
(sI —Ag) ™' = (T —A)~  —t(sT — Ap)'BC(T — AD™Y; (9.109)

then we multiply by C and the left and B on the right to get

Jo(s) = fi(s) — tfo(s) fi (s), (9.110)
which we rearrange to
16
fi(s) = 1 tfols) (9.111)

We return to (9.109), and multiply by B on the right to
(sI —Ag)"'B = (sI — A)"'B —tf,(s)(s] — Ag)"'B; 9.112)
changing the subject of the formula gives
(sI —A)'B=(sI — Ap) " 'B+tfi(s)(s] — Ap)~'B 9.113)
and we use the previous formula for f;(s) to give
(sI —A)'B=(1—1fo(s))"" (s — Ag)"'B. (9.114)

We recall that C = B’, and observe that fo(5) = fo(s), so when we take adjoints of
(9.114) and replace s by 5, we have

CsI— AN "= —1fo(s))"'C(sT — Ag)~ L. 9.115)
This gives

(I —Ap) ™" =T =AD" =11 —tfo(s)) "' (sT — Ap) ' BC(sT — Ap)~!,
9.116)
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and when we take the trace, we obtain

trace((sl —Ap) " = (sT — A,)—l) — —t(1 = 1fo(s) " "trace(sI — Ag)"'BC(sI — Ag)~!

=t(1 — tfo(s))"'traceC(sI — Ag) 2B

_ —tdfo/ds) _d B
T ol ds BTG

9.13 Exercises

Exercise 9.1 For a distribution F on [—M, M], the corresponding logarithmic
potential is defined by

L(z) = / loglz —t|dF(t)  (zeC\[-M, M)). 9.117)
[—M,M]

(i) Show that
a .0 . . .
( —i )L(x+ly)=G(x+ly) (x+iy e C\[-M, M]). (9.118)
ax dy
(i) Deduce that

9’ 2 . 3 .2 . .
(axz + 3y2)L(x+‘Y) = (ax +zay)G(x +iy) =0 (x+iyeC\[-M,M]).
(9.119)

Exercise 9.2 By expanding the exponential as a power series in ixt and using a
trigonometric substitution, show that

2 1 . o0 (_l)nth
1 — x2dx = t € R). 9.120
T [le Vi - xdx nX:(:)Zz"(n—i—l)!n! teR) ( )

Feller identified the sum on the right-hand side with 2J;(¢)/t. See Wigner [63] and
(6.115). Alternatively, one can use the dog-bone contour of Exercise 4.13 to invert
the Laplace transform.

Exercise 9.3 Let Jo(s) = [y cos(s cos0)df/m and

o) = /a ¥ \/q2 — x2 dxz‘

—a Ta
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Show that

2

ey
o) = —(Jo(at) n dszo (m)).

Exercise 9.4 Let w : [a, b] — [0, 00) be a continuous weight let (P, (1))7° , be the
sequence of monic orthogonal polynomials for w.

(i) Suppose that f : [a, b] — R is a continuous function such that

b
/ fOP,Owtdt =0  (n=0,1,2,...).

(i1) Show that

b
/ " f(Hw@)dt =0 n=0,1,2,...),
a
and deduce that

b
[T 0020 ecim.

s —1t
(iii)) By considering the proof of the Lemma 9.2, show that f(r)w(z) = 0 for all
t €la,bl].
Exercise 9.5

(i) Let A € Myxn(C), B € Myx1(C), C € Mixn(C). Show that
det(s] — A — tBC) = det(s] — A) — tCadj(sI — A)B,

so the characteristic equation for A + ¢ BC is a polynomial equation of degree
n in s with coefficients that are of degree at most one as functions of ¢.

(i) Show how to solve this in the case of n = 2, and compare with (6.121) and
(6.119).

Exercise 9.6

(i) Show thati/z defines a Herglotz function.
(ii) By substituting E = k? and using contour integration, show that

1[()00(E1 E )x/EdEzi\/z+

. T e 9.121)

1
V2
This formula can be used to define i \/ A when A is a matrix with eigenvalues
in the upper half plane.



Chapter 10 m)
Hilbert Spaces s

In previous chapters, we have used the state space C" where N is finite but possibly
large. The next step in the development of the theory is to take the state space to
be infinite-dimensional. Amongst many possible options, the most suitable type of
space to use is Hilbert space. The essential feature of Hilbert space is that it comes
equipped with an inner product that replicates the properties of the scalar product
on Euclidean space. Any complex Hilbert space has a complete orthonormal basis
and one can use this to introduce a system of coordinates for the Hilbert space. In
this chapter, we look at the basic models of Hilbert space and operators on them.
Methods of Hilbert space theory fit well with complex analysis, and allow us to use
spaces of holomorphic functions as models for linear systems. The main models for
Hilbert space are Hilbert sequence space £2 of square summable complex sequences
as in Sect. 10.1, Hardy space of square summable power series as in Sect. 10.2, and
Hardy space on the left half-plane, as in Sect. 10.5. The crucially important operator
is the shift, which we discuss in Sects. 10.3 and 10.4 along with its interpretation
for discrete time linear systems. We use the Laguerre polynomials from Chap. 8 and
the Laplace transform from Chap. 4 to study the Hardy space on the left half-plane,
and refine previous results about the Laplace transform and its inverse. The main
result is the Paley—Wiener theorem, which has to significant applications to signal
processing. We consider sampling of band limited functions.

10.1 Hilbert Sequence Space
Definition 10.1 (Hilbert Sequence Space) Let
o
02 = {(un)y2p 1 un € C; Z |in|? converges}

n=0
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be the space of square summable complex sequences. Then £2 forms a vector space
under the coordinatewise operations

)\(un)zoz() = (Aun);oz() (10.1)
(un);.lio + (Un);io = (un + Un);.,oz() (10.2)

since |u, + v, |2 < 2|un|? 4 2|v,|? makes the latter series square summable. We can
define an inner product by

(@20 W)pZo) = Y ttnin. (10.3)
n=0

Then (u, u) = ZZO:O [un|?, s0 (u, u) > 0, with (u, u) = 0= u = 0;

(v4+u, w) = (v, w) + (u, w) (10.4)

Av, w) = Av, w), (v, w) = (w, v). (10.5)

Then we define a norm by ||u|| = (u, u)/2. The Cauchy—Schwarz inequality as in
(2.20) gives

(e oyl < Dty (x.y € H) (10.6)

with equality if and only if x and y are parallel.

Definition 10.2 (Inner Product) An complex inner product space H is a complex
vector space with vector addition and scalar multiplication satisfying the usual rules
such as

Ax +y) =2ix + Ay, (A(ux)) = (Ap)x, 1x=x (10.7)

There is an inner product (-, -) : H x H — C such that

(x+y,2)=(x,2)+(y,2), Alx,z) = (Ax,z); (10.8)
(x,z) = {z,x) (x,y,ze H; » € C); (10.9)
(x,x) >0 (x e H,x #0). (10.10)
We introduce the norm by ||x|| = (x, x)!/2.

The Cauchy—Schwarz inequality (2.20) and triangle inequality hold for H just as
for C" with the same proof. We also have the parallelogram law

Ix + yI% + Ilx — yI? = 2lxI> + 2yI1>  (x,y € H), (10.11)

as the reader can check by multiplying out the terms on the left-hand side.
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Definition 10.3 (Hilbert Space)

(i) A complex inner product space H is said to be complete if for all (s,)72 | in
H such that ||s, — ;]| — 0 as n,m — oo, there exists s € H such that
IIsp, — s|]| — 0asn — oo.
(i) A Hilbert space is a complete inner product space.
(iii)) We further suppose that H is separable, so there exists a countable subset
(x,,),fil of H such that for all x € H and ¢ > 0, there exists n such that
Ix —xull <e.

Example 10.4 Hilbert sequence space ¢ is a Hilbert space for the above inner
product (10.3).

Example 10.5 (Notions of Convergence in Hilbert Space)

(i) If (xn);2, is asequencein H and x € H is such that ||x, —x| — Oasn — oo,
then we say that x,, converges to x in norm and write x, — x as n — 00. One
checks that (x,, z) — (x,z) forall z € H.

(i) If (x,)52, is a sequence in H and x € H is such that (x,, z) — (x, z) for all
z € H, then we say that x,, converges weakly to x. By (i), convergence in norm
implies weak convergence. The converse is false, but there is a remarkable
connection between the notions of convergence.

(iii)) Suppose that x,,, z € H have ||x,|| = ||z|| = 1 forn = 1,2, ..., and (x,, 7) —
lasn — oo.Then ||x, — z|| > 0asn — oo.

To see this, we use the triangle inequality to show ||x,, +x,,|| < 2, and we observe
that (x, + xm,,z) — 2 as n,m — oo. From the Cauchy-Schwarz inequality, it
follows that ||x,, + x| = 2 as n — o0; then the parallelogram law gives

120 = xm 11> = 201x0 1> + 205 1> = %0 + X |> = 0 (2,m — 00).  (10.12)

We deduce that there exists x € H such that ||x, — x|| — 0 asn — oo; hence
(x,2) = limp00(xp,2) = 1, and [Ix|| = limy— o0 [lxx [l = 1. Since [zl = 1 we
deduce that x =z, s0 ||x, — z|| = Oasn — 0.

Definition 10.6 (Orthonormal Sequence)

(i) Let (en);2, be a sequence in H such that (e,, ) = ;.. Then (e,)72; is
said to be an orthonormal sequence.
(ii) Suppose further that (a,) is a complex sequence. Then we call Y 7| ae, an
orthonormal series, and s, = ZZ:I ayey the nth partial sum.
(iii) Say that (e j)j‘;l is a complete orthonormal basis of H if (ej, ex) = §;x and

for every x € H there exists (aj)?‘;l € ¢% such that x = Zjil aje;j.

Using the Gram-Schmidt process [51, page 258], one can easily construct
orthonormal sequences in a Hilbert space. Also, one can show that any separable
Hilbert space has a complete orthonormal basis see [51, page 255]. In particular, we
have already seen that orthogonal polynomials can be used to form orthonormal
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bases in L?(w), for suitable weights, and the notion of completeness and the
notion of completeness for the orthogonal polynomials coincides with the notion
of completeness of the orthonormal sequence in L?(w). Proving that a given
orthonormal sequence is complete can be difficult and in this book we require
classical results such as the Fourier uniqueness theorem as in (4.94) to prove the
Laguerre system is complete.

Example 10.7 (Standard ONB) The prototype is the standard orthonormal basis
(en) of 02 where e, is the standard unit vector with 1 in place n and zeros elsewhere.

We have (a,)2, = Y 12| anep.

Proposition 10.8 (Riesz—Fischer) Let Z;’;l ane, be an orthonormal series.

(i) If Z;O:l |an|* converges then the series s = Z;’; | Gnep converges in the sense

that there exists s € H such that ||s — su|| — 0asn — oo and ||s||* =
Sonzy lan|* where s, = Y5 aje;.

(ii) In the case (i), the sum s is the same whenever the terms are reordered or
regrouped.

(iii) Ifzzil lan|? diverges, then ||s,| — oo asn — oo.

Proof See [65]. O
Definition 10.9

(i) Amap T : £%> — ¢2is linear if
T(Ax 4+ pny) = AT (x) + uT(y) (x,y€l’ x,puel). (10.13)

(i) A linear map is bounded if there exists M > 0 such that ||Tx|| < M||x|| for all
x € £2. This is equivalent to the notion of continuity for a linear operator, as
discussed in [51, page 219] and [65, page 60].

(iii)) The operator norm of a bounded linear operator T is ||T|| = sup{||Tx| : x €
€2 ¢ ||x|| < 1}. This definition is consistent with the definition of the norm of a
matrix in Definition 2.18.

(iv) A linear map V : £> — ¢ is an isometry if || Vx| = ||x|| forall x € H.

10.2 Hardy Space on the Disc

The space of power series on the unit disc with square summable Taylor coefficients
gives a Hilbert space with important applications. In this section, we show how
this Hilbert space can be described in terms of the sequence of coefficients and
equivalently in terms of holomorphic functions on the unit disc, when it is usually
known as Hardy space. We let H? be the space of holomorphic functions u on the
unit disc D(0, 1) = {z € C : |z| < 1} such that

2

> dO

lul3,, = sup/ lure))>"" < oo. (10.14)
O<r<1J0 2
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For f, g € H?, we write
dz ;= . do
o= [ r@e@, = [ reheen). (10.15)
C(0,1) 2wiz 0 2

which gives the inner product on H?. The precise meaning of the final integral in
(10.15) will become clear via Lemma 10.10.

Lemma 10.10 For w € D let ky(z) = 1/(1 — wz). Then ky, € H*(D) and

fw) =(f, kw) (f € H*(D)) (10.16)
so that f — f(w) gives a continuous linear functional H*(D) — C.

Proof The map f — f(w) is clearly linear. For w € D let ky(z) = 1/(1 — wz),
which is a rational function of z with pole at 1/w outside D. Also, by Cauchy’s
formula for the circle C (0, 1) we have

d d
(f,kw>=fc f@ - de —/C F@ dz i, (10.17)

0,1 1 —zw2miz N (0,1)Z—w27'[l'

Taking f = ky,, we have

(kw, kw) = ky(w) = (10.18)

1w

Hence | £(w)| < [ £ lkwll = I£11/V/1 = [w]>. 0

Lemma 10.11 The map (u,);2, = u(z) = 220:1 un,7" gives a linear isometric

isomorphism between the space £* of square summable complex sequences and the
Hardy space H>.

Proof We identify each (u,);2, with the corresponding power series u(z) =
3> | unz". Note that (z")52, gives an orthonormal sequence in H 2. Given that
Z;O:o |un|? converges, we have u,z" — 0 asn — oo for all z € D(O, 1).
ence u(z) has radius of convergence > 1, and u(z) = —, upz" converges
H (z) has radius of g > 1, and o un" g
and determines a holomorphic function on D(0, 1). Now we take 0 < r < 1, and
write z = re'” so u(re = ~ . upr'e ives an absolutely and uniform
t i0 i0 ;0_1 n 1n0g b ltly d f 1y
convergent series of functions for 6 € [0, 27 ]. We can therefore write

/027r|u(re,'9)|2;1§ =/02n(’§;)unr"ein9)(iﬁnrneine);j

o o 271
33wt [ e
n=0m=0 0 T

o0
=D lual?r.
n=0
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Letting r — 1—, we deduce that

o |0 2d9 > 2
li ! = .
tim [ e >

This shows that u € H?. The map (un)zozo — u(z) is linear, when we interpret
u(z) + v(z) as the usual pointwise sum of holomorphic functions on D(0, 1).

Conversely, every u € H? is holomorphic on I)(0, 1) and determines a Taylor
series u(z) = Y oo, unz", which by the preceding calculation satisfies

& 2

o db
> lual* = sup / lu@re?”" < oco.
=0 0 2ﬂ

O<r<l

Hence (u,);2, € €. Thus every u € H? arises from a uniquely determined

(un)gio e 2. a

10.3 Subspaces and Blocks

Let H and K be Hilbert spaces and form their direct sum L = H & K = {(§; 1) :
& € K, n € K} with coordinatewise addition and inner product

(E1sm), G m))L = &1, 8)u + (1, m)k ¢1,52 € H;n, L:&np e K).

Then there is a natural isometric linear embedding: : H — L & +— (£;0) and a
linear projection P : L — H : (§;7n) — & suchthat Pt =1 : H — H.Oftent
is suppressed so that H is regarded as a closed linear subspace of L. We can write
K = L © H to indicate that K is the complementary subspace to H within L.

We can also form direct sums of subspaces from inside a given Hilbert space, as
follows.

Definition 10.12 (Orthogonal Complement) Let K be a linear subspace of H
which is closed in the sense that if k, € K and k € H has the property that
Ik — kp]l — 0 asn — oo then k € K. The orthogonal complement of K in H
is defined to be

Kt=HoK={heH:(kh) =0;Vk € K}. (10.19)
One easily shows that K is a closed linear subspace of H and H = K @ K in the

sense that for all & € H there exist unique k € K and £ € K+ such that 1 = k + ¢.
Given this, one can show that (K+)1 = K.
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Proposition 10.13 (Orthogonal Projection) Let K be a nonzero closed linear
subspace of a Hilbert space H, and suppose that (e j)?o: | is an orthonormal basis

for K. Let Px = Z?‘;l (x,ej)ej. Then P is the unique operator with the following
properties:

(i) P: H — K is a bounded linear operator with || P|| = 1;
(ii) (Px,y) = (x, Py) = (Px, Py)forallx,y € H;
(iii) Pk =k forallk € K, and (x — Px,k) =0forallx € H andk € K;
(iv) |lx — Px|| = inf{||x — k|| : k € K}, and the infimum is uniquely attained at
k = Px.

Proof

(i) Linearity follows from linearity of the inner product. Also Px € K and x =
Px+ (x — Px) where x — Px is orthogonal to all of the e, so Px is orthogonal
tox — Px and ||x||?> = || Px||?> + ||x — Px||*> where

o0
2 2 2
1Px]* =) x.ej))* < lx%,
j=1

and Pe; = 11,50 ||P] = 1.
(i) The three expressions in (ii) all equal (Px, y) = Zi‘;l (x,ej){y, e;).
(iii) For k € K, we have k = Zjil(k, ej)ej, so Pk =k and

o]

(Px.k) = (x.ej)k.ej) = (x.k)

j=1

so (x — Px, k) =0.
(iv) We have an orthogonal decomposition x — k = (x — Px) + (Px — k) so

lx — kI* = llx — Px|> + || Px — k||,

so we minimize the right hand side by taking k = Px, and this choice is
unique. By (iii) and (iv), P is unique.
0

Definition 10.14 (Orthogonal Projection) The P in Proposition 10.13 is called
the orthogonal projection onto K.

Corollary 10.15 (F. Reisz-Fréchet) Given a linear map ¢ : H — C such that
[p(x)| < Cllx|| for all x € H for some C > O, there exists a unique e € H such
that ¢ (x) = (x, e).

Proof First observe that any e € H gives rise to such a linear functional via ¢ (x) =
(x, e), so we need to show that all functionals arise thus. Let K = {x € H : ¢(x) =
0} which is a linear subspace; also K is closed since x,, — x with x,, € K implies



326 10 Hilbert Spaces

[p(x)] = |p(xp — x)] < Cllx, — x|l = 0,50 p(x) = 0and x € K. Let P be the
orthogonal projection onto K. If ¢ = 0, then we can choose e = 0; otherwise, we
choose f € H suchthat ¢ (f) # 0, and introduce u = (f — Pf)/||f — Pf]|| so that
uhas lull = 1andu € K+; also ¢ (Pf) = 00 ¢p(u) # 0. Now for any x € H, we
have

@ 6w
v = (x ¢(u>”)+¢(u)”

where the term in parenthesis belongs to K, hence is perpendicular to u. Finally we
take the inner product with e = ¢ (u)u to get (x, ¢) = ¢(x), and from the Cauchy—
Schwarz inequality we also obtain ||¢|| = ||e|| is the best possible choice of C. O

Lemma 10.16 (Adjoint) Let T : H — H be a bounded linear operator. Then
there exists a unique bounded linear operator T' : H — H such that (Tx,y) =
(x,T'y) forallx,y € H.

Proof For y € H, the linear map ¢ : H — C given by ¢(x) = (Tx, y) gives
T’y € H such that (Tx,y) = (x, T'y) by Corollary 10.15. One can check that
y = T’y is a linear map. Also T’ is bounded since

IT'll = sup{l(x, T'y); x,y € H; llx]| = llyl = 1)
=sup{|(Tx, y);x,y € H; x| =yl =1}
=|T]. (10.20)

O
Exercise

(i) Verify that this definition is consistent with (3.45) and Definition 2.15 for a
finite-dimensional Hilbert space such as C"*! with the standard inner product.
(ii) Show that Lemma 3.17 extends to this context. Show also that the adjoint 77 is
uniquely determined by its defining equation.
(iii) Deduce that a linear operator V : H — B is an isometry if and only if V'V =
I.
(iv) Let (e,,);oz be an orthonormal sequence in H and V : H — H a linear

isometry. Show that (Ve,);2 | is also an orthonormal sequence in H.

We consider block matrices of the form

AB] ., [A0] Hek
T = T = 10.21
[oo}’ [3/0} K (10.21)

Note that matrices of the form of T arise when one considers elementary row
operations to produce zero rows at the bottom of the array.
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Proposition 10.17 Let T : H — H be a bounded linear operator and let K =
{x € H : T'x = 0} be the nullspace of T'.

(i) Then K is a closed linear subspace of H, and its orthogonal complement HS K
is the closure of the range {Ty : y € H} of T.
(ii) Also T' maps K into K, and T maps H © K into H © K.

Proof

(1) Forx,z € K and A, u € C, we have T'(Ax + nuz) = AT'x + uT'z = 0, so
Ax + puz € K. Also, if x, € K and x, — x as n — o0, then by continuity
T'xp — T'x asn — 00,50 T'x =0, hence x € K. Hence K is a closed linear
subspace of H. To identify its orthogonal complement, we observe that x € K
if and only if (y, T’x) = Oforall y € H so (Ty,x) = 0 for all y; so x is
perpendicular to the range of T'.

(i1) This follows from the definition of K and (i).

O

Definition 10.18 We can form the following block matrices of bounded linear
operators. See [15]

(i) Wesaythat A: H — H hasdilation T : L — L if PTt = A; equivalently
we say that A is the compression of T to H, when we have a block matrix and
a commuting diagram

L — L
T = |:A B:| ¢t J P. (10.22)
H— H

(i) Inparticular, A : H — H haslifting T : L — L if PT = A so that we have a
block matrix and a commuting diagram

L — L
T = [g gi| P J P. (10.23)
H — H

(iii) Also A : H —- H hasanextension7 : L — Lif TP = A, so we have a
block matrix and a commuting diagram

L — L
T = [13 g] ¢ e (10.24)
H— H

Hence A has extension T if and only if A’ : H — H has lifting T’ : L — L
so PT' = A'.
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When L = H & K, we can write
0—H—>L—K—0
to indicate that H is isometrically included in L and that H is the nullspace of the

orthogonal projection from L onto K. Then in situation (iii), we can say that T is
an extension of A and a lifting of D, as in the commuting diagram

00— H — L — K —0
Al T\ D . (10.25)

00— H — L — K —0

which leaves B undetermined.

10.4 Shifts and Multiplication Operators

The shift operator S and its adjoint §” are fundamental to the theory, and arises
naturally when one considers ¢2 and H?.

Definition 10.19 (Shifts) Let u(z) = Z:io u,z" be a convergent power series on
some open disc. Then the (forward) shift operator on £2 and H? is

Su(z) = zu(z) S (ug,uy,...)— (0,ug,uy,...); (10.26)
the backward shift operator on £2 and H? is

Auz) = @ ; YOV 4 ot ) > G, ). (10.27)

We also introduce a linear projection on £2 and H? by

Pu(z) = u(0) P :(ug,uy,...)— (ug,0,...), (10.28)
Exercise For A € D(0, 1), let

P(2) = (10.29)

1—Xxz

() Use power series to show that Ag, = Ay, SO @ is an eigenvector correspond-
ing to eigenvalue A of A.
(ii) Likewise show that (f, ¢;) = f() forall f € H?.
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Proposition 10.20 (Shifts)

(i) The shift S is an isometric linear transformation on H?, so ||Su|| = |ul| for all
ue H~
(ii) The backward shift A is a bounded linear operator on H?, so |A| = 1, and
|A"u|| = 0 asn — oo forallu € H?.
(iii) AS =1 and SA = I — P, where P = P’ is of rank one and P = P?;
(iv) A=Sand S = A’
Proof
(i) Clearly S is linear, and || Su|| = |lu]|.
(i) Also A is linear and u(z) = Y00 u,z" satisfies |Au|?> = Y72, lux* <
lu|?; hence ||A|| < 1, and by choosing u(0) = 0, we can achieve equality. We
have

o0
1Al =) fuxl> > 0 (10.30)
k=n

asn — 00.

(iii) Note that Su(0) = 0, so ASu(z) = u(z), hence AS = I; also SAu(z) =
u(z) —u(0),so SA = I — P. The operator P is the orthogonal projection onto
the constant functions.

(iv) Withv(z) = Y 02, va2", we have

e¢]

(Su,v) =) wiipsr = (u, Av). (10.31)
k=0

Here A is coisometric in the sense that A’ = § is isometric.

Exercise Let C : H> — C: f(z) — f(0).

(i) Find C’ : C — H? and deduce that C'C = P : H> — H?and CC’ : C — C.
Note the distinction between constants in C and the constant functions in H2.
(i1) Deduce that

A H? H?
I:C:|:H2—>(C, [SC’]: — H?

are adjoints of one another, and

[s C'] [A} =1:H>—> H?, [A} [sC]=

101 H? H?
C C

N —> .
o7 c ~ C
(10.32)
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Remark 10.21

(i) To have a shift operator that satisfies the Proposition 10.20, it is essential that
H is infinite-dimensional. A linear isometry on a finite-dimensional Hilbert
space is unitary, since for U € M, x,(C) the condition U'U = I, implies
uu’' =1,.

(i) Beurling [4] characterized all the closed linear subspaces K of H 2 quch that
SK C K; these are the shift-invariant subspaces.

(iii)) He also considered the closed linear subspaces K of H 2 such that AK C K.
An example of such is span{g, : A € E} for any finite subset E of ID. This
follows from the identity Ag; = Ag;.

(iv) The shift operator is an essential tool in the study of stationary stochastic
processes. Wiener and Masani [62] use Hardy spaces of holomorphic functions
on the disc as a model space and then extend some results to matrix valued
holomorphic functions. In this way, questions about stochastic processes are
converted into questions about operators on Hilbert space, with the shift
operator being the crucial example.

Let ¢(s) = (s — 1)/(s + 1). Then ¢ is a rational function with a pole at s = —1
which maps RH P onto D and has inverse ¥ (z) = (z + 1)/(—z + 1), where ¢
maps D onto RH P. Now consider T (s) € C(s), and write W(z) = T o ¥(z). Then
T +— T o gives an algebra isomorphism C(s) — C(z) with inverse W — W o ¢.
Observe that T has all its poles in L H P if and only if W has none of its poles in
D. Further, T has poles on iR U {oo} if and only if W has poles on the unit circle
C(0, 1). This proves the following result.

Proposition 10.22 The space S of stable rational functions corresponds to the
space Sp of rational functions that have no poles in D under the map T — W =

T o

Example 10.23 Let W(z) = z and consider Sf(z) = zf(z), so that S : H> — H?
is the shift operator. The following result gives a version of Proposition 10.20 for
the operator of multiplication by a typical W € Sp. One can consider f(z) =
> o2 o anz™ as power series in z corresponding to a signal (an);2, with 3220 lan 2
convergent, and W (z) as a transfer function from a discrete-time linear system as in
(8.4).

Lemma 10.24 A function W : D — C defines a bounded linear operator My :
H? — H?: f(2) = W()f(2) ifand only if W is bounded and holomorphic
on D.

Proof (=) We have W(z) = My 1 € H*(D), so W is holomorphic on ID. Also
(Wke, k) = W (k. (2) = W)l |,
while

[(Whe, ko)l = (Mwke, ke)| < [[Mw |1k,
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so |W(z)| < |[Mw]|], for all z € C, hence W is bounded.
(<) Suppose that |W(z)| < M forall z € D. Then W(z) f (z) is holomorphic on
D forall f € H?, and

2 . . d@ 2T ) d@
/ |W(re'®) fre®))> .~ < M? / | f(rel®)? (10.33)
0 2 0 2

SO |Wfllg2 < M| fll g2, hence ||Mw|| < M. The operator M is evidently linear.
O

Proposition 10.25 Let W € Sp be a rational function with no poles on D, and let
My :H>—> H*: [+~ W@ [©). (10.34)

(i) Then My gives a bounded linear operator on H?.
(ii) The adjoint My, has eigenvector ky, with eigenvalue W (w) for all w € D.

(iii) Suppose that W is non zero and has zeros wj € D for j = 1,..., m. Then the
null space of My is {0}, and the orthogonal complement of the range of My
contains span{kwj; j=1,...,m}

Proof

(i) The function W is continuous on the closed and bounded set ID, hence it is
bounded there with |[W(z)| < M for all z € D for some M > 0. By the
Lemma, My gives a bounded linear operator on H?(ID).

(ii) The operator My has an adjoint My, which is a bounded linear operator on H 2,
characterized by (M f, g) = (f, My, g) forall f, ¢ € H?. Taking g = ky,
we use the formula (10.16) to show that

(fs Myykyw) = (M f, ky) = (W[, ky) = W(w) f (w), (10.35)
so that
(fs Myykyw) = (f, W(w)ky), (10.36)

hence My, ky, = W (w)ky. [Suppose W is not a constant. Then operator My,
is not multiplication by W, since W is not holomorphic.]

(iii) Suppose that W € Sp is non constant. Then the null space of My is {f € H? :
W(z) f(z) = 0, Vz € D} is {0}. Equivalently, the range of Mj, is dense in H?,
since f is orthogonal to the range of My, if and only if (f, My, g) = 0 for all
g € H? sothat (Wf,g) =O0forall g € H? so Wf =0.

The range of My is often denoted WH?, and is {(Wf : f € H?}. Suppose
that W has zeros at wy, ..., wn € D; then (Wf ky;) = W(w;) f(w;) = 0 for
all f € H?, s0 ky ; 1s orthogonal to WH 2. Hence the orthogonal complement of
W H?is Ho W H?2, which contains span(kwj; j=1,...,m}. We also observe that
H? © WH? = null(M}). O
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Exercise Suppose that W has simple zeros at wy, ..., w, € D, and has no other
zeros in ID. For example, let

n
W =] IZ 0 (10.37)
iz

which satisfies |W(z)| < 1 for all z € D.
(i) Show that

{he H* :h(wj) =0; j=1,...,n} = spanfky; : j = 1,...,n}".
(10.38)

(ii) Show thatif h € H? has h(w;) = Ofor j = 1,...,n, then h/W € H?, and
deduce that

WH? = spanfky, : j = 1,...,n}", (10.39)

H*=WH?@®spanlky, : j=1,...,n}. (10.40)

Definition 10.26 Let W be a rational function that maps D into itself, and for

distinct points zp, ..., z, € D let P be the matrix
1—-W(iEi)W n
P =[ @) (Z‘)] : (10.41)
1—2zjze jit=1
We call W a Pick function and P the Pick matrix for the points wy, ..., wy.

Proposition 10.27 Then the Pick matrix P is positive semidefinite.

Proof The matrix is hermitian symmetric, so P = P’. Let o = (a j);le e C1
and consider

2”: L=WepWe)

<Pa5 a) = - J 4
Fyst 1 —Zzjz¢
_ Xn: ajc_lg B Xn: W(Zj)ajW(ZZ)c_lg (10 42)
= 1—2Zjze st 1—2Zjze

The first double sum in the last line is

n n

Zaj&g(kzjkzz)z( ajks;, azku>=<f,f>,

je=1 j=1 t=1
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where we have introduced f(z) = Z;’-Zl ajkz;. We now consider

n n
My f =) ajMyk:; =Y ajW(zjk;.
j=1 j=1

SO
n n
(Miy £ Miy £) = (D" a; Migke,. Y acMigke, )
j=1 =1

n
= > WepWoajartks;. kz,)
je=1

1 W(Z)Wize)
ji=1 Lyt

which we recognize as the final summand in (10.42). Hence we have

(Pa,a) = (f. f) — (My f. My, £) = | fI* — 1My, £II. (10.43)

Since |[W(z)| < 1 forall z € D, we have | M}, || = [Mw]| < 1,s0 (Pa,a) > 0. O

Example 10.28 We can take W(z) = z, which gives a Pick matrix P = [1]%:1.
This has rank one foralln = 1,2, ..., and is not positive definite for n > 2.

We now consider some changes of variable. To respect the structure of Hardy
spaces, we use the change of variables z = (s — 1)/(s + 1) so that dz/(2rwiz) =
ds/(mi(s*> — 1)), and with z = ¢! and s = iw, we have d0/(2n) = —dw/(w (1 +
®?)). This helps us to transform from the disc to the half-plane, as in Sect. 10.6.
The correspondence between the transfer function of a discrete-time linear system
Ti(z) = Dg + zCq(I — zAd)_le and the transfer function of a continuous time
linear system 7'(s) = D + C(sI — A 'Bis given in Theorem 8.8, which involves
a similar idea.

10.5 Canonical Model

In this section we consider how the specific examples (8.4) and (10.34) relate to the
backward shift operator. See [4] and [22]. In [12-15] there is a systematic discussion
of dilations and extensions of operators. This is a realization theorem, which shows
that a Hilbert-space valued holomorphic function on the unit disc may be realized
as the transfer function of a discrete time linear system. Let Hy and H; be Hilbert
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spaces, so Hj is the state space and Hy is the input space and output space. Let
(A, B, C, D) be continuous linear operators

A B H, H,
i )
CD Hy Hy

o : Hy — Hj is the main operator,
: Hy — H, is the input operator,
: Hy — Hy is the output operator,

: Hy — Hy is the external (or straight-through) operator.

SRS

Given W(z) = Z,‘j‘;o W,z" and M > 0 with W,, : Hy — Hy a bounded linear
operator with |W,|| < M for all n, and Wy = D, we seek (A, B, C) such that
W41 = CA" B. We introduce the space of power series with coefficients in Hy

(0.¢] (0.¢]
HA(Ho) = | D" anz"; an € Ho: Y llaul® < o] (10.44)
n=0 n=0

which forms a Hilbert space H; with inner product

00 o 00
<Zanzn, anz"> — Z(an, bu) Hy - (10.45)
n=0 n=0

n=0

We introduce the linear operators:

A :H*(Ho) - H*(Ho) : f(2) 1o ; T
BiHy— HXHy: b 7@~ Wy
Z
C :H?*(Hy) — Ho : f@) = f(0),
D :Hy— Hy: b — Wyb.

Proposition 10.29 Let W(z) be as above. Then (A, B, C, D) are bounded linear
operators that determine a linear system with transfer function

W) =D+zCU —zA)"'B (10.46)

where W(z) = Y w2 Wn2" is holomorphic on D, with Taylor coefficients Wy = D
and W,11 = CA"B forn =0,1,....

Proof We have Bb = ) /2, Wizk=1b and A" : Yo arzk ke arz*™", so
forn =1,2,..., we have

o
A"Bb= )" " wib (10.47)
k=n+1
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so CA" Bb = W,41b; hence

o0
Db +zC(I —zA)"'Bb = Db +:CBb+ Y ""'CA"Bb

n=1

oo
= Wob +zWib+ Y "' Wyp1b

n=1

= W()b (b € Hp).

O
Exercise Find formulas for A’ and C’, and show that
A| . H*(Ho) 2 2 H*(Ho)
: H~(Hy), A'C'|:H 10.48
2] ey, (e (10.48
are adjoints of one another, and are inverses in the sense that
ed [ﬂ =1: H*(Hy) — H*(Ho), (10.49)
Al ~n_ [10]. H*(Hy) _ H*(Ho)
= : . 10.50
Juersfi r-r

This result has a converse to the effect that a bounded transfer function can be
realized from a linear system (A, B, C, D) of the above form. Furthermore, one can
often realize the linear system explicitly. See [22].

10.6 Hardy Space on the Right Half-Plane

Hardy space on the unit disc is a suitable function space for describing linear
systems in discrete time and their power series transforms. To describe linear
systems in continuous time and their Laplace transforms, we introduce the Hardy
space of functions on the right-half plane. Some of the properties are inherited
from H? of the disc by change of variables, and we will introduce an appropriate
orthonormal basis in this way. The basis is related to the Laguerre system or
orthogonal polynomials via the Laplace transform, which turns out to be the crucial
step in the theory. In the next section we consider how the continuous time signals
can be introduced into the Hardy space via the Laplace transform.
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Let H?(RH P) be the space of holomorphic functions on {s : 9ts > 0} such that

o0
d
sup/ |f(x—|—iy)|227); < o0 (10.51)

x>0J—00

The inner product is given by

o0 d
(f.g) = / f(iy)go'y)zi . (10.52)

Lemma 10.30

(i) All strictly proper and stable rational functions belong to H*(RH P).
(ii) For Rz > 0, letk.(s) = 1/(s + 2). Then k, € H*(RH P) and

f@=(fk:) (f € H(RHP)) (10.53)

so that f — f(z) gives a bounded linear functional H*(RH P) — C.
Proof

(i) For f € S, the poles of f arein LH P so f is bounded and holomorphic on the
RH P; when f is strictly proper, f(s) = O(1/s) ass — o0o; hence the integral
of | £(s)|? converges.

(i) The function k;(s) has a pole at —z in the left half-plane, so one can easily
check that k, € H?(RH P). By applying the Cauchy integral formula to the
semicircular contour in the left half-plane, we have the formula

1 /'°° . ds = —f(2),

270 J_joo § — 2

where the factor of —1 arises since we go up the imaginary axis and hence
describe the contour in the negative sense. By parametrizing the imaginary axis
by s = iy, we can express the integral as an inner product in H>(RH P). This
integration formula is closely related to the Poisson integral formula (5.70), but
here we require k, € H>(RH P).

O

Example 10.31 The reader will easily check that the following functions belong to
H2(RHP):

@ 1/ +5);
(i) P(s), a strictly proper stable rational function;
(iii) (log p(s))/(1 + s), where p(s) is a stable polynomial;

(iv) (logs)/(1+s);
(v) whereas 1/s does not, since [ dw/(x* + w?) — oo as x — 0+. A rational

function in H? cannot have poles on the imaginary axis.
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Lemma 10.32 The functions

(s —1D"

fuls) =2 s 4 Dy

n=0,1,...). (10.54)

give a complete orthonormal basis (f,)7>, for H 2(RHP).

Proof We observe that f,(s) is holomorphic except for poles at —1, which is in
LHP. Also

=2 [T fom i ity

27 ) o i+ 1 (—ico 4+ 1nt1 C
1 [ (@*+D" 1 [® do
T J oo (@2 4+ 1)l T ) 1+ @?

Givenn > k, we write n = k +m where m > 1, so

2 /00 (iw—1D" (—iw— Dk

27 | (o + 1)+ (—ie 4+ 1YY
-1 o0 (; _lm—l -1 ioo _lm—l
_ / (fo = D" = / =D o
T J_ oo (iw+ 1)m+] i J_joo (s + 1mtl
by Cauchy’s Theorem. More explicitly, we can apply Cauchy’s Theorem to the
function f(s) = (s — 1)!/(s + 1)"*!, which is holomorphic inside and on the

semicircular contour [—i R, i R] & Sg in the left half-plane.
Now observe that

(fns fk) =

V2 (o= D
(f, fi) = o /;OO fliw) (—iw+ 1)k+1dw
=2 i (s + D¥

omi | T e S

which by the Cauchy integral formula applied to [—i R, i R] & Sg gives

V2 d* K OV2 (kN pd f di
(e i) = k! (dsk)s:l(f(s)(s * l)k) N 2:: k! ( ) ( dsk=J )s:l(ds/' )s:l(s + l)k

Jj=0 J
_2":\/2 k (dk-ff) 2k=if
_j:O k' \j /) \dsk=i )s=1(k — )V

in which all the numerical coefficients are positive. Suppose that (f, fx) = O for
allk = 0,1,.... From (f, fo) = 0, we deduce that f(1) = 0; then (f, f1) = 0
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gives f'(1) = 0, and so on until f* (1) = 0 for all k. By the identity theorem for
holomorphic functions, we deduce that f = 0 identically. O

Corollary 10.33 There is an isomorphism of Hilbert spaces H*(D) — H*(RH P)
given by

V2oos—1
f(z)|—>1+sf<s+l) (s > 0). (10.55)

Proof The linear fractional transformation s + (s — 1)/(s 4 1) is holomorphic on
R H P and gives a bijection between R H P and D with holomorphic inverse with the
map of orthonormal bases (z”)°° o= (fa (s)) o- By the Lemma 10.32, the map

Zanz HZan\/Z( +1)"+1 ((an) € €%) (10.56)

gives an isomorphism of Hilbert spaces, which is equivalently expressed by the
formula (10.55). There is a change of variables s = iw and @ = tan(6/2) so

s+1  iw+1 itan(0/2) +1 1 + tan2(6/2)

s—1 iw—1 itan@/2)—1 —1+tan20/2)+2itan0/2)

(10.57)

In addition to the change of variables, (10.55) involves a multiplicative factor. Note
that —e ¢ describes the unit circle once in the negative sense for 0 < 6 < 2. This
relates to our earlier comments about winding numbers for semicircular contours in
Sect.5.1. O

10.7 Paley—Wiener Theorem

Definition 10.34 Let L2(0, co) be the space of Lebesgue measurable functions
f : (0,00) — C such that fooo | £()|*dt converges. (Continuous functions are
Lebesgue measurable, as are piecewise continuous functions and pointwise limits
of sequences of continuous functions.) The inner product is

(f.g) = fo Fg(dr. (10.58)

In this case, the Cauchy—Schwarz inequality

[ rwewar < ([Tirora)([Tewra)” a0
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follows from
/0 /0 | f()g@) — f()g(s)| dsdr > 0. (10.60)

A subset E of R is said to have Lebesgue measure zero if for all ¢ > 0 there
exists a sequence of bounded intervals (a;, b;) such that £ C Ui‘;l(a j»bj) and
27.;1(17 j—aj) < &.Inthis context, we identify functions f1 and f> if f1(¢) = f2(¢)
except on a set of Lebesgue measure zero. If f; and f> are both continuous and
J1(®) = fa(t) except on a set of Lebesgue measure zero, then f1(¢) = f2(¢) for
all > 0. With this convention, there is no difficulty in interpreting the elements of
L?((0, 00); C). From results of measure theory, L?((0, 00); C) is complete.

Example 10.35 The function f(r) = t~'/4¢" is in L*((0, 00); C), although it
is unbounded at 0+. The function h(t) = H(t) — H(t — 2) also belongs to
L?((0, 00); ©), although it is discontinuous at t = 2. The Laplace transforms of
these functions can be computed explicitly

I'(3/4) Aes) = l—e %

P& = 1y = s

ORs > 0). (10.61)

The Laplace transform can be defined for f € L?((0, 00); C), and leads to an
isomorphism with the Hardy space on the left half-plane. This is expressed in the
following result which includes the Paley—Wiener theorem [49] and inversion for
the Laplace transform.

Theorem 10.36 (Paley-Wiener) Ler f € L?(0,00) have Laplace transform
f) = Jo e fdtr.

(i) Then f (s) defines a holomorphic function on the RHP;
(ii) if (f, V/2e ' L,(2t)) = O for all n, then f = 0;
(iii) the Laplace transform is an isometry L*((0, 00); dt) — L*(R; dw/(27)), so

(e.¢] 1 o A
| irorar= [ ifGordo (10.62)
0 27 J oo
(iv) f € H? and every g € H? arises as the Laplace transform h some h €
L2(0, 00).
Proof

(i) Withs = x 4+ iy for x > 0, we use the Cauchy—Schwarz inequality to show

A o i S 172
o)l < f (O di < (/ FORd) (/
0 0 0

1 00 172
= o | roran)”,

o]

172
672xl‘dt)
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(i)

(iii)

10 Hilbert Spaces

hence the defining integral for the Laplace transform converges. By a similar
proof to Proposition 4.5, one shows that f(s) is holomorphic with

df

=— /00 te ' f(t)dt NRs > 0); (10.63)
ds 0

we do not assert that 7f(¢) is square integrable, but the integral here is still
convergent for Rs > 0 since e~ is of exponential decay.
We observe that

a f(s) = (—1)"/00 fOi"e *dt, (10.64)
ds" 0

SO
d* . 00 »
f(l):(—l)”/ f(i"e " dr. (10.65)
dsm 0

Suppose that (f, V2e 'L, (21)) = 0 for all n=0,1,...;then (f, t"e ) =0
for all n, so ™ (1) = 0 for all n; hence f(s) = 0 for all s by the identity
theorem. We deduce that

0= f(l+iy)= foo f(e eV dt, (10.66)
0

so f(t)e~! is an integrable function on (0, c0) with zero Fourier transform,
hence is zero by the Fourier uniqueness theorem (4.94). For an alternative
approach, based upon Vitali’s completeness theorem, see [50, p 350].

By (i) and (ii), we can express an arbitrary f € L?(0, 00) as an orthogonal
series

O = an2e7 L, 21), (10.67)

n=0

where a,, = (f, v/2¢ "L, (21)) and
/ TP = > lanl. (10.68)
0 n=0

Taking the Laplace transform, we have

TR - (s— 1"
f(s)—ng(:)anﬂ(”l)n+1 (10.69)
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where
x L. dw e
/ If(lw)I22 = lanl*. (10.70)
- T n=0

(iv) By (iii) we see that f € H?. Conversely, given g € H?, we introduce

—1 n
b = (g, V2 (S(S+ 1)3“) (10.71)
SO
00 1y
g() =Y b2 (s(s+ 1)3“ (10.72)
n=0

where Y 0% |b,|? converges. Then g = h, where

h(t) = Z bav2e "Ly (21), (10.73)

n=0

gives an element of L2 and

o0 o 00 dw
f Ih(®)dt = |bal* = / lg(iw)]? (10.74)
0 =0 o0 2

as in (iii).
O
Example 10.37 Suppose that (A, 0, C, 0) is a stable SISO with initial state xo. Then
the output is y(¢) = C exp(t A)xo with Laplace transform Y (s) = C(sI — A)’lxo.
Then by Theorem 10.36,

*© 2 I 2
/ |C exp(tA)xo| dt = / |Cliwl — A)™ x| dw.
0 —00

27

This system has in effect zero input.

The discussion in the rest of this section is about nonzero inputs that are of finite
energy in the following sense.

Definition 10.38 (Energy) A signal u is said to have finite energy if u €
L2((0, 00); ©).

Note that decaying signals such as (sin#)/t are of finite energy, whereas periodic
signals such as sin wt are not of finite energy. The signal represented by unit impulse
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do is not of finite energy. To see this, consider f;, (t) = nljo,1/,(¢) with rectangular
graph of height n on (0, 1/n) which has the property that

00 1/n
/ fu(hgt)dt =n / g()dt —> g(0)  (n — o0) (10.75)
0 0

for all continuous functions g. In particular, we can take g(¢) = ¢/’ with g(0) = 1.
Note also that fooo fan (H)3dt =n — oo asn — oo. We will see that this shows 8o
does not have finite energy.

The finite energy condition on signals is different from boundedness as in BIBO
stability. Nevertheless, BIBO stable systems satisfy the following property for finite
energy signals.

Theorem 10.39 Let (A, B, C, D) be a stable SISO, and suppose that the initial
state is zero. If the input is of finite energy, then the output is also of finite energy.

Proof The transfer function T'(s) = D 4+ C(sI — A)~' B is a rational function that
is stable, so T'(s) has all its poles in LH P and T(s) € S. Hence T(s) — D — 0 as
s — oo and there exists M such that |7 (s)| < M for all s such that &s > 0. Now
let f(s) = Ooo e S'u(t)dt, where u is an input of finite energy. Then f(s) € H? by
the Paley—Wiener theorem. Also, g(s) = T (s) f(s) is holomorphic on the RH P,
and

o0 o0 o0
/ g + i) 2 =f T(x+iw) f(x + )24 < MZ/ fx + i)Y
—00 T 00 T 00 T
(10.76)

forall x > 0, so g € H. Then g(s) is the Laplace transform of the output y, so by
the converse direction (iv) of the Paley—Wiener theorem, y is also of finite energy
and

/OO ly@®)|?dt < szoo lu(t)|* dt. (10.77)
0 0

O

A stable rational SISO takes bounded inputs to bounded outputs, and finite energy
inputs to finite energy outputs.
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10.8 Rational Filters

Suppose that we have a linear system with input # € L?(0, oo) and output y €
L?(0, 00). Then we introduce the Laplace transforms

U(s) = /oo e *tu(r)dr € H?
0

Y(s) = / - e 'y()dt € H? (10.78)
0

and we suppose that they are linked by a multiplication formula Y (s) = T (s)U (s).
Suppose that T is holomorphic for s € RHP and T is bounded, so there exists
M > 0 such that |T(s)| < M for all s € RH P. The space of such functions is
called H*. Then T (s)U (s) belongs to H?forall U € H? The space H® forms an
algebra under pointwise multiplication of functions, and H°° contains S. So we can
seek to develop control theory using H* instead of S.

There is a factorization theory for H® functions that is based upon Beurling’s
notion of inner and outer functions [4]. The special feature of an outer function
R € H? is that the closed linear span of {¢e 7 R(s) : y > 0} is all of H>.
Observe that for f € L?(0,c0), the image of {f(t — y) : y > 0} under
the Laplace transform is {e™* f (s) : y > 0}. Wiener studied the properties of
{27:1 ajf(t—y;):a; € C; y; > 0} in various problems in harmonic analysis. We
present a simplified discussion that covers only the case of stable rational functions,
and leave the interested reader to consult books such as [34] for a complete account
of the theory. Rational transfer functions are important since they are relatively easy
to calculate.

By Proposition 6.36, any rational function G(s) can be expressed as G(s) =
P(s)/Q(s) where P(s) and Q(s) are stable rational functions. Our factorization
theorem applies to P(s).

Proposition 10.40 Let P(s) be a stable rational function with zeros z1, ..., 2, in
RHP. Then

(i) P(s) belongs to H*;
(ii) P(s) = B(s)R(s) where B(s) and R(s) are stable rational functions, with

n
S —2Zj
B =[], +zj~; (10.79)
j=1

(iii) |B(s)| < 1foralls € RHP, and |B(iw)| = 1 forall w € R;
(iv) R(s) has no zeros in RHP, R is bounded with |R(s)| < sup g |R(iw)| for all
s € RHP, where |R(iw)| = |P(iw)|, and

log R
0g R(s) € H>.

10.80
1+ ( )
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(v) If P € H? then R € H? and the linear span of {¢ V*R(s) : y > 0} is a dense
linear subspace of H>.

Proof (i) We have P(s) = ¢ + p(s)/q(s) for some ¢ € C where p(s) and g (s) are
polynomials with deg p < deggq, and ¢g(s) is stable. Hence P(s) — c as s — oo.
By the maximum modulus principle [56], we deduce that | P(s)| is bounded on RHP
and attains its supremum on R U {00}, so sup{| P(s)| : Ns > 0} = sup{|P(iw)] :
w € R}.

(ii), (iii) We define B(s) as above and observe that —z; is the reflection of z; in
the imaginary axis, so |s — z;| < |s+Zz;| forall s € RH P, with equality for s = iw.
Hence B(s) is holomorphic on RHP with zeros at z1, ..., z,, and B(s) is bounded
there with |B(s)| < 1, where |B(iw)| = 1. Evidently B(s) is stable rational.

(iv) The function R(s) = P(s)/B(s) is also stable rational, since the zeros of
B(s) and R(s) cancel one another; hence R(s) has no zeros in RHP. (We note that
R(s) can have zeros on the imaginary axis, but that is not a problem.) As in (i), we
can apply the maximum modulus principle to R(s) to deduce that |R(s)| is bounded
on RHP and attains its supremum on R U {oco}, so R € H®°. By (iii), we have
[P(iw)| = |R(iw)||B(iw)| = |R(iw)]|.

We can factorize

. al'[le(s =iy l_l‘j-:l(s —a))

R
© IT;_i(s = B)

(10.81)

wherea € C, p+q < r, the zeros iy; are on the imaginary axisand «;, B; € LHP.
Hence

p q

logR(s)  loga log(s —iy;) log(s — a;) " log(s — B;)
1+s _1+sjLZ 1+ +Z 1+s Z 1+s

j=1 j=1 j=1
(10.82)

s

and one can easily check that each summand gives a function in H?.
(v) Suppose that F € H? is a nonzero function that is orthogonal to all the
functions e 7 R(s) in HZ, so

SN . do
/ F(iw)e'"”R(iw) oy = 0 (y > 0); (10.83)

—00

then by multiplying by e~7* and integrating with respect to y € (0, co), we deduce
that

/oo F(iw)e!”R(iw) do _0 (z > 0). (10.84)

—c0 iw—2z 2
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We express R(s) = Z;:l aj/(s — B;) in partial fractions where RB; < 0, so that

0 B iyo T = d
/ (iw)e Yo Y o0 iz 0y (10.85)
—o 0=z ‘o —iw— B 27

then by the calculus of residues

r r

aj F(=B))a,

F(2) To- =0, (10.86)
; z+ B ; z+ B
SO
"1 F(=Bpaj/z+ B))

FQx) = Lj= L i@+ P . (10.87)

> i—1aj/(z+ Bj)
The numerator has poles at 7 = —f ; € RH P, but these are canceled by poles on the

denominator. There are also poles arising from the zeros of the denominator, namely
0= Z;‘:l aj/(z+ Bj),so R(—z) = 0; all the zeros of R are in the closure of the

LHP, s0 z is in the closure of RH P, contrary to the assumption that F € H>. O
This B(s) is a finite Blaschke product, and gives an inner function. There are
sometimes known as all pass functions in the engineering literature, since the gain

is one at all frequencies. The function R(s) is an outer function, otherwise known
as minimum phase; see [13].

10.9 Shifts on L2

In this section, we consider transfer functions that are not rational.

Example 10.41 For t > 0, the function T'(s) = e~ ™ belongs to H*°, and on the
imaginary axis it reduces to T (iw) = e~ '*®, where the gain is |e™'*”| = 1. This
transfer function represents a phase shift of —tw.

More generally, we can consider t; > O and a; € C, and a transfer function such
as

T(s)=) aje ™ (10.88)
j=1

which belongs to H.
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Definition 10.42

(i) As a notational convenience for f € L2(0, co) we write f(r) = 0 fort < 0.
Given t > 0, the (forward or right) shift operator S; on L?(0, 0o) is defined by
S. f(t) = f(t — 1) for f € L0, 00).

(i) The backward shift operator A; on L?(0,00)is Ar f (1) = f(t + 7).

Att > 0, it is plausible that one knows the values of f(s) for 0 < s < t, so that
St f(t) = f(t — t) involves known data. However, A; f(¢) = f(t + t) involves
future values of the signal, so may be inaccessible. In this interpretation, the forward
and backward shifts relate to different situations. Observe that e ~$(+7) = ¢ =575
With fis > 0, f(r) = e~ belongs to L?(0, 00) and A, f (1) = e ™ £ (1), so f ()
is an eigenvector that corresponds to eigenvalue e *.

Proposition 10.43

(i) The shift is an isometric linear transformation of L*>(0, 00) so ||S¢ f|| = |l I
forall f e L*(0, c0).

(ii) Under the Laplace transform, S; on L*(0, o0) corresponds to multiplication
on H? by ™.

(iii) The backward shift is a bounded linear transformation of L*>(0, 00) so || A< | =
1, and |A; f|| = Oast — oo forall f € L*(0, 00).

(iv) AcS: =1, and St Ay =1 — Por), where P o) f(t) = L0,0)(t) f (1),

(v) AL =S;and S, = A..

Proof

(i) The operator S; is evidently linear, and the effect of S; on f is to shift the graph
of f to the right by 7, thus opening up a gap [0, t) on which f( — ) = 0.
(i) Under the Laplace transform

L(S: f)(s) = /00 e fit—1)dt =e " /OO e ™ fu)ydu = e Lf(s).
0 0
(10.89)

(iii) The effect of A; is to move [0, 00) to [, o0) while leaving the graph of f
fixed; thus the portion of the graph of f above [0, 7) is discarded. We have

AL fII> = /0 |f(t+1)*dt = / | f ) *du. (10.90)

T

We deduce that |A; f|| < || fIl, and when f = [ 2;) we have equality. Also,
taking the limit as Tt — oo, we see that [|A; f|| — O.

(iv) This follows from carefully applying the defining formulas, noting that f(r —
7) = 0for ¢ < 7. In the product A, S; we first shift the graph of f by t to the
right, then move the axis to catch up, and the overall effect is to preserve the
graph. In the product S; A;, we first shift the axis, then move the graph. We
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have S; A f(t) = Ij1,00)(t) f (¢), since the part of the graph of f above [0, 7)
is irretrievably lost.
(v) We have

(Acf. g) =/0 f+o)gn)dt =/O J)gu —t)du = (f, S:8).

(10.91)
O

Part (ii) has an important consequence. We have
(.¢]
L —1))(s) = / h(x — T)0.00)(t — T)e *'dt = e T L()(s) (10.92)
0

so that

L(h(t — r))(sr) — L)) _ e‘”r— lc(h)(s). (10.93)

The obvious move is to let T — 0, as in differentiation, but we need to make sure
that the functions that emerge belong to the correct spaces. So we consider D =
{f € H? : sf(s) € H?}, which is a linear subspace of H2. Also note that | f (iw)| <
1/(1+ o) + (1 +0?)|f(iw)|?, so [% | f(io)|do converges for all f € D. Given
W > 0, we also note that

e—loT _ 1

. —iw Y .
+iw= / (e — Ddu (10.94)
T T 0

converges to 0 as T — 0+ uniformly for @ € [—W, W]; also by estimating this
integral, we see that
—iwt

‘e -1

+io| < 2ol (10.95)

so by either the Dominated Convergence Theorem, or uniform convergence, we
deduce that

0 | pmiwT _ 2
/ ‘ n iw‘ | fiw)2dw — 0 (10.96)
oo T
as T — 0+ . Hence

—iwT

e -1

fliw) —» —iof (iv) (10.97)
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in L*(iR), so (™™ — 1) f(s)/T — —sf(s)in H>asT — 0+ .If h € L*(0, 00)
has f = h € D, then h € L*(0, o) and

h(it —t)—h(@)
T

— —h' (1) (10.98)

in L2(0, 00) as T — 0+.

Example 10.44 Delay differential equation

The standard (A, B, C, D) is a realistic model for processes that take place
almost instantaneously, such as electrical current and radio communications. Other
processes take place with some delay: medicines take a while to have effect,
customers pay bills slowly, all in good time. In such examples, we can consider
a delay-differential equation

n n

ZAjX(t_Tj)‘I'ZBjU(t_Tj)

dx
dt o o

n n
Y=Y CiXt—1)+ Y DUt —1))
j=1 j=1
where we have introduced delay times 7; > 0 and constant matrices A;, B, C;

and D;. The input U and state X are extended as functions to that U(t) = 0 and
X (t) = 0 for all # < 0. We introduce

[A(S) B(s):| _ Y Aje U Y| BjeT U
C(S) D(S) Z’}:l Cje_‘[js Z’}:] Dje—‘[js

Then the Laplace transform of the delay-differential-equation is
sX(s) = A)X(s) + Bs)U (s)
Y(s) = C(5)X(s) + D()U ),
so that
Y(s) = (D(s) + C(s)(sT — A() ' B($)) U (s).

The entries of A(s), B(s), C(s) and D(s). all belong to H*°. There is a delicate
question as to when the entries of (s/ — A(s))~! also belong to H°.
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10.10 The Telegraph Equation as a Linear System

Consider a long wire with position x > 0 along the wire, and let u(x, t) be the
electrical current at x at time ¢ > 0. In particular, let f(¢) be the signal at time ¢ > 0
at the emitter, where x = 0. Let k > 0 be a constant relating to the capacitance and
electrical resistance of the wire. Then the telegraph equation is the partial differential
equation

u 9%u
o =« 92 (10.99)

with the initial condition u(x, 0) = 0, the boundary condition (0, #) = f(¢) and the
boundary condition at infinity u#(x, ) — 0 as x — oo. Then the Laplace transform
in the time variable satisfies

oo ou 2 00
/ e T dt =« / e Tu(x, tdt, (10.100)
0 0
so by integrating by parts and invoking the initial condition, we obtain
00 32 oo
s/ e Tu(x,dt =« / e Tu(x, t)dt; (10.101)
0 ax2 Jo
then
(o)
/ eSu(x, )dt = Ae VS/% 4 Be*Vs/K, (10.102)
0

and since u(x,t) — 0asx — oo,weneed B =0,and A = fooo e 3 f(n)dt from
the boundary condition. Laplace calculated the integral [10, page 171]

o0 x? dt N/E -
_ _ —sx/k
/O exp( per st)2t3/2 e, (10.103)
SO
o o dt
/ etu(x, Hdt = A / ) T st 0 (10.104)
0 0 2km -
hence
t xefxz/(4l(r)
u(x, 1) =[ f(t — 7)dx. (10.105)
0o 2Vkmt3



350 10 Hilbert Spaces

The telegraph (or heat) equation is discussed in the context of semi-group theory in
[2]. Here we introduce various Hilbert spaces with their inner products to describe
how the various operators may be defined. First, let

Hy = L*((0,00); C) : (f. g) =/0 Jf(x)g(x)dx (10.106)
or equivalently

Hy = L%((0,00); C) : (f, g) = ! /Oo fliw)gio)do. (10.107)

2 J_

Next we introduce the space of f € H withdf/ds € H, namely

Hi = {f € L*((0, 00); C) : df/ds € L*((0, 00); C)}

© df d
S, (10.108)

thon= [ fegemar+ [0 %

or equivalently H; = {f € L2((0, 00); C) : w f (iw) € L2(R; C)}
(frgh= ! / fliw)giw)dw + ! / o’ fliw)g(iw)do. (10.109)
21 J_ o 2

—00

Clearly H; is a linear subspace of Hy, but Hj is not a closed linear subspace
of Hy. The purpose of introducing H; is to ensure that some useful operators are
bounded.

Lemma 10.45 The linear map C : Hy — C: f — f(0) is bounded.
Proof As in Proposition 4.27, we have

Cf = f(0)= 211 /oo fliw)dw (10.110)

where by the Cauchy—Schwarz inequality

<1

1 L 1 o0 A 2 /2,1 1/2
o [wlf(zw)ldwf (h /;00(1+a) ) fiw)] da)) (h /m 1+w2dw)
(10.111)

so [Cf1*> < (f. [)1/2.



10.10 The Telegraph Equation as a Linear System 351

Next we introduce
H> ={f € L*((0, 00); C) : df/dx, d* f/dx* € L*((0, 00) : C)}

®dfd 42 f d?
f gdx—i—/ Fd%8 0 a0112)
0

o= [ fegema+ [0 Lo

or equivalently H, = {f € L2((0, 00); C) : w? f(iw) € L*(R : C)}
I L, N
(fog)r = / Fliw)giw)do + / o flio)gw)do + / o fliw)giw)do.
27 J_ oo 27 J oo 27 J_ oo
(10.113)

here H» is a linear subspace of Hj, and the differential operator H, — Hy g +—
d?g/ds? is bounded.

. 2 . .
Now we consider « > 0 and Ag = « Zé. There is a linear system

dX
= AX + Bu
dt
y=CX

subject to the initial condition Xo = X (-, 0) = 0, where the input is an impulse at
t =0so Bu(t) = 0forall t > 0 and we require y(¢) = f(¢), where f : [0, 00) —
C is a bounded and continuous function. This problem has a solution

(" xexp(—x?/(4kT)) B
X(x,1) _/0 Vi3 ft —1)dr. (10.114)
Observe that
xexp(—x?/(4k1)) 0 exp(—x%/(4xT))
s =k, St (10.115)

belongs to H» since the exponential factor decays rapidly as x — oo. Hence
we can interpret this linear system as a system with state space Hp, with main
transformation A : Hy — Hjy and output transformation C : H, — C. The initial
condition is ill-defined since

4 3 dx — o0 (t — 0+). (10.116)
KT

/00 x2exp(—x?/(2kT))
0

O
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10.11 Exercises

Exercise 10.1 (Laguerre Shift)
(i) Let

Sf = s =2 [ U (f € L2000,
0
Show that the Laplace transform satisfies
s—1
LSf(s) = Lf(s) Ms > 0).
s+ 1

(i) Recall the Laguerre polynomials from Example 8.14, and let h,(t) =
V2e7" L, (2t). Deduce that

Sha(t) = i1 (0).

Exercise 10.2 Let the Laguerre polynomials of index 1 be

er d"

(D _
Ly ) = nlx dx"

(x"e™)  m=0,1,...). (10.117)

(i) Show that Lfll)(x) is a polynomial of degree n. Show also that the Laplace
transform of h,(ll)(x) = xefo,(ll)(2x) is

) _ (s—1D"
£h\D(s) = D (e (10.118)
(i1) Deduce that
) M t
@O D@ = (D Ly2n), (10.119)
(ii1) Calculate
- (—io— 1" dw
10.12
/,oo TUD) (o g 1142 21 (10.120

for f € H?.
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Exercise 10.3 Recall the Laguerre polynomials from Example 8.14. Let h, () =
V2e 'L,(2t) and ¢ (1) = e forn =0,1,..., 1 > 0and Rs > 0. Show that

/000 &t + why(wW)du = /2e™" (s(s+_1)1311 (t>0) (10.121)
and deduce that
00 00 _ 1yntm
/0 /0 ¢ (s + u)h,(w)hy, (t)dudt = 2(S(S+ 1)3+m+2 (10.122)

where the right-hand side gives a Hankel matrix
o
n

(S _ 1)n+m 1) 2 00 )
[2 (s + 1)"+m+2]n,m=0 - [n +m+1J Mt)h”*m(t)dt] m=0" (10.123)

where hD (1) = te=' LV (21).

Exercise 10.4 By [19, (8.977)], the Laguerre polynomials satisfy the addition rule
n
LV (x +y) = ZL,-(x)Ln,j(y) (x,y>0;n=0,1,...). (10.124)
j=0

Obtain a simple expression for the integral
o
/ e VLW Q2x +2y) f(y)dy (10.125)
0

for f € L*(0, 00).

Exercise 10.5 As in the Proposition 10.43, let S; be the multiplication operator
on H? that represents the shift on L?(0, 00), s0 Sy f(s) = e 5T f(s) for f € H>.
Calculate the Laplace transform in the 7 > 0

L(S: f)(z) = /oo ¢S f(s)dTr  (Mz > 0), (10.126)
0

and interpret the result.

Exercise 10.6 (Shift on Hardy Space) For r > 0 and f € H?, let S, f(s) =
fis+1).

(1) Derive the formula

fs+71)= /oo e ST ()t (10.127)
0
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(i1)) Deduce that S; is a bounded linear operator on H 2 such that

0<(S:f, f)<(fif) (feH.

Exercise 10.7 (Invertible Rational Filters) Let P(s) = B(s)R(s) be a factoriza-
tion as in the Proposition 10.40. Show that 1/R(s) is also stable rational, if and only
if:

1) B(s)=1;
(i) R(s) > aass — oo forsomea € C\ {0};
(iii) R(s) has no zeros in the imaginary axis {iw : w € R}.

This is the point where things become complicated for general H® filters; the
invertible ones are difficult to describe.

Exercise 10.8 (EVAD) Dorf and Bishop [12] propose a model for an EVAD device
for managing cardiovascular illness which has a plant G(s) = ¢™* and a controller
K(s) = a/(s(s + b)), where a, b > 0 are constants with indicative values a =
5, b = 10. For internal stability, we require

F = ! I K (10.128)
" 1+KG|GKG ’

to have entries in H°.

(i) Let f(s) = s(s+b)+ae™*, and consider the image of the semicircular contour
[—5i, 5i]16 S5 under f. By applying the argument principle, determine a region
on which 1 4+ K G has no zeros.

(i1) Find a and b such that the entries of F are in H the space of bounded and
holomorphic functions on RHP.
(iii) Produce plots of the entries of F in the style of Nyquist contours.

Exercise 10.9 Find the Laplace transform of the backward shift A, %, and show that
under suitable conditions

Ath(t) — h(1) N dh
T dt

in L2(0, 00) as T — 0.

Exercise 10.10 (A Finite-Rank Hankel Operator) Let wi, ..., w, be distinct
pointsin D and let ay, ..., a, € C. Define I' : H> — H? by

Tf@) =Y ajfwpka;z)  (f € H. (10.129)

Jj=1

(1) Show thatI'f = Oif and only if f(w;) =0for j =1,...,n.
(ii) Show that the shift operator satisfies S'T = I'S.
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(iii) Show that

(25, 2" =) ajwi™. (10.130)
j=1

This is a finite-rank Hankel operator in the frequency domain; compare Ex
6.17.

Exercise 10.11 LetA; e RHP anda; e Cforj=1,...,n.For f € L2(O, 00),
let

rfe) =3 a; / T )y, >0, (10.131)
=1

If f(y) = ffooo g(iw)e!® dw/(2m), show that I' f has Laplace transform

n

L)) =Y

j=1

ajg(rj)

. 10.132
Ajts ( )

Exercise 10.12

(i) Show that yr(¢) = e Msint is integrable for ¢t € R, that ¢ is once continuously
differentiable with bounded derivative and that ¥ (nw) = 0 for all n € Z.
(i1) Let ¢ be as in Theorem 11.4 and sinc as in (11.6) Show that

o) = Z /00 sinc(a(t — u))¢(u) du. (10.133)
(iii) Let
a . d @ d
rrw= [ érrmi Tew= [ et
—a a —a 2a
show that
T/Tf(x) = /a sinc(a(x — u)) f(u);iz (f e Lz([—a, al; dx/(2a)).

(iv) Show that S(#) = sinc (at) satisfies the differential equation

+ +a =V,

which is one of the Bessel family.
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Exercise 10.13 Define Bessel’s function of the first kind of integral order n by

T dw
Jo(x) = / exp(ix sinw — inw) rp (10.134)
b4

-7

Let f(w) = e~ixsin® for x ¢ R and w € [—m, 7], and deduce a formula via the
sampling theorem 11.4 for the corresponding signal ¢.

Exercise 10.14 Let B : H — H be a linear operator such that |B|| < 1. By
considering Exercise 3.9, show that there exist linear operators C and D on H such

that
U= B D H
—CB H

suchthat U'U =UU' =Ton H® H.



Chapter 11 m)
Wireless Transmission and Wavelets Check for

The final chapter considers two of the most important topics in modern signal
processing, namely wavelets and wireless transmissions. The origin of wavelets
lies in the work of Haar and Paley on orthogonal series of functions, and the Haar
wavelet was introduced as an orthonormal basis for L2[0, 1] with properties that
Paley realized were remarkable. The Haar system was interesting in its own right,
and was studied as a model of an orthonormal system which was apparently simpler
than Fourier series. The work of Haar and Paley started a course of study that led to
martingales and the sought-after results about Fourier series in the 1960s and 1970s.
It was in the 1980s that the study of wavelets really sprung to life, and completely
transformed signal processing. In this chapter we look at one wavelet, associated
with the sinc function, which is known as Shannon’s wavelet.

Basic models of radio communication involve a single transmitter broadcasting
to a single receiver. In modern wireless communication for mobile telephone
networks, there are many transmitters and many receivers, so a more complex model
of transmission is essential. We discuss the model due to Telatar [55], which has
been highly influential. The results of this chapter draw on ideas from previous
sections of the book, and convey the main points of the models in question. One
can extend the analysis by introducing more advanced mathematics and more
sophisticated computational tools, such as are discussed in the research literature.

11.1 Frequency Band Limited Functions and Sampling

It is often desirable or technically essential to consider signals such that the angular
frequencies are constrained to lie in a bounded interval. For a > 0, we introduce the
Hilbert space L?[—a, a] of square integrable complex functions f : [—a,a] — C
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with the inner product

[ dw 1.1
(f’ g)LZ[—a,a] - . f(w)g(w) 2 5 ( . )

where we regard f () as representing a signal with angular frequency o € [—a, al.
Then L?[—a, a] has complete orthonormal basis (e'” nw/ )92 oo SO that

o
flw) = Z el (11.2)
n=—oo
where the Fourier coefficients are
a . d
= | floye Tl e, (11.3)
—a 2a
and they satisfy
S a
dw
> el =/ [f@)l* - (11.4)
_a a
n=—0o0
Definition 11.1 (Unnormalized Sinc Function) Consider f(w) = I[[_4q(®),
which has
4 . d inat
sinc (m):/ (it0d@ _ smat. (11.5)
—a 2a at
With a = 1, we have the unnormalized sinc function, which in this book we

simply call sinc. With @ = m we obtain sin(z¢)/(wt), which is the normalized
sinc function; in signal processing and MATLAB, this is called sinc (Fig. 11.1).

Fig. 11.1 Normalized sinc 1
function
05+
0
-0.5
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Lemma 11.2 The unnormalized sinc function has the following properties:

(i) sinc (t) = sinc (—1t) forallt € R, so sinc is even;
(ii) sinc (0) = 1 and |sinc (t)| < 1 forallt € R;
(iii) sinc (¢) is decreasing for 0 <t < m;

(iv) sinc(t) = Oast — Foo, and

T
lim sinc (¢)dt = m, (11.6)

T—oo J_T

(v) sinc is not (absolutely) integrable over R;
(vi) sinc (z) defines an entire function, with zeros at z = nx forn € 7\ {0}.

Proof

(i) Both ¢ and sint are odd functions, so their quotient is even.
(ii) The integrand satisfies |¢!’®| < 1, which gives the bound on sinc.
(iii) Consider

d sint tcost —sint

dt t 12

which is clearly negative for 7/2 <t < m; while for 0 < ¢ < m /2 it is also
negative since ¢ < tant.

(iv) We have |sinc(¢)| < 1/]¢], so |sinc(t)| — 0 as |¢| — oo. The improper integral
was found by complex analysis in Lemma 4.24.

(v) We show that

T |sint|

, dt — oo (T — o0). (11.7)
0

We can split the integral into integrals over intervals [nm, (n + 1) ], where a

typical odd integral contributes

2n+1)m | sint| 1 2n+m 2
/ di > / sint dr = . (118)
2nm t (2}’l + 1)” 2nw (21’l + 1)7'[

where Y > | 2/(2n + 1)7 diverges by comparison with the standard divergent
series Z;O:I 1/n. The results (iv) and (v) show that sinc(¢) converges to O
slowly as + — oo. This property also holds for some related functions in this
section.

(vi) The formula sinc(z) = (sinz)/z gives an entire function with convergent
power series Y . (— 1)"z%" /(2n + 1)!. The zeros of sinz = (!> — e~2) /(2i)
occur where %% = 1, namely at 2iz = 2nmi forn € Z. At z = 0, the zeros on
the numerator and denominator of (sin z)/z cancel.

O
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Lemma 11.3 (Shift and Translation) Ler f € L*[—a,a] give signal ¢(1) =
ffu ' f(w)dw/(2a). Then &' f(w) gives a function in L?*[—a, a] with corre-
sponding signal ¢ (s +t) fors,t € R.

Proof We have

a
oo d
O +1) =/ elosHion £y 4@ (11.9)
—a 2a
0
The following result describes the corresponding signal in the time domain.
Theorem 11.4 (Sampling Theorem) For f € L*[—a, a], let
4 - or A
$(2) = fw)e'™ (z €C). (11.10)
—a 2a
(i) Then ¢(z) is of exponential growth of growth rate at most a, so that
sinh 2ay .
()] < 2ay 1132 ge (@=x+iyeC); (11.11)
(ii) ¢(2) is an entire function;
(iii) the energy of the signal ¢ is finite, so
o T a
f ()t = f |f (@)Pd; (11.12)
o0 2a% J_,
(iv) ¢ has an orthogonal expansion in terms of sinc functions, so
[e¢)
b@t) = Z ¢ (rn/a)sinc (at — ni); (11.13)

n=—00
thus the sequence (¢ (ntn/a));> _ . determines all the values of ¢ (t) fort € R.
Proof

(i) With x, y € R, we have el = ¢l®X o= ®Y \where the first factor is unimodular,
so by Cauchy—Schwarz inequality, we have

a do 12
purinP=| [ e @]

a a
< / ¢~20v 4 f @4
—a 2a J_, 2a

sinh 2ay

_ 2
- 2ay ”f”LZ[,a’a]'
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(ii)

(iii)

(iv)
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Observe that (1/2) logsinh 2ay ~ ay as y — 00, so a is the maximum growth
rate of ¢ (x + iy).
We can differentiate through the integral sign to obtain

a
W _ " iwei ). (11.14)
dz —a 2a
which is justified by estimates such as in (i).
The function g(x) = f(x —a) for 0 < x < 2a and g(x) = 0 for x > 2a
has g € L?(0, oo) with Laplace transform g(w) = 2ae™'““¢(—w), so we can
apply the Paley—Wiener theorem to g.
We multiply the series (11.2) by ¢/“! and integrate, and the term with index —n
involves

/“ g0t g—imno/ade =[ ei.twim.nw/a ]a _ sin@r =nm) s
—a 2a 2a(it —inn/a)l-a at —nmw

This produces the series

b() = Z o, sin(at—rm), (11.16)

M at —mn
stated above. The Paley—Wiener theorem shows that the Fourier transform
operates as a linear isometry on L’[—a,a], so the orthonormal sequence
(e”””)ﬁifoo is mapped to an orthonormal sequence, and the series converges
since (c,,) is square summable. The function ¢ is entire, so the value of ¢ at a
point such as wn/a is unambiguous; one checks that c_, = ¢ (wn/a), and

o0 a d
> I¢(nn/a)|2=/ If(w)lzzz). (11.17)

n=—0oo

o]

Note that the sampling sequence (wn/a);=_ .

depends upon a.

Remark 11.5

@

(i1)

By definition, a band limited function f lives on [—a, a]; such a function could
be continued to become a 2a-periodic function on R, but we choose not to make
this extension; instead we cut off the function outside [—a, a]. The signal ¢ (¢)
is defined for + € R and will not be periodic. Nevertheless, we use periodic
functions and the sum (11.2) to investigate the properties of ¢(¢). The results
of this section are related to those of Sect.4.10, which specifically involved
periodic functions.

Condition (iv) is important in applications to music. Suppose that we know in
advance that the signal ¢ (z) is generated by an f(w) with angular frequency
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€ [—a, a]; this [—a, a] is known as the range of frequencies. Then by finding
¢(tn/a) for n € Z, we can determine the complete function ¢ (z). We do not
lose any information by sampling only at these values, and we do not gain any
more information by sampling more frequently. Then a/(27) is known as the
Nyquist frequency.

Example 11.6 (Tent Function) We take

fx)=a—x 0<x <a;

a+x —a<x<0
so that by integrating by parts we obtain

a a i 2
50 =/ ei“”f(w)dw :/ @ — ) cosa)z‘dw _ 2 sin at/2;
2a 0

—a a at?

and

2

f(a))zdw =/ @ _w)zda) _a .
—a 2a 0 a 3

The identity from the sampling formula is

2 a o0 o0 4
a dw 2 4sin” nm/2
3 =) @, = 2 et = 3L e
n=—oo n=—00
which involves different contributions from n = 0, n odd and n a non-zero even

integer, SO we obtain

xt x* ad 1
= 2 ,
12 16 + ; 2n — 14

which is equivalent to 74/90 = 3% 1/n%.

Shannon’s Approximation by Finitely Many Samples

The sampling formula (11.13) does not itself give any quantitative estimate on how
well the sampling formula converges, so we describe a complement due to Shannon;
see [14]. We write ¢ (t) = ¢(t + 1) so that ¢, (1) = [ ' f(w)dw/(2a). For
h > 0, the signal ¢, (¢) runs ahead of ¢ (¢); whereas for 4 < 0, the signal ¢, (¢) lags
behind ¢ (1). We deduce that

a

PW, = {¢:¢(r) =/ ¢ f ()2 [ e LZ[—a,a]} (11.18)
2a

—a
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is a linear subspace of Lz(R; C) suchthat ¢ € PW, = ¢, € PW, forall h € R.
The samples (¢ (nw/a))o2_ ., occur at points which are translates of the original
sampling points, and we can eliminate / by integrating the £> sum in the sampling

formula over an interval

w/a X ) 00 5
fo > |én(nm/a)|"dh = f |6 (1) [*dt.

n=—00 -

From the identity

¢n(t) = Z ¢n(mn/a)sinc (at — nr); (11.19)

n=—oo

we have

—-N—-1 oo

o N
/_Oo (¢>h(t)— =ZN¢h(n'n/a)sinc(at—nn)‘zdt:Z >+ Y |enGn/a))

n=—00 n=N+1
(11.20)

SO

w/a oo
i IO
T Jo -0

N

o0 —Nn/a
¢p(Tn/a)sine (at — nn)‘zdtdh = / +/ | (1) |2dt
N ( -

n=— N+Dr/a o9

(11.21)

where the right-hand side converges to zero as N — oo. We infer that for large N
and small ||, the sum

N
Z ¢n(rn/a)sinc (at — nw) (11.22)

n=—N

gives a useful approximation for ¢ (#). One can obtain more quantitative version of
this statement as in page 130 of [14].

Remark 11.7

(i) The series (11.13) is known as a cardinal series after Whittaker, or Shannon’s
interpolation formula. Our proof uses the special property of ¢ that it is the
inverse Fourier transform of f € L?*[—a, a]. The converse of this Theorem
is also true, but we omit the details which can be extracted from [34]. Our
formulation is intended to avoid Poisson summation, which can be difficult to
apply rigorously.
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(ii)) The width of the band needs to be interpreted carefully. The formulas
2coswt = el + e7' and 2isinwt = €' — ¢~'“" show how one can
produce real waves with angular frequencies 0 < @ < a, so in this respect the
bandwidth is a.

Remark 11.8 (Digitizing Sound) Suppose for the sake of simplicity that we have a
musical instrument capable of producing a sound at a single pitch, as represented
by A sin wt where the (angular) frequency is 0 < w < oo. It is perceived that the
sounds at frequencies @ and 2w are similar, and we say that they are an octave
apart. We then choose wp > 0, and call the interval [wo, 2wp] an octave. Music
is an analogue phenomenon, in the sense that one can take @ to be a continuous
variable; however, to build practical instruments and simplify musical notation it is
convenient to restrict the choice of frequencies we allow in the octave. Musicians
therefore divide the octave into 12 subintervals, and refer to the notes as a system of
semitones, for instance by using successive frequencies in the ratio 2!/12 to give the
equally tempered scale. The choice of wy, the choice of 12 and the precise mode of
dividing the octave are historical and cultural choices, as discussed in [7]. Once we
have selected these, we can convert music to a digital phenomenon, which is easier
to communicate. In the next section, we proceed to show how all the signals can be
described in terms of a single function under scaling and translation.

11.2 The Shannon Wavelet

The modern theory of wavelets fully exploits the scaling properties of families of
functions in signal processing. In [44], there is an accessible introduction to the
general theory, and here we focus upon a specific example relating to band limited
functions. In this section we consider A ; = [—2/!x, —2/7)U(2/ 7, 2/+! 7] which
we regard as the range of angular frequencies for one octave; as j varies through Z
we have pairwise disjoint sets A; which correspond to all possible octaves. For
each A ; we introduce the corresponding space W; of finite energy signals that have
frequencies in A ;. We show that each W; has a natural orthonormal basis, and that
the bases for different W; are related by a scaling formula.

Exercise Show that the function
flw) = Ty _121(@) + €1 /2,11 (@) (11.23)
gives signal, with graph as in Fig. 11.2,

Y(t) = sinc(t — 1) — (1/2)sinc((t — 1)/2). (11.24)

To begin the construction, we consider the intervals [—2j 7, 2) ] for j € Z,
which are commonly used in harmonic analysis. One can think of [, ] as the
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Fig. 11.2 Normalized
Shannon mother wavelet
2sincw (2t — 1) — sincm (f —

1/2)

basic interval, and then obtain all the other intervals by repeatedly doubling or
halving the interval by dilating about the centre 0 by powers of 2. The intervals
evidently satisfy

(i) they give an increasing sequence, so

- C [—2_271, 2_271] C [—2_171, 2_17t] - [—207t, 2071] C [—2171, 217t] c...R;

(11.25)
(i) mj‘;_m[—gfn, ;fn] = {0}, and uj‘;_oo[—zf¢, 277 = R;
(ili) w € [=2/m, 2/7] if and only if 20 € [—2/F'7, 2/+17]; this is a scaling
property.

These properties of the [—2/7, 2/ 7] are reflected in the properties of the spaces
L*[2/7, 27 7], which give rise to band-limited functions where the frequency range
in [=2/7,2/7] is changed by factors of 2. Under the Fourier transform, we have
spaces V;, which we define by

2/
vj={¢(t)=/ Y f(w) de :feLz[—Zjn,Zjn]}. (11.26)

im 2j +1 w
Proposition 11.9 The subspaces V; satisfy:

(i) --cVacVyicVocVicVacC---CLXR),
(ii) N Vi = {0} and U?O:—oo V; is a dense linear subspace of L*(R);

J=—00
(iii) ¢(t) € V; ifand only if /2¢(2t) € V11, and the map ¢ (t) — ~/2¢(2t) is an
isometry;
(iv) ¢(t) € Vo ifand only if p(t — k) € Vo for all k € Z, known as Z-translation
invariance;

(v) Vo has an orthonormal basis (sinc(mw (t — k))),fiioo.

The effect of translation as in (iv) is to move the graph of ¢ (¢) through steps of
length one to the left or right.
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Proof
(i) We can map L?[—2/7, 2/ 7] isometrically into L2[—27/ 17, 2/+1 7] by
F@) > V2 @) iz 2in)(@)- (11.27)
Then (i) follows from the sampling theorem 11.4.
(i1) This can be deduced from the Paley—Wiener Theorem 10.36. The key point is

that for all f € L?(R) we can introduce filw) = ]1[721"(152]‘](0)) f (w) such that
fi € L>(R) and

/ If (@) = fi(@)Pdo—0  (j — o0). (11.28)

(iii) From the definitions, we have

2ig do 20 g do
20(21) =2 2ot =42 il f(w)2)
V220 =/ f_y_ne F@) i =Y f_y_“ne F@/2),;0
(11.29)
where 2 [% | (20)|2dt = [ |¢(1)|*dt.
(iv) This follows from the Lemma (11.9).
(v) This follows from the sampling theorem 11.4.
O

We have [2/7,2/7] C [2/%17, 2/ 7] and we introduce A as the difference
between these sets. Let A; = [—-2/Flg, —2/7) U (2/7,2/F 7] so that A; N
[—2/7,2/n] =Vand A;U[—2/m, 2/ ] = [—2/ 17, 27T ]. One can think of A
as representing the frequencies of sound in one musical octave. Then we can form a
disjoint union of sets

{0yu U Aj=R. (11.30)

j=—o0

Remark 11.10 Proposition 11.9 shows that the subspaces V; give a multiresolution
of L2(R), known as an MRA. For some alternative choices of MRA, suitable for
other applications, see [44] and [1].

Proposition 11.11 (Shannon’s Wavelet) Let the basic function be
Y (t) = 2sincrt — ) — sinc(nwt — 7 /2). (11.31)

Then

(2f/2w(2ft _ k))"fk (11.32)
Js

=—00
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gives a complete orthonormal basis for L*>(R).

Proof We introduce the subspace W; of L*(R) by

={¢>(t)=/ ¢ flw )2/+1 feLz(Aj)] (jez.  (1133)

Aj

First we consider Wy. We can embed V) isometrically in V) by ¢(¢) — V' 2¢(2t)
with range Vo and introduce the orthogonal complement Wy of Vo so that V| =
V() @ Wp. Then

Y () = 2sinc((2t — 2n — 1)) — sinc((2t — 2n — 1)w)/2) (11.34)
gives an orthogonal basis (y,)5 _ ., for Wy.
We observe that (2’1/2]I|,,w, (w)ei" o2 _ o is orthonormal in L2(R), and
Q@ —2m 2 (@)™

is orthonormal in L2(R). Further, one checks by calculation that Q-2 Ao
(w)e! @t/ 2);’,‘3:_00 is orthonormal in L2(RR); note that the indices 2n + 1 here are
all odd. This suggests that we can embed spaces of functions by using odd and even
Fourier exponents. We observe that L>[—, 7] may be embedded isometrically as
a subspace of L?[—27, 27] via by taking g(®) = Y po . bee'*® € L’[—m, 7]
and mapping this to > po bre'?*@/2 with w € [—2m, 2], where the index 2k is
even, so that the orthogonal complement of the range in L>[—27, 27] is the space
of h(w) = Y22 cxe! Do/ with w € [—2m,27] and Y, |ck|* convergent,
giving the space with odd Fourier exponents.

Now we consider Ag instead of [—2, 277], and look at the odd indexed Fourier
components. We observe for f(w) = Z,fi_oo age! Z+Do/2 i L%(Ag) we have

. d
a= | f(w)e"@"“)‘”/zz;’) (11.35)
0

hence the corresponding signal is

() =/ “‘"f(w)
Ao
Z ak/ / i(2k+1)w/2+iwtdw
2 T 2

2k + 1+2t)>. (11.36)

_ Z k<251nc(n(2k~|— 1 4 2¢) — sinc )

k=—o00
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The subspaces L2(A j) are orthogonal subspaces of Lz(R) since the A; are
pairwise disjoint, so by the Paley—Wiener theorem 10.36, the spaces W; are
orthogonal in LZ(R). We have

2j/2w(2jt k) = 2j/2/ ei(2jt7k)w7iw/2dw _ 2]‘/2[ PtV =i@k+1D27 v d‘:
Ao 2w A 2/t

(11.37)

J

which shows that 2//2y(2/¢ — k) are orthonormal for j, k € Z. One can prove that
this system is complete in L2(R). O

Remark 11.12 The function v is known as Shannon’s mother wavelet, such that the
dyadic scalings and integer translations of i give an orthonormal basis of L*(R).
This choice of wavelet is particularly well suited to digitization of sound, since

(i) the function ¥ of (11.31) has a relatively simple formula;
(ii) the derivatives of i exist and are continuous;
(iii) the Fourier transform of i is of compact support.

The functions ¥ belongs to LZ(R); unfortunately, ¥ is not integrable, since sinc is
not integrable, as we noted in Lemma 11.2.

11.3 Telatar’s Model of Wireless Communication

Consider a main line railway station, filled with travelers equipped with mobile
telephones. There are many transmitters on the various platforms, and numerous
receivers, and a background of unwanted radio signals from neighbouring buildings.
When a traveler seeks to call home to report on the forthcoming journey, the call may
be picked up by several receivers and degraded by the noise. We seek to model this
complicated situation to understand what is transmitted and received.

Suppose that there are ¢ transmitting antennas and r receiving antennas, and let

e Y € € be the received signal;

o X e C'! be the transmitted signal;

e N e C"*! be the noise

e H € M,+«:(C) be the transmission matrix,

and suppose
Y=HX+N. (11.38)

Let H = [hj;] and observe that the component /;; measures how much the
kth transmitter sends to the jth receiver. This transmission is degraded by jth
component of the noise. More specifically, we assume that N is a Gaussian vector

of the form N = ((y; + iy_j)/\/Z);-zl, where (Vj);zfr are mutually independent
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N(0, 1) Gaussian random variables. From the early days of probability theory,
Gaussian random variables have been used as standard models for errors and noise.
Note that UN has the same distribution as N for all unitary U € M,«,(C), so
the noise has no preferred coordinate direction. In the simplest case »r = ¢ and
H = I, so that the kth transmitter communicates only with the kth receiver;
otherwise, there are nonzero entries of H for j # k describing cross-talk between
transmitters and receivers with different indices. The latter situation is what we
describe in the following Lemma. Using Lemma 7.18, it is possible to replace all
the complex matrices and vectors with larger real matrices and vectors, but we will
persevere with the complex versions since the formulas are more compact.

Shannon observed that the logarithmic determinant in (11.39) is a crucial
quantity in deciding how much information can be transmitted through the network
and it is interpreted as a logarithmic capacity. The capacity of a communication link
measures the mutual information between transmitters and receivers.

Lemma 11.13 Suppose that H is constant and that the entries of X are random
variables with finite second moments that are independent of the entries of N.

(i) Then the matrices Q = EXX' and R = EYY’ are positive semi definite and
satisfy

R=I1+HQH'.
(ii) The function Q + logdet(I + H Q H') is increasing on the set of positive semi
definite t X t matrices.

(iii) For Q = tl, we have

min{r,t}
logdetR =Y log(l+t0}) (r=0) (11.39)
j=1

where o are the singular numbers of H as in Definition 7.19.

Proof

(i) First, we find that the noise has mean and variance
EN =0, ENN' =1, (11.40)
by the independence assumptions. Next we observe that
(Q8,8) = E(XX'&,£) = E(X'&, X&) =E|X'&]* > 0

for all & € C'*!, so Q is self-adjoint with all eigenvalues nonnegative.
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(i)

(iii)
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Then we compute

R=E((HX + N)X'H + N")
= HEXX'H + E(NX)H' + HE(XN') + E(NN')
=HQH +1
where we have used the independence of X and N. One can check that R is

positive semidefinite as with Q.
We have

logdet R = logdet(I + HQH') = tracelog(I + HQH').

We can express this as an integral as in Exercise 3.19
o
logdet R = trace/ ((1 +rD) -+l + HQH’)*l)dr.
0

Now for0 < Q1 < Qp,wehave 0 < HQ1H' < HQ>H’, so
—I+tD ' <—U+tI+HOH)'<—U+tI+HQ,H)™",
and from the integral we deduce that
0 <logdet(I + HQ1H') <logdet(I + HQ,H').

This shows that Q + logdet(I + H Q H') is increasing.

We have rank(H H') = rank(H) < min{r, ¢} by the rank-nullity theorem 2.2,
so there are at most min{r, 1} nonzero singular numbers o;. With the specific
choice of Q = 71, we have

min{r,z}
logdet R =logdet(/ + THH') =log l—[ (1+ tajz).
=1

O

To make the model more realistic, it is necessary to widen the scope of
assumptions about H. In practical situations, it is difficult to know in detail how
much the kth transmitter can send to the jth receiver, so we assume this £ jx
to be a random variable. In this way, H becomes a random matrix, which we
suppose independent of the random entries of X and N. The computation that
produced (11.39) remains valid, except that we now regard H as random, and
seek the expected value. When working with r x r matrices, it is often helpful
to rescale the trace by dividing by r, so that the scaled trace of the identity matrix
gives (1/r)tracel, , = 1. Although the following result deals with an asymptotic



11.3  Telatar’s Model of Wireless Communication 371

distribution as R — o0, the conclusions can be used for matrices of size about
64 x 64, such as are used in applications. See page 93 of [43].

Proposition 11.14 Suppose that v = t and H = W/\/r where W isar x r
Gaussian Wigner matrix as in Definition 9.15. Then

1 2 4 4—ydy
E logdet({ +sW</r) — log(1 + sy) ) (r—>o00) (1141
r 0 y 27

where the right-hand side is a holomorphic function of s € C \ (—oo, 0] such that

d (* 4—vydy 2
log(1 + s = s > 0). 11.42
dS/o s y)\/ y 2m 254 1—4as+1 ( ) ( )

Proof For all continuous functions f : [—2, 2] — C, we have

1 w 2 dx
Ertracef(\/’) — /72 f(x)\/4—x22n r — o0)

by Theorems 9.17 and 9.11. The right-hand side is the semicircle law, so we can
consider o to be a random eigenvalue in [—2, 2] subject to the semicircle law, then
we consider the law of o2, and the change of density that arises from y = x2. We
find that the limiting distribution of eigenvalues of W2 /r satisfies

L[V

V4 — 12dt
2 J—yy

Plo? < y] =

so the probability density function of o2 is

ddy]P’[oz <y]= VA=Y 0<y<d). (11.43)

2 \/y

Hence for all continuous functions g : [0, 4] — C, we have

1 w2 b JA—y
Ertraceg< . ) — /0 g(y) 27y dy (r — 00).

In particular, we can take g(y) = log(l 4+ sy) for y € [0,4] and s € C\ (—o0, 0]
and obtain (11.41).
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We can compute the derivative of this expression, as follows. Starting from the
formula

dx

2/1J1—x2 3 2
It B S VSR

(¢ e C\[-1,1],

T

which we derived in Example 9.16, we substitutex = y/2—1land{ = —1—1/(2s)
to obtain

1[4y —y? 2
f‘/y Tay = (s > 0),
2w Jo  1+sy 25 +1—4s+1
hence
d (* 4—vyd 2
/log(l—i—sy) yay _ (s>0).  (11.44)
ds Jo y 27 2s+1—AJds+1

O

This result can be extended in several ways. We can replace the Wigner matrix W
by a rectangular matrix H with Gaussian entries, and drop the assumption that H is
symmetric. The Wishart matrix then arises from H H’, and is one of the fundamental
examples in random matrix theory. The probability density function in (11.43) is
one of the family of Pastur-Marchenko distributions which arise in the context of
the Wishart distribution. We refer the reader to [7], [43] or other books on random
matrix theory for further discussion of this topic. Orthogonal polynomials are a
useful tool for studying limit distributions of random matrices.

Example 11.15 One can easily rescale the probability density (11.43) so that it
becomes

wx)=Co) '+ D20+ 02 (xe(=1,1).

The standard Jacobi polynomials Pn(l/ 2172
weight, and are normalized so that

1/2,-1/2 1/24n
P “(1):(/ )

(x) are orthogonal with respect to this

n

Then y = P,fl/ 2=1/2) (x) gives the only polynomial solution of the differential
equation

d? d
a —xz)dxﬁ —qa +2x)d)yc o+ Dy =0.
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The three-term recurrence relation is
4n*(n—2) PP (x) = 2n2n—1)2n—2)x PV () —n@n— 1) @n=3) P3P (x)

as in page 71 of [54].

11.4 Exercises

Exercise 11.1 Show by substitution that

4 _
f 4—ydy @t n=01,...).
0 y 2w (n + 1D(n))?

Exercise 11.2

(i) Let A and B be positive definite n x n matrices. Using Lemma 3.38 and
Theorem 3.20, show that there exists a positive definite \/ A such that (\/ A)2 =
A and

det(I + sAB) = det(I + sv/A B+ A).

(i1)) Deduce that the eigenvalues of AB are positive. (It is not asserted that AB is
positive definite).
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Solutions to Selected Exercises

Exercise 1.3 We write

dx

dt -

dv k u
dt =_mx+m'

Then we introduce the state vector

and introduce the coefficient matrices

0 1 0
A= , B= , C= , D=0.
[—k/m o} [l/m} 1]
Then

dXx

=AX + Bu
dt

x =CX + Du.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Exercise 2.5

(i) Asin (2.51),let

010 0
A=|0 0 1 |, B=|0|. C=[4-32], D=0.
~7 -6 -5 1

(i1) The eigenvalues of A are
eig(A) = —3.9259, —0.5391 £:1.2225;
all of these lie in the open left half plane, so the system is stable.
Exercise 2.12 We consider the augmented matrix for [s] — A | []
s—1 —4 —101]100
0 s—2 0 |010

0 0 s=3]001

so the row operations | > r1/(s — 1), 72 +> r2/(s —2) and r3 > r3/(s — 3) give

1 —4/s—1)=10/s—=D|1/s—=1) 0 0
0 1 0 | 0 1/(s —2) 0
0 0 1 | 0 0 1/(s =3)

thenry — r; +4r/(s — 1) + 10r3/(s — 1), gives

100 1/(s—1)4/(s— (s —2) 10/(s — 1)(s — 3)
010] O 1/(s —2) 0
001 0 0 1/(s = 3)

hence

1/(s = 1) 4/(s — D)(s —2) 10/(s — 1)(s — 3)
(sI—A) = 0 1/(s —2) 0
0 0 1/(s = 3)

Exercise 2.10 By polynomial long division we obtain

2253 — 2652 — 345 — 28

T(s)=5 .
) +s4—3s3+4s2+7s+6

Hence we choose
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, C=[-28-34-2622], D=5

- o O O

The numerical values for the eigenvalues of A are found to be
eig(A) =2.1014 £:1.9797, —0.6014 £ :0.5985.

Exercise 2.13 The solution follows the method of proof of Lemma 2.32. Consider
det(L] — A) = det [A - }
-3 A-=5
=x-DRr-5+3
=2 —61+8
=X -4HHr—-2).

For A =2,

11
21— A=
5

. 1
so we choose eigenvector [ 1i|;

301
41 — A=
5

. 1
so we choose eigenvector [ 3:| .

11 20
s=[4 A o= od)

forr =4

Let
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then AS = S§D,so A = SDS*I, where
—1[-3-1
s7= ;
2 [ 1 1 :|
hence
exp(tA) = Sexp(tD)S™!
L 1 0[-3-1]1 _ —I1[1 17[-3e* —e*
T2 -1 =3]lo et 1 1] T 2 [—1 =3 &M e

1 3e2t _ e4t eZt _ e4t
2 |:_3e2t 4 3eH 2t 3e4ti|

The eigenvectors of A are only unique up to non zero constant multiples, so there
are other valid choices available for S. Of course, the final answer exp(tA) =
Sexp(tD)S~! is unique.

Exercise 2.14 As in Proposition 2.12, we introduce the companion matrix

0100
4|00 10
00 0 1
—2—4-1-2

with numerical eigenvalues
eig(A) = —2.1877,0.3516 = 11.2843, —0.5156.

Given the matrix A, the final step can be carried out in MATLAB using eig(A).

Exercise 2.16 The solution follows the method of Proposition 2.33. The idea is to
build solutions out of each eigenvector of A.

(i) By applying column and row operations, we have

r=2 1 1
dethl —A)=| 1 r1—-2 1 (2> c2—c3)
1 1 A-2

A=2 0 1
=1 1=3 1 (ry > 12 —11)
I —A+31-2
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(i)

(iii)

r—=2 0 1
=3—2 A=3 0 (r3 > r3+r)
1 —A4+3x1-2

A—=2 0 1
=3—-22-3 0
4—x2 0 A-=2
A—=2 1
= (A —
a-of 3.l

= —=3)(A%* =3
=1(h —3)2

so the eigenvalues are . = 0, 3, 3, listed according to algebraic multiplicity.
We choose eigenvectors for the corresponding eigenvalues

1 ! 1 ! 1

A=0:Vy= 1(;A=3:V = —1|;Aa=3:V,= 1

V3

The choice of Vj is unique up to constant multiples; whereas we can choose
{V1, V2} to be any convenient basis for the eigenspace {V : AV = 3V}. The
above choice uses orthogonal vectors, but this is not an essential aspect of the
solution.

Note that when V is an eigenvector corresponding to eigenvalue A of A, the
function Z(t) = €'V satisfies AZ = AZ and dZ/dt = zZ; so we choose
7z = AtogetdZ/dt = AZ. The differential equation th‘ = 3x has general

solution x = ae while the differential equation ‘éf = 0 has general solution
x = b. So we have

Z =aVy+ ble?’t Vi+ b263tV2.

Note that when V is an eigenvector corresponding to eigenvalue A of A, the
function Y (¢) = e®'V satisfies AY = AY and sz/dt2 = w?Y; so we choose
w? = A to get d?Y/dt> = AY, so w = %+/A. The differential equation
‘f;’zc = 3x has general solution

/3

X =cle + cre

/3
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. . . .2 .
while the differential equation ‘ét’z‘ = 0 has general solution x = at +b. Hence
the required general solution is

at+b 1 cle"/?’ + cze_“/?’ 1 dle"/3 + dze_“/?’
W= 1|+ 1]+ 1
V3|, V2 0 V6 L

for real constants a, b, c1, ¢, d1, d>.
(iv) In (ii) there are three constants, required to specify Z(0).

In (iii) There are six constants; three specify W (0) and three specify (d W/dt)(0).
Equivalently, we can write the system as

d{w| _[or]|w
di|[U] [A0]|lU
where the column vector is 6 x 1, so we need 6 independent constants.
Exercise 3.2 We compute the eigenvalues by MATLAB; specify the matrices by
>>A=[1,1,3;2,7,5;1,8,2]
>>B=1[1,1,7;9,8,4;2,2,9]

>>C=]1,1,1,1;2,7,9,4,8,1,7,i;2,2i,2,4]

eig(A) = 11.8679, —0.0951, —1.7729;

eig(B) = 13.8334, 0.0886, 4.0780;

eig(C) = 11.6936 + 0.8093:, 0.8875 — 1.7730¢, 1.9024 + 0.8578:, 4.5164 + 0.105%
and the eigenvalues of —A are the negatives of the eigenvalues of A, and so on.
Hence A, B and C have eigenvalues A in the right half plane with ix > 0, so are

unstable. However, — B and —C have all their eigenvalues in the open left half plane
with A < 0, so are stable.

Exercise 3.5

(i) For X = column(xj)?zl, We have
n
2
(DX, X) = k;x3,
j=l1

and since k1 > kj > kj, we deduce that
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n n n
EDDUED ISP
j=1 j=1 j=1
SO
2 2
K| X[1° = (DX, X) = wa [ X7

By the spectral theorem 3.20, we can introduce a real orthogonal matrix S, and
a diagonal matrix D as in (i) such that K = SDS™!, where S~! = ST. Then

Kk1(X, X) > (DX, X) > i, (X, X) (X eR"D),
and, with X = STY for Y = SX, we have
k1 (STY,STY)> (SDSTY,Y) >k, (STY,STY) (¥ e R™),
SO
IV, Y) = (KY,Y) = (YY) (¥ e R™D),

hence the result.

Exercise 3.7

®

(i)

Let X be an eigenvector corresponding to eigenvalue x. Then the eigenvalue
equation kX = KX gives (X, X) = (KX, X) > 0 since K is positive
definite. Also | X|> = (X, X) > 0,s0« > 0.

Let the eigenvalues be «i, ..., k,. By the spectral theorem 3.20 for real
symmetric matrices, there exists an orthogonal matrix S such that K = SDS’,
where D is the diagonal matrix

Then
detK =detD =kiky ...k, > 0,
trace(K) = traceD = k1 + k2 + -+ + Kk, > 0.

Alternatively, note that the usual basis vectors e; (j =1, ..., n) for C" give
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n

trace(K) = Z(Kej,ej) >0
j=1

by the definition of trace and the assumption that K is positive definite.
(iii) For all X # 0, we have Y = SX # 0 since S is invertible, so

(SKSX,) = (KSX,SX) = (KY,Y) >0,

hence 'K S is positive definite.
(iv) Let S = exp(A). Then exp(—A) exp(A) = I, so S is invertible, and

, 2 A3 /
s =<I+A—|— o s +)

N2 "3
TS A

_ /
_<I+A 2! 3!

=exp(4)),

hence exp(A")K exp(A) = S'K S is positive definite by (i).
(v) LetY # 0 be a vector. Then

(K+L)Y,Y)y=(KY,Y)+(LY,Y)>0
so K + L is positive definite.
[Beware that the eigenvalues of K 4 L are related to the eigenvalues of
K and L in a complicated way; we cannot just add eigenvalues of K to
eigenvalues of L and get eigenvalues of K + L. Also the minors of K + L

are related to those of K and L is a complicated way.]

Exercise 3.21

(i) Note that V is a subset of C"*! and for A, a;, b; € C we have
js O

n—1 n—1
)LZajAjB = ZA.ajAjB;
i=0 j=0

and
n—1 n—1 n—1
Y ajAIB+Y bjAIB =" (aj+b,)A'B.
j=0 j=0 i=0

Hence V is a linear subspace of C"*!.



12 Solutions to Selected Exercises 383

(i)

(iii)

(iv)

First note that V = {0}, if and only if B = 0. If V has dimension one, then
V ={agB : ap € C} and AB € V so AB = ayB for some ay € C; hence B
is an eigenvector of A. Conversely, if B is an eigenvector, so that AB = AB,
then A/B = A/ B, so

n—1 - n—1 ‘
Y ajAlB=3 aj)’/B
j=0 j=0

and V evidently has dimension one.
We need to check that L4 maps V to itself, and the main problem is with
L4 A". By the Cayley—Hamilton theorem, x4 (A) = 0, so

A" = trace(A)A" ! — ... 4 (=1)"Tl(det A)I;

so a typical X € V has the form

n—1
X=) ajA'B
j=0
has

LaX = AX

n—1
=AY ajA'B
j=0

n—2
=> ajA’"'B+a, 1A"B
j=0
n—2
=" a; AT B + a, (trace(A) A" B — - + (=1)"+! (det A)B),
j=0

so the first sum involves A/*! with j + 1 < n — 1 and the other powers of A
are AX withk <n — 1;hence AX € Vforall X € V,so L4 maps V to itself.
MATLAB gives

I —-165 —126 —1673

_ | =5 85 —141.5 —1676
Q= —-0.5 —27 —-224.5-1732.5
3 155 81 —111.5

which has rank 4.
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>>A=1[1,3,5,0;0,1,9,6;1,1,4,-7;2,2,1, 8]

>> B =[1;-5; -0.5; 3]

>>C=AxB
>>D=Ax%xC
>>FE=AxD

>> Q0 =[B,C,D, E]
>> rank(Q)
Alternatively, one can find
>> det(Q) = —1.2664¢ + 07
so det Q # 0, hence Q is invertible and has full rank 4.

Exercise 4.1

(i) The Laplace transform can be found by integration by parts, as in

R i e St cos2wt1R 2w R et
e’ cosZwtdt:[ ] — e ' sin 2wt dt
0 —S 0 s Jo

1 e *Rcos2wR 2we 3! sin 2wt 1R
= H

s s 0
40 (R
-, / e ¥ cos2wt dt,
s Jo
so that
(1 n 4a)2> /R st Dt dt 1 e Rcos2wR n 2we SR sin2wR
e % cos2w = - ,
s2 7 Jo s s 52

s —sR

so letting R — 00, we have e *% cos2wR — 0 and e sin2wR — 0 for all

s >0, so

o0
—st
e ' cos2wtdt = .
/0 52 4 4w?

(ii) We have cos 2wt = 1 — 2 sin® wt, so
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o0
Y (s) =/ s sin® wr dt
0

1 o0

= / e (1 — cos2wt) dt
2 Jo
1 [ 1 [

= / e Stdr — / e S cos 2wt dt
2 Jo 2 Jo

_ 1 s

T 25 2(s2+40?)

2a? ( 0)

= S > .

s(s2 + 4w?)

Exercise 4.2 The Laplace transform is

2
sY —7Y = ,
4452

so that

2

Y(s) = .
= -2+
The partial fractions have the form

Y(s) As+B+ C
S) =
s24+4 57

and we compute the undetermined coefficients by using
2= (As + B)(s — 6) + C(s> + 4),
)

s2: 0=A+C
s: 0=-7A+B
1: 2:—7B+4C
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sothat A =—2/53,C =2/53 and B = —14/53. Hence

-2 s -7 2 2 1

'O wern T s56ra 6o

so by uniqueness of Laplace transforms

(1) - 2t + 2
= COS — sin e .
Y 53 53 53

Exercise 4.19 By the triangle inequality
t
If*hUN=‘Z;Mt—@f@ﬂh
t
sl;ma—smf@wm
t

sM/M@Ms

0

SMmeMMs t > 0);
0

hence f * h is bounded.

Exercise 4.21 In L2[O, 2] we have an orthonormal basis (e” int / N 2)9 _ - and the
Fourier coefficients of t — 1 are

a —fz(z—l)dt =0;
O_O \/2—7

/Z(t 1)efm'ntdt
a, = —
" V2

t—1 —mint 4 2 —mint
_ [( )e ] ~I—/ e dr
—mind2 o 0 —mwiny2
e—2m’n 1
—min?2 B Tin2

V2 ezyon
wTin
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while the log series gives

0 wint o wint
—e —e 1 1 1 1
= lo L= lo
Z Tin +Z win i gl—e—”” i gl—e’”’
n=—0o0 =0

1 1—e7H

= lo .
i £ 1 —e 7t

— ' JogTit=D
i oge

=r—1

hence we have an orthogonal series

t—1= > i grint (t € (0,2)).
n

neZ\{0}

Exercise 4.22 The error function is

t
erf (1) = \/zﬂ/o e dx
2 o0

n=0

(—1)"[2n+1
(@n + DHn!”

The inverse Laplace transform of erf (1/s) is

g(t) = L7 (erf(1/5); 1)
2 0 (_1)ns7(2n+1)est ds
U /an:;) @n+ Dn!  2mi
2 0 (_l)ns—(2n+1)est ds
U Xz(:)/c Qn+ Dn!  2mi

B 2 0 (_1)nt2n
T nzz(:) n!2n 4+ D!



388 12 Solutions to Selected Exercises

Now we take the Laplace transform of g(+/1), obtaining

00 2 oo X (_1)ntne—st
Ne Sldt = / dt
/0 (/e J7 Jo gn!(Zn—i-l)!
2 Sl 00 (1)l e—st
_ Z/ (=D"t"e dr
VT = nl@n+ 1)
2 i (="
V- = 2n+ Dlsnt
2 1 s'nl
= 1 .
NEVERRVE]
Exercise 5.1

(i) The Laplace transform of the differential equation is

s2Y(s) +65Y(s)+ Y(s) = =3sU(s) + U(s),

SO
3s+1
Y - b

©= 41V

so the transfer function is
3s+1
T J—
) s24+6s5s+1

Hence the frequency response function is

Bio+1 1—a?—6iw

T(iw) =
(i) l—w?+6iwl —w?—6iw
_ 1—190% = 9iw + 3ie?®
o (1 — w?)? 4+ 36w?
(ii) Hence the gain is
V14 902
[Nw) =T(w)| =

V1 = 02)? 43602
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while the phase shift ¢ satisfies

tan ¢ 3w — 9w
an¢ = .
1 — 1902
)
b=t _1 303 — 9w
= tan .
1 — 1902

Exercise 6.2

(i) Note that K is invertible if and only if det K = PX + Y Q # 0, and then

P o] 1 X -0]

-YX|  PY+90x\|y P |’
but we still need to consider whether the entries of the right-hand side are
actually polynomials. We have ] = KK~ so 1 = det K det K !

If K~! has polynomial entries, then det K and det K ~! are both polynomi-
als, so

degree(det K) 4 degree(det K _1) =0

so degree(det K) = 0 and det K = «, for some « # 0, thatis PY + XQ =«.
Conversely, if PX + QY = «, then K is invertible, and the entries are
polynomials.

(i) Recall from the Euclidean algorithm that P and Q have highest common factor
1 if and only if PX + QY = 1 for some polynomials X, Y, or equivalently
PX + QY = « for some k # 0 withk € C.

(iii) When P(s) and Q(s) have no common complex zero, then P(s) and Q(s)
have highest common factor 1, so there exist polynomials X, Y such that P X +
QY =1, and this gives the required K.

(iv) By the Euclidean algorithm, we have

—s+3
12

1= (P2 -3+

12 (s2~|—3s~|—2),

so we have

K — 52425 —3s2+35+2
N s—3 s—2

with det K = 12, so K ! has polynomial entries.



390 12 Solutions to Selected Exercises

The choice of K is not unique; indeed, one can add polynomial multiples of
the first row to the second without changing the determinant. One can do the
Euclidean algorithm by hand. Alternatively, use the MATLAB instructions:

>> syms
>>P=s>+2%s—3
>>Q=s2+3>ks+2

>> [g, X, Y] = gcd(P, Q)

Exercise 6.5 Descartes’s Rule of Signs
(i) Hereo = 1,s0r = 1.
(ii)) Hereo =5,s0r = 1,3 or5.

(iii) The roots are —4.1642, 0.3914, —1.2271; which confirms that » = 1.
A ponderous solution is to introduce

01 0
C=100 1
2-3-5

and then compute eig(C).

(iv) The roots are 5.8580,0.8029 + :0.4265, —0.0829 + 11.0466, —0.8644,
—0.4336;s0r = 1.

Exercise 6.8 We introduce s = (1 — 1)/X and write

24541
s2 -2
A=A+ A=/ +1
o (1—20)2/x2 -2
A= rd =)+ 42
B (1 —2)2 =212
A -+
[ SR

G(s) =

SO we write

22— 241=—A2 A+ 1) —=31+2
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where
A2 — A4 1= (=A/34+1/9)(=31+2)+7/9
so that
7/9 =22 —A4+1—(=1/3+1/9) (=31 +2)
=2 —A+ 1= (=AB+1/D(=2> =22+ D+ R =A1+1)
=8/94+1/3)(A2 — A+ 1)+ (/3 —1/9) (=A% =20+ 1)

so that

1= (3A7+8)()\2—A+1)+(3A7_1)(—)\2—2)\“)

and substituting A = 1/(s 4+ 1), we obtain

3+ 8(1 ) 1 1 3—(1+s) —1 2
1= ;(1+j>s )<(1+s)2_1+s+1>+( 7(1 ++s)T ><(1+s)2_1+s+1)

which shows that G is the quotient of coprime functions in S, as in

1 1
+1
1+5)2  1+4s
Go="1" 5
(14s5)2  1+s +

One can do this by hand. Alternatively, use MATLAB.
>> syms X
>>P=x’—x+1
>> Q=x2~|—2>kx—1
>>[g. M, N]=gcd(P, Q)

This gives polynomials M and N such that 1 = PM + ON.
Exercise 7.2
(i) We have

24 4

—A—A'=[4103
4314



392 12 Solutions to Selected Exercises

which is real symmetric, but det(—A — A”) = —26, hence —A — A’ is not
positive definite.
Alternatively, one can find
eig(—A — A’) = 17.5295, 8.6421, —0.1716.
(i1) We have
eig(A) = —0.1093, —8.6706, —4.2201

eig(A") = —0.1093, —8.6706, —4.2201

which are all in the open left half plane, so there exists a solution to AK + KA’ =
—1, with K positive definite, by Corollary 7.5. MATLAB gives

4.5158 —1.7607 —0.1648
K =1 -1.7607 0.7974 0.0342
—0.1648 0.0342 0.0852

The required MATLAB command is
>> K =lyap(A,I)
or equivalently
>> K =lyap(A, A, )
The solution in terms of factions is given by inputting
>> format rational

To solve this by the Sylvester’s equation, we observe that K = K’, so we can
write

—AK — KA =1
as
123 ]abc abc 121 100
251(|bde|+|bde||252]|=|010
127] Lce f ce fl|317 001

so we have six linear equations for the six unknowns a, b, ¢, d, e, f; considering
the terms on or above the leading diagonal we write these equations in the matrix
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format
(2460 0 0 [a] [1]
2612 3 01||»b 0
1280 2 3||c| _|O
040102 0 ||d]| |1
0122121 |]e 0
0020 414 [ F] [1]

which one can solve by linear algebra to obtain a unique solution for the six
unknowns a, b, ¢, d, e, f; this gives

70808 —27608 —2584
—27608 12504 536 |;

K =
15680 —2584 536 1336

finally, one checks that K is positive definite. Either one can invoke Corollary 7.5,
or note that K has eigenvalues 5.222, 0.1183 and 00576, all positive; or one can
compute the principal minors of K as

70808,/15680, 123181568/156807, 240,/6743;

so K is positive definite. All this can be carried out in exact arithmetic by hand;
however, the calculation is tedious.

Exercise 8.12 Prolate Spheroidal Wave Functions Differentiating through the
integral sign, we have

d? d L
1— 2 ) _)\2 2 / iAxy d
(=) 0 =20 g =25) | pdy

1
- f 1 ( (1= 22y = 2idxy — 222 F(y)dy
l .
= / 1()»zxzy2 — 2292 =222 = 2iaxy)e™Y F(y)dy
which we can compare with the following identities, which occur by integration by
parts
2

1 : d d
iAx 2 2.2
1-— -2 —A d
/le (( ¥9) e "2 gy TR )f(y) y

L d df
_ IAXy 2 42,2
‘/f (g (=95 =237 ray
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b df ; dfq!
irxy( _ VAN 12,2 iIAXY (1 _ 1,2
= [18 )< (L= yDidx o =A% f(y))dy+ [e (1—y )dy]i1

= /_11 <ddy ((1 _ y2)ei)\xy)i)hxf(y) _ )\2y26i)»xyf(y))dy

1
/ ((2iky = 13630 = ) =) f(3)dy

1
= / 1 (—2irxy— A2x? 4 A2x%y% — A2y2)e’)‘xyf(y)dy,

sowe find that KUf = UK f.
Exercise 10.12 (ii) We have

o0 . dZ etwu
e'“*sinca(u — z = I _ w),
/;oo ( )27_[ 20 ( a,a)( )

so with ¢ as in Theorem 11.4,

a [ . a [ [ i dO .
/ ¢()sinca(u —z)dz = / f(w)e'*  “sinca(u — z) dz
T J_x T J_ood-a 2a

a 00
; d

= a/ f(w)/ e'““sinca(u — z) dz @
T J_q o0 2a

a eia)u

=/ f(w) )

=¢(u).

u ]I(_a,a)(a))dw

(iii) Continuing with the notation of Exercise 8.12, we write

1 1
Ug(x) = f e*Ve(yydy,  U'gx) = / e Ve (y)dy
—1 1

for 1 € R. Then by substitution, we have

1
U'Ug(x) =/ e MU g(2)dz
-1

1 1
— / e*l)\XZ / ez)\yzg(y)dy
—1 —1
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so regrouping the terms and changing the order of integration, we have

1 1
U'Ug(x) = / 1 / U dzg )y

1 ei)»z(xfy) 1
= /_1 [ik(x — y)]—lg(y)dy
B /1 2sinA(x — y)

d
L A—y) g(y)dy

1
= 2/ 1 sinc(A(x — y)) g(y)dy.

Now let A = a, and f(az) = g(z); then
@ d b dz 1
Tfx)= f e f)) = f e flaz) T = Ug(n).
—a 2a 1 2 2
Exercise 10.1
(i) We note that the integral is a convolution of f with e, so we have

2 —1
L) = L&)~ | LI6) = j+ (LI,

(i) We can choose fo(s) = ~/2e~" with L fo(s) = ~/2/(1 +s), and generate the
sequence ( f;) by the recurrence relation f,,11(s) = Sf,, (¢), so that

V2(s = 1)"

Lfn(s) = (s + 1)n+1 s

which we recognize as the Laplace transforms of the given functions 4,,(¢). The
result follows by uniqueness of Laplace transforms.



Glossary of Linear Systems Terminology

(A,B,C,D) the standard continuous-time linear system determined by constant
matrices of matching size

amplitude height of the crest above the average level, regarded as a wave;

BIBO bounded input and bounded output system;

Bode plot  plot of log gain and phase against angular frequency w;

Closed loop system with feedback loop;

differentiator operator of differentiation with respect to time ¢;

frequency domain linear system in terms of w, where s = i w;

frequency response function transfer function 7'(s) when s = iw and w € R;

gain  (or amplitude gain) modulus of the transfer function;

integrator operation of integration with respect to time ¢, from ¢ = 0;

.I CF Jordan canonical form of square matrix;

L Laplace transform of L;

LHP Open left half-plane {s € C : fis < 0};

MIMO multiple input and multiple output linear system;

Nyquist plot  graph in complex plane of T (iw) for —oo < w < 00;

Open loop system without feedback;

phase (or phase shift) argument of the transfer function;

resolvent of square matrix A is (s — A)*l;

RHP  open right half-plane {s € C : fis > 0};

s-domain linear system in terms of Laplace transform variable s;

SFL  simple feedback loop system;

SISO single input and single output linear system;

state-space model linear system in terms of functions of time #;

summing junction operator for adding signals;

t time, with 7 € (0, 00);

tap operator for making a signal go along two routes;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 397
G. Blower, Linear Systems, Mathematical Engineering,
https://doi.org/10.1007/978-3-031-21240-6



 -151
4612 a -151 4612 a
 
https://doi.org/10.1007/978-3-031-21240-6

398 Glossary of Linear Systems Terminology

transfer function 7 (s) multiplies the Laplace transform of the input to get the
Laplace transform of the output;

unit impulse function §j the unit point mass at time ¢+ = 0, also known as Dirac
delta function;

® angular frequency, often abbreviated to ‘frequency’.



Appendix A
MATLAB Commands for Matrices

>> x=3, t=2 [this assigns values x = 3 and r = 2.
>>x*t [multiply x and ¢]

>>x+t [add x and 7]

>>x/t [divide x by ¢]

>> x(-1.5) [raises x to the power —1.5]
>>2%((x+tf 3) [computes 2(x + 1)3]

>> pi [ area of disc of unit radius]

>>] [i complex number]

>>exp (3); [creates e

>>A=[5,7;9,-2], B=[1,2,3;4,5,6] builds the matrices

57 123
A_|:9—2}’ B_|:456}

>>inv(A) [computes the inverse matrix of A]

>>det(A) [computes the determinant of A]

>> trace(A) [computes the trace of A]

>>B’ [computes the adjoint (conjugate transpose) B’ of B]

>>B.’ [computes the transpose B of B]

>> rref(A) [finds the reduced echelon form of A]

>> rank(A) [finds the rank of A]

>>poly(A) [finds the coefficients of the characteristic polynomial of square matrix
Al

>>eig(A) [finds the eigenvalues of square matrix A, in a list]

>> jordan(A) [finds the Jordan canonical form of A]

>>[W,D]=eig(A) [gives a matrix W with columns that are eigenvectors of A and
diagonal matrix D]

>> A2 [computes the matrix product AZ]

>>AT2 [creates matrix by squaring each entry of A; note dot]
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400 A MATLAB Commands for Matrices

>>A*B [calculates the matrix product AB]

>>expm(A) [calculates the matrix exponential of A]

>>exp(A) [calculates the matrix formed by taking the exponential of each entry of
Al

>>syms X [introduces algebraic variable x]

>>Q=lyap(A,P) [given positive definite P and square A, solves AQ+ QA’ = —P]

>> X=lyap(A,B,C) [solves AX + XB = —C]

>> t=—100:0.1:100 [introduces the vector [—100, —100+0.1,. .. ,100]]

>> y=(i*t+1)(—1) [creates a vector with entries y=1/(it+1); the dot indicates that
the operations are applies to each entry at a time]

>> plot(y) [plots the imaginary part of y versus the real part of y]

>> [r,q]=polynomialReduce(P,Q) [polynomial long division to find remainder and
quotientin P = Qg +r]

>> angle (z) [computes the argument of the complex number z]

>> abs (z) [computes the modulus (absolute value) of complex number z]

>> laplace((r?)*exp(2*t)) [computes the Laplace transform of ¢, and gives
values in a variable s]

>> nyquist(T) [plots the Nyquist locus of a given real rational function]

>> bode(T) [created the Bode pole of a real rational function] Beware: nyquist and
bode have difficulties with complex coefficients.

>> subs(G.t,s) [substitutes expression s for t in the expression G, for algebraic
variables]

>> [g,c,d]=gcd(a,b) [computes the greatest common divisor of a and b and
expresses the gcd as ac + bd]



Appendix B
SciLab Matrix Operations

SciL.ab is a simplified version of MATLAB, with a similar syntax; it cannot do much
symbolic manipulation. Some commands are:

—— > coff(A) [for a square matrix A, computes matrix of cofactors adj(s/ — A)]

—— > [N,d]=coff(A) [for a square matrix A, computes N = adj(s/ — A) and
d =det(s] —A),soN/d = (s] — A)~']

—— > i=complex(0,1) [defines the complex number i]

—— > det(A) [computes the determinant of a square matrix A]

—— > eye(3,3) [gives the 3 x 3 identity matrix /3]

—— >expm(A) [calculates the matrix exponential of a square A]

—— > [gcd, Ul=bezout(p,q) [gcd gives greatest common divisor of polynomials p
and g, and first column of U gives polynomials a, b such that gcd=ap+bq]

—— > inv(A) [computes the inverse of a square matrix A]

—— > [X]=lyap(A,C,‘c’) [computes X satisfying X' A+ Ax X = C for symmetric
C; note that SciLab uses a different sign convention from MATLAB]

—— > plot(real(P),imag(P)) [used for Nyquist plots]

—— > s=poly(0,°s’) [gives an algebraic variable]

—— > [r,q]=pdiv(P,Q) [gives quotient q and remainder r for P=Qq+r in polynomi-
als]

—— > [radius angle]=polar(z) [gives [r 6] where z = re'?]

—— > rank(A) [computes the rank of a matrix A]

—— > rref (A) [computes the row reduced echelon form of a matrix A]

—— > spec (A) [computes the spectrum (eigenvalues) of a square matrix A]

—— > [R,D]=spec (A) [for a square matrix A, computes the eigenvectors in R and
eigenvalues in diagonal matrix D ]

—— > trace(A) [computes the trace of a square matrix A]
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